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Abstract
The Simian immunodeficiency virus (SIV) infected macaque model exhibits neuropathological
symptoms similar to those of HIV+ patients, and is ideal for studying cognitive impairment and
neuropathological sequelae of disease in repeated measurements. The aim of this study is to use
Diffusion Tensor Imaging (DTI) and perfusion MRI to longitudinally access the disease
development in SIV-infected monkeys under controlled conditions and to cross-validate our
finding with MRI studies in HIV+ patients. Three adult male pig-tailed macaques (Macaca
Nemestrina) were inoculated with the SIVsmmFGb virus. Blood was collected for enumeration of
CD4+ and CD8+ T cells. Serial time-sensitive high-resolution T2- weighted structural images,
Cerebral Blood Flow (CBF) maps measured with the Continuous Arterial Spin Labeling (CASL)
technique, and DTI images were obtained. Animals were sacrificed after 24 weeks. Cognitive
behavioral tests were also carried out at each time point. Longitudinal changes in brain volume,
CBF, and DTI in selected regions were analyzed statistically. In this study, CD4+ T cell counts
were found declined significantly after SIV infection in all macaques. No significant neurological
behavior and brain volume changes were observed following virus inoculation. The CBF was
found reduced in the caudate, inferior parietal cortex, and the prefrontal cortex. Fractional
Anisotropy (FA) values in the whole brain and several Regions of Interest (ROIs) decreased
significantly. These longitudinal changes in CBF and FA are correlated with CD4+ T cell
depletion and/or CD4:CD8 ratio. The MRI findings from this pilot study agree with previous
results in HIV+ patients.
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Introduction
MRI is a non-invasive technique which has been used to detect brain abnormalities in HIV+

patients. Many modalities, such as anatomical T1- or T2- weighted structural images, in vivo
Magnetic Resonance Spectroscopy (MRS), functional MRI, diffusion tension imaging
(DTI), and perfusion MRI have been applied in clinical and preclinical studies. Some
changes in brain anatomical structure, cerebral metabolism, function, physiology, white
matter integrity derived from these modalities have been proposed as potential markers of
the development and progression of the disease (Arendt, 1995; Bakshi, 2004; Descamps et
al., 2008; Thurnher and Donovan Post, 2008; Tucker et al., 2004). Among them, DTI and
perfusion MRI may be most sensitive to HIV development in the brain. In DTI studies of
HIV/AIDS patients, it is found that the fractional anisotropy (FA) decreased significantly in
the splenium, genu, internal capsule, and whole brain and that this measure correlated well
with the severity of the disease. These measures therefore may be particularly strong
candidates as surrogates for neurological changes in HIV+ patients (Chen et al., 2009;
Filippi et al., 2001; Gongvatana et al., 2009; Muller-Oehring et al., 2010; Pfefferbaum et al.,
2007; Pfefferbaum et al., 2009; Pomara et al., 2001; Ragin et al., 2005; Thurnher et al.,
2005; Wu et al., 2006). Also, abnormal cerebral blood flow (CBF) has been observed and
proposed as a biomarker of disease state in HIV infected patients (Ances et al., 2009; Chang
et al., 2000; Ernst et al., 2000; Maini et al., 1990).

In clinical studies, however, it is usually impossible to control for route of infection, viral
strain, severity of disease, or time post infection. These uncertainties complicate evaluation
of the efficacy of MRI as an index of disease stage. An appropriate animal model, in which
controlled and repeated measurements are possible, is therefore a better setting in which to
evaluate MRI-based measures as biomarkers of disease progression.

Disease manifestations and progression in Non-human primates (NHPs) infected with
Simian immunodeficiency virus (SIV) parallel most aspects of HIV+ patients. Thus, the SIV
infected NHP model is of great importance in preclinical AIDS research (Burudi and Fox,
2001; Gold et al., 1998; Murray et al., 1992; Novembre et al., 1994; Williams et al., 2008).
It is also an ideal model for the longitudinal evaluation of neuro-imaging markers under
controlled conditions, especially with the modern high field MRI techniques, which was the
aim of the present study. Specifically, we sought to measure longitudinal and quantitative
changes of CBF, FA, mean diffusivity (MD), and brain volume in pig-tailed macaques
before and after infection with SIV under controlled condition. Peripheral indices, including
CD4+ and CD8+ T-cell counts, as well as several measures of cognition, were also obtained
from the monkeys and compared with the MRI findings.

Materials and methods
Subjects

Three, 4-year-old male pig-tailed macaques (Macaca nemestrina) were infected with 100
TCID50 of the neuropathogenic SIVsmmFGb isolate (Novembre et al., 1998; O'Neil et al.,
2004). Animals underwent health screening and were determined to be in good health before
assignment to the project.
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CD4+ and CD8+ T-cell monitoring
Blood samples were collected from anesthetized animals, for quantitation of CD4+ and
CD8+ T-cell subsets, one day before each MRI scan. Absolute numbers of CD4+ and CD8+
T cells were enumerated by flow cytometry as previously described (Novembre et al., 1998;
O'Neil et al., 2004).

Cognitive behavioral tests
The computer-based cognitive behavioral tests were designed to characterize the nature of
cognitive function in monkeys (Herndon et al., 1997). The battery included the following
tests of cognitive behavior: cued and uncued attention (Gold et al., 1998; Grant et al., 1995),
Delayed Non-Matching-to-Sample (DNMS) (including both acquisition and memory
performance with delays) (Comparet et al., 1992; Eacott et al., 1994), Delayed Recognition
Span- spatial condition (DRST-spatial), and Spatial Reversal (SR) (Martin et al., 1995;
Sahakian et al., 1995). All monkeys were evaluated with this battery three times prior to
inoculation, and at post-inoculation weeks of 2, 4, 8, 12, 16, 20, and 24 except initial
training.

Analysis of variance (ANOVA) was used to analyze the performance of behavioral tests
with SPSS 17.0, P-values less than 0.05 were considered statistically significant.

MRI measurements
MRI scans were performed in a Siemens 3T Trio whole body scanner (Siemens Medical,
PA, USA) with the Siemens CP extremity volume coil. Animals were immobilized with a
custom-made head holder and placed in the sphinx position. Anesthesia was maintained with
1–1.5% isoflurane mixed with O2. Et-CO2, inhaled CO2, O2 saturation, blood pressure,
heart rate, respiration rate, and body temperature were monitored continuously. T2-weighted
images were acquired with fast spin-echo sequence with the parameters: TR = 3000 ms, TE
= 126 ms, FOV = 96 mm × 96 mm, data matrix =128 × 128, slice thickness = 2 mm. The
amplitude-modulated CASL technique was used for CBF data acquisition (Wang et al.). The
CASL sequence parameters were: TR = 3840 ms, TE = 19 ms, FOV = 96 mm × 96 mm, data
matrix = 64 × 64, slice thickness = 2.0 mm, post-labeling delay = 0.8 s, Labeling duration=
2 s, label offset = 50 mm. 16 slices were acquired. Each scan acquired 40 pairs of images
and was repeated 3 times. A segmented double-spin echo EPI sequence was used for DTI
data acquisition. The parameters were: TR= 4800 ms, TE = 89 ms, FOV= 96 mm × 96 mm,
data matrix = 128 × 128, 2 shots, b-values = 0, 1000 s/cm2, 60 gradient directions, 32 slices,
and slice thickness = 1.5 mm (voxel size=1.5 × 1.5 × 1.5 mm3). The DTI scan was repeated
three times. T2-weighted images, DTI, and resting CBF measurements were acquired in one
setting and obtained at the baseline (three times before virus inoculation) and in the weeks of
2, 4, 8, 12, 16, 20 and 24 post-inoculation.

Data analysis
Brain atrophy index estimation—T2 weighted images, taken in the axial plane (Fig 1)
were used to calculate several ratios as indices of possible cerebral atrophy. Specifically, the
ventricle-brain ratio (VBR) was used to estimate the overall cerebral atrophy, the bicaudate
ratio (BCR) to measure caudate region atrophy, and the bifrontal ratio (BFR) to measure
frontal region atrophy (Hestad et al., 1993). The VBR was defined as the ratio of the area of
lateral ventricles over that of the whole brain in the slice where the brain perimeter is
maximized (Fig. 1a). The BCR was the ratio of the minimum inter-caudate distance over the
corresponding whole brain width in the same slice (Fig. 1b). The BFR was the ratio of the
distance between the lateral tips of the frontal horns over the corresponding whole brain
width in the same slice (Fig. 1c). The BCR and BFR were measured in the slice where the
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frontal horns were clearly identified while the septum was thinnest. Linear and area
measurements were determined using the ImageJ software.

CBF calculation—The CBF maps were calculated with the formula (Wang et al., 2005):

Where, λ (Brain/blood partition coefficient) = 0.9 (Herscovitch and Raichle, 1985), R1a
(relaxizaton time of arterial blood at 3T) = 1.66 sec (Lu et al., 2004). α (labeling efficiency)
= 0.6 (Wang et al., 2005), ΔM image intensity difference between control and labeling
images, Mcon: image intensity of control images; PLD: post labeling delay; LD: labeling
duration.

The results were generated with the custom-made MATLAB scripts. In addition, the CBF
values in different slices were calibrated with varying post-labeling delays in consideration
of different acquisition time for each slice. The CBF values of each animal were normalized
to its baseline value. The caudate, frontal cortex and the inferior medial parietal cortex were
selected for ROI analysis (Ances et al., 2006; Chang et al., 2000). Each ROI was selected
based upon the correspondent T2-weighted images, and its size was adapted to the
representative area of each structure with the Stimulate software (Strupp, 1996) (Fig 3a).
The last CBF data set (in the 24th week) was acquired incompletely and excluded during
data analysis.

MD and FA calculation—In order to reduce the motion artifacts and variation during
ROI selection on each time point, SPM (www.fil.ion.ucl.ac.uk/spm) was employed to co-
register all DTI images of each animal to the corresponding baseline ones. Each ROI was
selected based upon the corresponding T2-weighted images. Cerebrospinal fluid (CSF) was
excluded manually during whole brain analyses of FA and MD (Ragin et al., 2004).
Splenium and genu of corpus callosum (CC) and frontal white matter (WM) were selected
for ROI analysis (Pomara et al., 2001; Thurnher et al., 2005; Wu et al., 2006). In order to
eliminate the discrepancy between subjects, the FA and MD values of each animal were
normalized to its own baseline values. SPSS was used for statistical analyses.

ANOVA for repeated measures was performed to access the differences across all time
points; Student’s t-test was applied to compare the averaged FA, MD, and CBF pre- and
post-inoculation. P-values less than 0.05 were considered statistically significant in repeated
ANOVA, t-test and correlation analysis. Correlations with the blood T-cell counts were
carried out using simple regression analysis.

Baseline values for these analyses were derived from the average of the three scans on each
animal before the inoculation. All procedures and protocols were in compliance with the
Institutional Animal Care and Use Committee (IACUC) of Emory University.

Results
Cognitive tests

Monkeys learned and reliably performed the tests of the cognitive battery, but it was found
pre-inoculation performance was not different from post-inoculation behavior on any of the
tests.
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CD4+ and CD8+ counts in plasma
Longitudinal changes in CD4+ and CD8+ T-cell counts are illustrated in Fig. 2. CD4+
counts declined progressively as expected, differing significantly from the baseline at weeks
4, 12, 16, 20 and 24 after inoculation in comparison with the baseline. CD8+ counts were
significantly decreased immediately after inoculation, and decreased progressively
thereafter, with the exception of a temporary increase in the 8th week.

Brain atrophy index measurement
No significant changes were observed in all the measures of VBR, BCR and BFR after
inoculation. However, BFR changes are significantly negatively correlated with CD4 counts
(Table 1).

CBF measurement
CBF in the selected ROIs (Fig 3a, caudate, prefrontal cortex, and inferior medial parietal
cortex) decreased after the SIV inoculation (Fig 3b). In comparison with the baseline CBF,
the CBF reduction was statistically significant in both caudate (4th, 8th and 16th week after
viral inoculation), prefrontal cortex (8th week) and inferior medial parietal lobe (8th, 20th

week) (Fig 3c). The CBF changes in the prefrontal cortex generally correlated with the
changes of the CD4+ counts, but are not synchronized with the CD4+ counts and lagged
behind slightly. The CBF changes of the selected ROIs significantly correlated with CD4+
counts and CD4/CD8 ratio (except prefrontal cortex) (Table 2).

FA and MD measurement
The whole brain FA and MD before and after inoculation were analyzed with t-test and
repeated ANOVA for longitudinal comparison (Fig 4). The whole brain FA was
significantly reduced after inoculation (Fig. 4a). The whole brain MD showed an increasing
tendency after inoculation but did not reach statistical significance (Fig. 4a). Longitudinal
analysis revealed that the whole brain FA was reduced significantly in the 2nd week and 8th

week post inoculation in comparison with the baseline value (Fig. 4b). The whole brain MD
appeared increased in the 4th week post inoculation, but this difference was not significant
(Fig. 4b).

The mean FA (averaged across time) in genu of corpus callosum was found significantly
reduced after the inoculation, while the one in splenium showed a non-significant decline.
Also, there were no significant FA changes observed in the frontal WM (Fig 5b). In the
longitudinal analysis, significant declines in the FA of genu were observed 8 and 12 weeks
after inoculation (Fig. 5c). The mean MD values in these ROIs showed a trend toward an
increase following inoculation (Fig. 5d), but this change was not significant.

The cross-correlations of FA and MD in the whole brain and ROIs with the CD4 counts and
CD4:CD8 ratios are shown in Table 3. FA values in the whole brain and splenium correlated
significantly with CD4+ cell counts. The FA values in genu and frontal WM correlated
significantly with CD4:CD8 ratios.

Discussion
CD4+ depletion and CD4/CD8 ratio are routinely used to evaluate and track the progression
of HIV infection in clinic (Lentz et al., 2009). The progression and development of the SIV
infection in the three subjects were illustrated by the longitudinal changes of CD4 and CD8+
T-cell counts (Fig. 2). Significant changes were observed before and after the viral
inoculation and at weeks of 4, 12, 16, 20 and 24 after inoculation in comparison with the
baseline.
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Cognitive behavioral tests are very important in the SIV model because HIV will result in
impaired cognitive function (Grassi et al., 1999; Hall et al., 1996; Letendre et al., 2010;
Murray et al., 1992) and HIV-associated neurocognitive disorders (HAND) remain highly
prevalent in HIV+ patients (Gandhi et al., 2011; Gorman et al., 2009; Woods et al., 2009).
However, no significantly abnormal behavior was observed from the neurological
examinations of these SIV-infected monkeys. The absence of changes in cognitive behavior
performances may indicate that the SIV-infected monkeys were still in the asymptomatic
stage of disease development.

CBF in caudate and inferior parietal cortex
Significant reduction of CBF after inoculation was observed in both caudate and parietal
lobe. The result is consistent with previous studies in HIV+ patients (Ances et al., 2006;
Ances et al., 2009; Chang et al., 2000; Maini et al., 1990). The CBF in prefrontal cortex
showed evident reduction but did not reach statistical significance due to high levels of
variability in this measure.

In the longitudinal analysis, a significant decrease of CBF in caudate and parietal lobe was
observed in the 4th and 8th week post inoculation respectively (Fig 3). CBF in prefrontal
cortex was observed decreasing sharply right after inoculation but began to increase slightly
thereafter. These changes in acute or early stage post inoculation were also showed in other
regions in previous neuroimaging studies of HIV+ subjects (Ances et al., 2009). The
significant correlations between the longitudinal CBF changes and CD4+ T-cell counts and
CD4/CD8 ratio in caudate and parietal regions suggest that CBF is sensitive to the
progression of the disease and may be a potential imaging marker.

Reduced CBF in caudate, prefrontal cortex, parietal lobe, etc, has been found to be
correlated with the CD4+ counts or severity of dementia in previous studies about HIV-
associated brain injury (Ances et al., 2006; Ances et al., 2009; Chang et al., 2000; Ernst et
al., 2000; Maini et al., 1990; Modi et al., 2002). Our longitudinal study in SIV monkeys is
consistent with these findings. Taken together, our results and those of other investigators
suggest that CBF may be valuable as a surrogate maker to assess the progression of HIV+

patients or SIV-infected monkeys in the early period after viral infection.

Cerebral atrophy estimation
Cerebral atrophy is often observed in HIV+ patients (Dal Pan et al., 1992). To evaluate
cerebral atrophy in this study, we used standardized planimetry to measure the ventricle-
brain ratio (VBR) and the bifrontal ratio (BFR) and bicaudate ratio (BCR) for estimation of
cerebral atrophy (Dal Pan et al., 1992; Hestad et al., 1993). No significant difference in
VBR, BCR and BFR were observed after inoculation in comparison with the baseline in this
study. Also, ANOVA test did not found any significant difference between any two different
time points. However, the correlation analysis showed that the BFR changes were correlated
significantly with CD4+ counts. Similar results of the BFR changes were reported in
asymptomatic HIV-1-infected individuals (Hall et al., 1996). The BFR change suggests
there may exist slight cerebral atrophy during the progression of the disease in this model,
but more conclusive results should be obtained from a large cohort examination in the
future.

FA and MD in whole brain and ROI analysis
The whole brain FA was significantly reduced post inoculation (Fig 4). The result is
consistent with findings in HIV+ patients (Ragin et al., 2004). We also observed an apparent
elevation of whole brain MD but this was only a non-significant trend, perhaps due to small
sample size. It has also been reported that MD is less responsive than FA in HIV infection as
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well (Ragin et al., 2004). The whole brain FA was decreased significantly in the 2th week
post inoculation; this may imply that the whole brain FA changes are responding in the early
stage. The significant correlation between the whole brain FA value and CD4+ counts
indicate that DTI may be able to identify abnormal changes in the brain tissue in the earlier
stage, and the whole brain FA is a sensitive marker for monitoring the advance in the
progression of the disease (Pomara et al., 2001). In comparison, the MD values increased
temporarily in the 4th week post inoculation, and then decreased gradually to the baseline
level. No significant correlation between MD and T-cell counts was observed.

ROI analysis results before and after inoculation indicate that the FA in genu of corpus
callosum declines in monkeys as it does in human patients with HIV-dementia (Thurnher et
al., 2005) (Fig 5). Although there was a tendency for increases in MD in all the ROIs, there
were no significant changes. This result is consistent with Thurnher et al’s report (Thurnher
et al., 2005), but different from Wu et al’s (Wu et al., 2006), perhaps it is because of the
small sample size in this study. In the longitudinal data, the FA value of splenium correlated
significantly with CD4+ cell counts, and the correlation between the CD4:CD8 ratio and FA
of frontal WM and genu are significant as well. These findings further suggest that DTI may
be used to identify the abnormal changes in the earlier asymptomatic stage, and FA is a
sensitive marker for monitoring the progression of the disease.

The FA and MD in the genu and splenium of corpus callosum have been used for
monitoring disease progression in HIV+ patients (Chang et al., 2008; Wu et al., 2006). In our
longitudinal study, significantly decreased FA in the genu and whole brain were observed,
and the reduction was significantly correlated with the CD4 count or CD4:CD8 ratio. This
suggests that DTI is a potential tool to monitor the progression of HIV disease. In this study,
it was found the significant changes in FA of whole brain (by post inoculation 2 weeks)
appeared earlier than the significant changes in CBF (by post inoculation 4 weeks). FA may
be more sensitive for detecting the progression of HIV-associated brain abnormities in
earlier stage than other MRI modalities.

DTI provides information about the abnormality of white matter and is especially useful in
studying the central nervous system (CNS) diseases associated with demyelination.
Preliminary DTI studies in HIV+ patients suggested that DTI is sensitive to subtle white
matter abnormalities associated with HIV infection progression (Tucker et al., 2004). FA
was observed decreased in whole brain, splenium and genu (Filippi et al., 2001; Thurnher et
al., 2005; Wu et al., 2006) and frontal lobes (Pomara et al., 2001), while MD was increased
in subcortical white matter (Filippi et al., 2001; Thurnher et al., 2005; Wu et al., 2006) in
HIV+ patient, and is significantly correlated with the severity of dementia (Filippi et al.,
2001; Ragin et al., 2004; Ragin et al., 2005; Wu et al., 2006). Recent results (Chang et al.,
2008; Chen et al., 2009; Pfefferbaum et al., 2009; Stebbins et al., 2007) further demonstrated
that HIV infection contributes to progressive changes in FA and MD values, resulting from
both direct loss of axonal integrity and complexity to the underlying axonal matrix (Chen et
al., 2009; Pfefferbaum et al., 2009). Meanwhile, some studies found increased FA and
decreased MD in several brain areas is suggesting the improvement of the disease (Schifitto
et al., 2009). Overall, all these findings suggest that DTI is a sensitive marker for accessing
the white matter abnormality in HIV+ patients.

Conclusions
Multi-parameter MRI measurement was performed longitudinally in a SIV infected
macaque model of Neuro-AIDS. Although no significant changes were observed in
cognitive behavior tests or in brain volume following viral inoculation, declines in CBF in
caudate and parietal cortex regions and in FA in genu and whole brain were observed
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significantly. Longitudinal changes in CBF of caudate, prefrontal cortex and parietal cortex
and in FA of the whole brain, splenium were found to correlate significantly with the CD4+
T-cell depletion, while the changes in CBF of caudate and parietal cortex and FA in genu
and frontal WM were observed correlated significantly with the CD4:CD8 ratio. These MRI
findings suggest that CBF and FA may be sensitive image markers to track the progression
of the infection and for characterizing the disease and treatment development of HIV
infection. Further studies with a larger sample size are expected to reduce the variance of the
CBF and FA values and blood cell counts as well.
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Fig. 1.
Brain atrophy index estimation. a) The ventricle-brain ratio (VBR): the area of lateral
ventricle (marked by red line) divided by the whole brain area in the same slice (marked by
yellow line); b) The bicaudate ratio (BCR): the minimum inter-caudate distance (marked by
red line) divided by the correspondent brain width in the same slice (marked by yellow
line) ; c) The bifrontal ratio (BFR): the distance between the lateral tips of the frontal horns
(marked by red line) divided by the correspondent brain width in the same slice (marked by
yellow line).
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Fig. 2.
CD4+ and CD8+ T-cell count changes in macaques after SIV inoculation. Error bars
represent standard deviation error. *, # : P <0.05 compared with the baseline (before SIV
inoculation) and 16th week, respectively.
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Fig. 3.
Normalized Cerebral Blood Flow (CBF) changes in the caudate, frontal cortex and inferior
medial parietal lobe after SIV inoculation. a) CBF maps acquired with the Continuous
Arterial Spin Labeling (CASL) technique. Regions of Interest (ROIs) are marked by red
lines. b) CBF changes in selected brain regions before and after SIV inoculation. c)
Longitudinal CBF changes after SIV inoculation. Error bars represent standard deviation
error. *, # : P <0.05 compared with baseline and 12th week, respectively, in caudate; @: P
<0.05 compared with baseline in prefrontal cortex; &,+: P <0.05 compared with the baseline
and 2nd week, respectively, in parietal cortex.
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Fig. 4.
Normalized Fractional Anisotropy (FA) and Mean Diffusivity (MD) changes of whole brain
after SIV inoculation. a) The whole brain FA and MD difference before and after SIV
inoculation. b) Longitudinal changes of whole brain FA and MD after SIV inoculation. Error
bars represent standard deviation error. *, # : P<0.05 compared with the baseline and 2nd

week.
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Fig. 5.
Normalized Fractional Anisotropy (FA) and Mean Diffusivity (MD) changes in the selected
ROIs (genu, splenium, and frontal white matter) after SIV inoculation. a) The ROIs are
illustrated on the FA map of a monkey brain. b) Mean FA differences before and after SIV
inoculation. c) Longitudinal FA changes in genu, splenium, and frontal white matter. d)
Mean MD differences before and after SIV inoculation. Error bars represent standard
deviation error. *, @, #: P < 0.05 compared with the baseline, 8th week and 12th week,
respectively, in genu.
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Table 1

Correlations between T-cell counts (CD4 and CD4:CD8 ratio) and brain atrophy indexes (VBR, BCR and
BFR).

T-Cell count VBR BCR BFR

CD4 0.29 0.25 −0.50*

CD4/CD8 0.27 0.15 −0.01

*
P<0.05
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Table 2

Correlations between T-cell counts (CD4 and CD4:CD8 ratio) and CBF in different ROIs.

T-Cell count Caudate Prefrontal cortex Parietal cortex

CD4 0.48* 0.48* 0.55*

CD4/CD8 0.48* 0.33 0.71*

*
P<0.05
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Table 3

Correlations of CD4 counts and CD4:CD8 ratio with FA in whole brain and selected ROIs.

Cell count Whole brain Genu Splenium Frontal WM

CD4 0.49* 0.35 0.47* 0.36

CD4/CD8 0.28 0.41* 0.36 0.44*

*
P<0.05
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