
Testing the ICA mixing matrix based on

inter-subject or inter-session consistency

Aapo Hyvärinen∗,a

aDept of Mathematics and Statistics,
Dept of Computer Science / HIIT,

and Dept of Psychology,
University of Helsinki, Finland

Abstract

Independent component analysis (ICA) is increasingly used for analyzing
brain imaging data. ICA typically gives a large number of components,
many of which may be just random, due to insufficient sample size, vio-
lations of the model, or algorithmic problems. Few methods are available
for computing the statistical significance (reliability) of the components.
We propose to approach this problem by performing ICA separately on a
number of subjects, and finding components which are sufficiently consis-
tent (similar) over subjects. Similarity is defined here as the similarity of the
mixing coefficients, which usually correspond to spatial patterns in EEG and
MEG. The threshold of what is “sufficient” is rigorously defined by a null
hypothesis under which the independent components are random orthogo-
nal components in the whitened space. Components which are consistent in
different subjects are found by clustering under the constraint that a clus-
ter can only contain one source from each subject, and by constraining the
number the false positives based on the null hypothesis. Instead of different
subjects, the method can also be applied on different recording sessions from
a single subject. The testing method is particularly applicable to EEG and
MEG analysis.
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1. Introduction

Independent component analysis (ICA) has been successfully used for
analyzing brain imaging data. In particular, analysis of data recorded at
rest (Kiviniemi et al., 2003; van de Ven et al., 2004; Beckmann et al., 2005;
de Pasquale et al., 2010), or during natural stimulation (Bartels and Zeki,
2004; Hasson et al., 2004) have received a lot of attention recently. Such
data cannot be easily analyzed by ordinary supervised methods based on
regression with a stimulus function, and unsupervised methods such as ICA
may be needed.

Despite its success, there is a fundamental problem which has not been
satisfactorily solved in the theory of ICA. ICA provides a number of com-
ponents many of which may be just random effects due to small sample
size, noise or other violations of the model, algorithmic problems such as
local minima, etc. Thus, the estimation methods should be complemented
by testing methods. Few methods are available for computing the statisti-
cal significance (reliability) of the components. It has been proposed that
one can randomize the data by bootstrapping and see how the ICA results
change (Himberg et al., 2004; Meinecke et al., 2002). However, it is not
clear how to determine any meaningful thresholds or p-values in such boot-
strapping methods. Moreover, even if a component is robust with respect
to randomization of the data, its neuroscientific validity is by no means
guaranteed if the analysis is done on a single subject.

Group ICA methods attempt to increase the validity of the components
by analyzing data from many subjects (Beckmann and Smith, 2005; Calhoun
et al., 2009; Esposito et al., 2005). Typically, the goal is to find components
which are sufficiently similar over many subjects. Such components are
more likely to be of interest for further analysis, although some of them may
still be artifacts. However, most group ICA methods, reviewed by Calhoun
et al. (2009), do not provide any selection of components: the number of
independent components they compute is given apriori by the investigator.
Thus, these methods do not even attempt to analyze the statistical reliability
of the components.

An exception is the group ICA method by Esposito et al. (2005) which
rejects components which are not found in sufficiently many subjects in suf-
ficiently similar form. Nevertheless, it is not clear how to define “sufficient”
in that method, i.e. how to set the thresholds, so the method cannot quantify
the reliability of the components in a statistically principled way.

A related problem in ICA research is component selection and sorting.
After computing ICA, further analysis may require going manually through
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all of them which is time consuming, especially in a group analysis. Meth-
ods for selecting interesting components have been proposed based on their
statistical properties (Formisano et al., 2002; Hyvärinen et al., 2010), or
intersubject consistency (Malinen and Hari, 2011). However, a more princi-
pled and fundamental way of selecting components would be to use a testing
procedure to select components which are statistically significant. Any other
method of selection would be more naturally applied to the subset of signif-
icant components.

Here, we propose a method for testing the inter-subject consistency of
components in a group ICA setting. We perform ICA separately on a num-
ber of subjects, and find clusters of components which are sufficiently similar
across subjects, not unlike Esposito et al. (2005). The method does not force
components in different subjects to be similar, as happens in many group
ICA methods. Our main contribution here is to develop a theory in which
the threshold for what components can be considered “sufficiently similar”
is obtained by defining a null hypothesis, which allows us to apply basic
principles of statistical estimation theory. In particular, we control the false
positive rates of the detected clusters of components, and the false discovery
rates of joining components to the clusters. Thus, we obtain a method that
determines which components are reliable (significant) enough in a statisti-
cally principled way. The method is here developed for the case where the
similarity is defined as the similarity of the columns of the mixing matrix,
which is typically pertinent in EEG and MEG analysis. It is also applicable
to data from a single subject if the recordings are divided into sessions (or
segments), and the consistency between such sessions is analyzed.

2. Mathematical Theory

2.1. General setting

Assume we have recordings from r subjects. The data from each subject
is stored in a data matrix Xk where k = 1, . . . , r is the index of the subject.
If we do temporal ICA, as is typical with EEG and MEG, the rows of Xk

are the channels and the columns are time points. If we do spatial ICA, as
is more typical with fMRI, the rows of Xk are the volumes (time points) and
the columns are the voxels. The theory we present here is equally valid in
the case where we have r sessions of recordings from a single subject, but for
simplicity, we present the method using the terminology of the multi-subject
case.
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We assume that the data for each subject follows an ICA model with its
own mixing matrix Ak and independent components Sk:

Xk = AkSk (1)

We estimate ICA separately on each subject, thus obtaining a decomposition

Xk = ÂkŜk (2)

where it is important to distinguish the estimates Âk and Ŝk from the actual
values Ak and Sk.

We develop here a testing procedure which uses the columns of Âk as the
vectors characterizing each subject. In temporal ICA as typically applied on
EEG and MEG, these are the spatial patterns. In spatial ICA as typically
applied in fMRI, they are the time courses. (Thus, the method presented
here is not directly applicable to inter-subject analysis of spatial patterns in
spatial ICA of fMRI.) We denote the obtained estimates of those columns by
aik, i = 1, . . . , n with n denoting the number of independent components.
The number of independent components is here fixed to be equal to the
dimension after principal component analysis (PCA), which is performed as
part of the ICA estimation. (However, the mixing matrices Ak are in the
original space, i.e. the PCA preprocessing has been inverted.)

The goal is then to determine if the different subjects have significantly
similar aik. Note that because of the permutation indeterminacy of ICA,
we cannot hope that the indices i in different subjects correspond to each
other; we have to search for the best matching intersubject pairs in some
way.

In the following, an important aspect is the well-known division of the
ICA estimation into two parts: We can estimate ICA by first doing a pre-
liminary whitening of the data (often accompanied by a PCA dimension
reduction), and then estimating an orthogonal ICA transform. Thus, the
whitening reduces the ICA transform into an orthogonal matrix.

2.2. Null hypothesis, or model of inter-subject randomness

The purpose of our null hypothesis, or H0, is to model the situation where
the estimates of the mixing matrix Âk have no inter-subject consistency, so
those estimates in different subjects have random relations.

Since our null hypothesis is formulated on the estimates of the parame-
ters, it includes two different elements of randomness. First, it could be that
the actual mixing matrices Ak are completely different in different subjects.
This models the real underlying inter-subject variability of the brain activity
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patterns due to anatomical and physiological differences. Second, it could
be that the actual activity patterns are similar in different subjects, but the
estimates Âk of the mixing matrices Ak are very bad and thus effectively
random, due to problems in the estimation algorithm. The estimation algo-
rithm can fail because the data does not follow the ICA model, the sample
size is too small, there is too much noise, or due to algorithmic problems,
as discussed in more detail by Himberg et al. (2004). Our test will consider
these two sources of randomness with equal emphasis.

It is important to incorporate just the right amount of randomness in the
null hypothesis. We do not want to assume, for example, that the estimates
of the mixing matrix are just white noise, because this would introduce
too much randomness and the null hypothesis would be too easily rejected.
In EEG/MEG, the spatial patterns cannot be assumed to be white noise
because different channels are correlated due to volume conduction if for no
other reason. Thus, we want to introduce the smallest meaningful amount
of randomness in the null hypothesis.

To model the randomness due to anatomical and physiological differ-
ences, we assume that the actual mixing matrices Ak are generated ran-
domly. To introduce a controlled amount of randomness in this (hypo-
thetical) generation of the Ak, we reason as follows: Since our goal is to
specifically consider the intersubject consistency of the independent compo-
nents as opposed to the covariance structure of the data, we assume that
the recordings Xk have the same covariance structure. Then, the matri-
ces Ak are necessarily linked by an orthogonal transformation: Ak = A0Uk

whereUk is an orthogonal matrix, andA0 is some underlying mixing matrix
(which could be taken equal to be any of the Ak). To obtain the maximum
amount of randomness in this setting, we assume that Uk is random and
follows a uniform distribution in the set of orthogonal matrices.

Next we model the randomness due to the estimation procedure. Again,
since we are interested in modelling the randomness in the ICA estimation
as opposed to the covariance structure or its estimation, we assume that
only the latter part of the ICA estimation procedure (finding an orthogonal
transform) produces random results. Thus we assume that under H0, the
estimated spatial patterns are orthogonal transformations of the underlying
spatial patterns, i.e. Âk = AkU

′

k for some orthogonal matrix U′

k. Again,
U′

k is assumed to be uniformly distributed in the set of orthogonal matrices.
Thus, we see that we can model both kinds of randomness (variability of

brains, and variability of ICA estimation) by the same idea of considering
the estimated mixing matrix to be a random orthogonal transformation of
some underlying mixing matrix. In fact, we have Âk = A0UkU

′

k. The
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product of two uniformly distributed orthogonal matrices is again uniformly
distributed in the set of orthogonal matrices, as is well-known in the theory
of random matrices.

Thus, we can rigorously formulate the distribution of the model param-
eters under H0:

Under H0, the mixing matrix Ak = [a1k,a2k, . . . ,ank] for the
k-th subject has the same distribution as A0Uk where Uk is a
random matrix uniformly distributed in the set of orthogonal
n × n matrices, and A0 is a fixed matrix. The Uk for different
subjects are mutually independent.

To use this null hypothesis in practice, it is not necessary to specify or
estimate the matrix A0, as will be seen below.

2.3. Defining similarity of components

Our test is based on similarities of the vectors aik estimated for different
subjects. The similarity of two vectors is defined as the Euclidean simi-
larity which uses a weighting given by a stabilized inverse of the “global”
covariance matrix. We define the global covariance matrix of the vectors as

C =
1

nr

∑

ik

aika
T
ik (3)

which is in fact equal to the covariance of the data computed over all sub-
jects, assuming they all have the same number of data points. Then, we
define PCA on the set of the vectors aik in the usual way: the PCA is given
by the reduced matrices D0 and E0 which are obtained as the dominant di-
agonal entries and columns of the matrices in the eigen-value decomposition
C = EDET . The dimension of D0 and E0 is fixed as the same n as the
dimension of the original data after its PCA dimension reduction.

Using the global covariance matrix, we define the similarities of the vec-
tors a as follows:

γij,kl =
|aTikRajl|

√

aTikRaik

√

aTjlRajl

(4)

where
R = E0D

−1
0 ET

0 (5)

The similarity γ is related to the well-known Mahalanobis similarity, but for
the sake of numerical stability, we take the inverse of the covariance “inside”
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the PCA subspace only. We further take the absolute value in (4) because
of the sign indeterminacy of independent components.

While the use of the Mahalanobis distance has some general justifications
in machine learning, our main reason for using this special weighting of the
distances is the following property (proven in the Appendix):

Theorem 1 Under H0, each γ follows the (marginal) distribution of the
absolute value of an element of an orthogonal matrix uniformly distributed
in the set n× n of orthogonal matrices.

The point here is that under H0, the distribution of the similarities does not
depend on any model parameters, such as the covariances or the hypothetical
matrix A0. It only depends on the PCA dimension n. This greatly simplifies
the computation of p-values, which we consider next.

2.4. Finding significant similarities

After computing all the similarities, we want to determine which simi-
larities are statistically significant.

2.4.1. Null distribution of similarities

First, we need to determine in detail the null distribution of the simi-
larities based on Theorem 1. The starting point is the following theorem
(proven in the Appendix):

Theorem 2 Assume U is a random matrix which follows the uniform dis-
tribution in the set of orthogonal d× d matrices. Denote by u one entry in
the matrix. Then the transformed variable

t =
u
√
d− 1√

1− u2
(6)

follows a Student’s t-distribution with d−1 degrees of freedom, and u2 follows
a beta distribution with parameters (12 ,

d−1
2 ).

Knowing the distribution of such simple transformations of u under the
null hypothesis allows us to determine the chance level of the similarities
γ, which are distributed as the elements of a random orthogonal matrix ac-
cording to Theorem 1. In particular, we can transform the similarities to
p-values. (See the end of the Appendix for notes on numerical computation
of the p-values.) Using the p-values, we could easily define a test with a
controlled false-positive rate (FPR). However, we must take into account
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the fact that we are computing many similarities, and if we just use ordi-
nary testing based on uncorrected fixed false-positive rate according to the
distribution given above, we are likely to get many more false positives as
is well-known in the theory of multiple testing.

2.4.2. Corrections for multiple testing

We propose to approach the problem of multiple testing by a combination
of two different approaches.

False discovery rate for connections. In general, we use the concept of false
discovery rate (FDR), proposed by Benjamini and Hochberg (1995), instead
of false positive rate because using the false positive rate leads to very con-
servative (insensitive) results in the case of a large number of tests, as has
been previously shown in the context of brain imaging by Genovese et al.
(2002). The FDR is defined as the number of false positives divided by the
total number of positives.

Denote by nγ the number of truly significant similarities, which we as-
sume to be much smaller than the total number of similarities. If we use
a corrected significance level αcorr

FD in the test, we get approximately αcorr
FD m

false positives where m is the total number of tested similarities, and we
assume independence of the tests. Thus, to control the proportion of false
positives (FDR) to be below a given level αFD, we should have

αcorr
FD m

nγ
≤ αFD (7)

where we omit adding the number of false positives in the denominator
because it is assumed to be small enough. Thus, we should take

αcorr
FD = αFD

nγ

m
(8)

It turns out that we do not need to have explicit estimate of nγ to perform
this testing with a controlled FDR. We use the well-known Simes’ procedure
(Simes, 1986; Benjamini and Hochberg, 1995) to find the threshold without
computing nγ . The number of tests m can be obtained simply by counting
similarities considered; a simple formula will be given below.

False positive rate for clusters. Nevertheless, we prefer to control the clas-
sical false-positive rate for the existence of a component which is consistent
(a cluster). We do this because controlling the FPR is usually preferable
to controlling the FDR, if it does not make the test too conservative. In
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particular, inferring the existence of a consistent component which does not
actually exist can be considered a rather serious error from the viewpoint of
neuroscientific interpretation. In contrast, it may be less serious to infer that
a given subject has a component which really exists in the group although
actually not for that subject. So, it makes sense to be more conservative
in testing the existence of consistent components. In our simulations and
experiments, using the FPR for the consistent components (clusters) seemed
to be sensitive enough, and not too conservative.

To control the FPR of clusters, we use a simple Bonferroni correction.
We compute the approximately corrected αcorr

FP threshold simply as

αcorr
FP =

αFP

m
(9)

To calculate the number of tests m needed in the Formula (9), consider that
we are basically taking the maximum over all the elements of the similarity
matrix, excluding connections inside the same subject. The matrix is sym-
metric which reduces the degrees of freedom by one half. So, we obtain the
degrees of freedom as

m =
n2r(r − 1)

2
(10)

Some idea of the difference between the FDR and Bonferroni corrections
can be obtained from our MEG experiments below, in which the factor on
the right-hand-side of (8) is of the order of 1/1000 . . . 1/100. Using Bonfer-
roni correction as in (9), the factor would be much smaller, approximately
10−5. In fact, the difference between the two thresholds is exactly the ad-
ditional factor nγ , which was typically between 100 and 1,000 in our MEG
experiments.

Both Bonferroni correction and Simes’ procedure make the assumption
of independence of the tests. The validity of this assumption is certainly
questionable but it can be considered a useful first approximation. The
simulations below will shed light on whether it is reasonable.

2.5. Intersubject clustering of similar components

We can use the similarities considered strong (significant) enough in
different clustering methods. Here, we develop a rather simple one similar
to hierarchical clustering using a single-linkage strategy.

A cluster of components which are consistent over subjects is found by
starting with the pair of components which is the most similar in terms of
having the smallest p-value. Whether the similarity is sufficient is tested
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based on the corrected FPR threshold given in Equation (9). Further com-
ponents are added to this cluster based on the strongest similarity between
a candidate component and the components already in the cluster, until no
more components with significant similarities according to the FDR crite-
rion, implemented by Simes’ procedure, are found. In the clustering, it is
obviously always forbidden to put two vectors from the same subject in the
same cluster.

Note that we do not require that the cluster should contain a component
from all the subjects because this is unrealistic: Many interesting brain
sources are likely to be found in some subjects but not all of them. In some
cases, it may be interesting to search for clusters which include only a couple
of vectors. Thus, we allow the cluster size to be completely determined by
the data.

Once a cluster has been found, we can find more by a simple “deflation”
procedure. We simply re-run the clustering but ignore all the vectors which
have already been clustered. This is a rather heuristic procedure, and its
effects of FPR and FDR will be investigated next. Also, the algorithm will
be described in more detail below.

2.6. Corrections needed because of deflation

Above, all p-values were computed under H0 which says that there are
no clusters of consistent components in the data. However, if we consider
data with, say, ten clusters, we need to take the effects of deflation, i.e. the
interaction between clusters into account. The false-positive rate for the
existence of the 11th cluster is, in fact, different from the false-positive rate
for finding the first cluster, as will be seen below. That is, the p-values we
computed above are strictly correct only for finding one cluster.

To formalize this, we define a parameterized version of the null hypoth-
esis, H′

0(k). Under H′

0(k), k components are present and equal in all the
subjects. The existence of k ideal clusters in the data simply means that
the dimension n of the data is reduced by k. Thus, we can re-apply the
method and use the distribution under H0 again, taking the new dimension
into account in the computation of the p-values. Reducing the dimension ef-
fectively reduces the randomness in the data which is seen in larger p-values.
Thus, it is important to take this change into account to control the FPR
and FDR.

While in the ideal case, finding one cluster of components has simply
the effect of reducing the dimension of the data, in practice, the total effect
of such deflation is more complex. This is so especially because we do not
require a cluster to have r components, and the components are not exactly
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equal in different subjects. Thus, to take this effect into account more
precisely, we define the “effective” PCA dimension for each pair of subjects
k, k′ based on the number of clusters which include components from both
subjects:

ñ(k, k′) = n− {# of clusters C such that aik,ajk′ ∈ C for some i, j} (11)

The effective PCA dimension essentially quantifies the actual randomness in
the data. When computing the p-values of the similarities, the corresponding
ñ should be used in the parameters of the beta or Student distributions.

Ideally, the effective PCA dimension should be computed before comput-
ing any p-values and doing any clustering. This may be impossible, however,
because it depends on the clustering. We proceed here by updating the esti-
mates of ñ at every deflation step, i.e. after each formation of a new cluster.
This seems to be an appropriate approximation because the clustering uses
the smallest p-values first. Thus, it should be enough to make the correction
which tightens the thresholds only during the formation of the first clusters,
when clustering will be attempted with larger p-values. Furthermore, we
re-iterate the clustering to further fine-tune the internal parameters, as will
be described below.

2.7. Description of the algorithm

Finally, we describe the resulting algorithm in detail. It proceeds as
follows:

1. Parameters fixed by the ICA results are the PCA dimension of the
data n and number of subjects r. Parameters fixed by the investigator
for the testing procedure are the false positive rate for clusters αFP

and the false discovery rate for similarities αFD.

2. Set the initial effective PCA dimension ñ(k, l) = n for all k, l. Define
m as in Eq. (10).

3. Compute the global covariance C as in Eq. (3) and the similarities
γij,kl as in Eq. (4) for all i, j = 1, . . . , n and k, l = 1, . . . , r, k 6= l. Set
similarities of vectors in the same subject to zero.

4. Define the set of found clusters S to be empty. Set the variable uij,kl =
1 for all i, j and k 6= l; this variable tracks which similarities are still
valid (not deflated away).

5. Transform the similarities into p-values by

pij,kl = 1−BI(γ
2
ij,kl,

1

2
,
ñ(k, l)− 1

2
) (12)
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where BI is the regularized incomplete beta function (i.e. the cdf of
the beta distribution).

6. Find the smallest p-value pij,kl over all i, j, k, l such that uij,kl = 1.
Denote the minimizing indices as I, J,K,L.

7. This p-value is significant if

pIJ,KL <
αFP

m
(13)

8. If the p-value is significant according to (13), define the new cluster C
initially as the set of those two vectors: C = [(I,K), (J,L)].

• Otherwise, no more clusters can be found: Abort the algorithm
and output S as the set of significant clusters.

9. Perform Simes’ procedure on the p-values. That is, sort the p-values,
and consider the h-th smallest p-value p(h) significant if

p(h) ≤ αFDh

m
(14)

10. Search for the smallest p-value pij,kl which was found significant ac-
cording to (14) and which is such that either (i, k) or (j, l), but not
both, is in C and uij,kl = 1 (i.e. the connection is “going out” from
the cluster and not deflated away).

11. If such a p-value could be found, denote the minimizing indices as
I, J,K,L, and add the vector which is connected to the cluster by
γIJ,KL to C, and go back to step 10.

• Otherwise, store C in the set of found clusters S. Set uij,kl to zero
for all similarities to and from vectors in C (deflation). Update
the effective dimensions ñ as in (11). Go back to step 5.

To further fine-tune the clustering, we propose to run the clustering
algorithm a second time, using the internal parameters ñ obtained at the
first run of the algorithm. This has the benefit the computation of all the
clusters is using the same estimates of the internal parameters.

Public-domain Matlab code implementing the algorithm is available at
www.cs.helsinki.fi/u/ahyvarin/code/isctest/.

2.8. Computational complexity

To analyse the computational complexity of the resulting algorithm, we
begin by noting that the computations done in the clustering method are
relatively simple searches for largest elements. After the initial computation
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of the similarities, no sophisticated matrix operations are done. The sorting
of the p-values is the only operation which does not have linear complexity in
the number of similarities. On the other hand, the number of the similarities
is quite large, proportional to n2r2. The similarities are manipulated and
searched through for every cluster, and thus we need to multiply this by
the number of clusters. The number of clusters could be assumed to be
proportional to n.

As a first approximation, we might thus assume that time needed for
computation is proportional to n3r2. The may not be quite the case in the-
ory because typical sorting algorithms would require O(n2r2(log n+ log r))
operations, but the difference may be insignificant in practice.

In fact, we have found that the main bottleneck in the method, using a
simple PC, is in the memory needed to store the similarities and quantities
which are derived from the similarities, such as p-values, indices of which
p-values are deflated away, and related temporary quantities. This memory
complexity is clearly of the order n2r2.

We will consider these issues in more detail in the simulations below.

3. Experimental Methods

3.1. Simulation 1: Artificial data

As a first validation of the testing procedure we conducted simulations
with purely artificial data. The main goal was to compute the false positive
and false discovery rates under the null hypotheses and see if it is well
controlled in spite of the many approximations made in the development of
the testing procedure. We operated in the space of orthogonal rotations,
thus neglecting the ICA estimation part.

The data PCA dimension had the values 20 and 50, while the number of
subjects was either 6 or 20. We generated random orthogonal matrices in
the (hypothetical) PCA space, where each column of the orthogonal matrix
corresponds to one component, and computed the similarities. Then, we ran
the testing algorithm.

We used the following five scenarios which all could potentially give rise
to different kinds of errors:

1. There was no inter-subject consistency at all: all components in all
subjects were generated independently of each other.

2. Half of the components were equal in all subjects, and half of the
components were completely random. In other words, half of the com-
ponents had perfect inter-subject consistency, while the other half had
zero consistency.
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3. Half of the subjects had all equal components, while the other half had
components which were completely random, independent of each other
and of the first half of subjects. In other words, half of the subjects had
perfect inter-subject consistency for all components, while the other
half of the subjects had no consistent components.

4. Half of the components were equal in all subjects. Moreover, for half
of the subjects, all the components were consistent.

5. For half of the subjects, half of the components were consistent (equal
over subjects).

In scenarios 1 and 2, the typical errors would be that the algorithm finds a
false positive cluster, usually with just two components. In scenario 3, the
typical error would be adding one falsely “discovered” component to one of
the clusters. In scenarios 4 and 5, both kinds of errors are equally possible.

The false positive and discovery rates in the testing method were set
at αFP = αFD = 0.05 and 500 different sets of orthogonal matrices (“data
sets”) were generated in each of the 2× 2× 5 = 20 different conditions.

We computed what we call the “actual” FPR’s and FDR’s as the propor-
tion of data sets in which one of the following errors occurred when compared
to the true generating mechanism: either there was a false positive cluster,
or a component was added to a cluster although it did not belong there.
Note that these error rates are the rates which are relevant in practice; they
do not exactly correspond to the error rates αFP = αFD in the theoreti-
cal development. For example, even if a similarity falsely exceeds the FDR
threshold, it may not lead to a false clustering: It is possible that neither of
the corresponding components could be added to an existing cluster because
the more stringent FPR threshold was not exceeded for sufficiently similar
components.

3.2. Simulation 2: Semi-realistic data with varying inter-subject consistency

As a second validation of the testing procedure, we used artificial data
where the ground truth is known, but went through all the steps of practical
data analysis, including ICA estimation. The number of subjects was fixed
to 11, the data dimension to 204, the dimension after PCA dimension to 40,
and αFP = αFD = 0.05.

We first chose a “common” mixing matrix A0 as a basis for intersubject
consistency. While we could have generated A0 completely randomly, we
chose to introduce some more realism to the simulation by taking as A0 a
mixing matrix estimated from MEG data (see below). Then, the mixing ma-
trices for different subjects were created by adding inter-subject variability
to this common matrix.
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Intersubject variability was created by adding gaussian “noise” to the
common mixing matrix A0, using different noise samples for each subject.
Note that this noise has little to do with measurement noise in a brain
imaging device, since it is added on the parameters and not on the signals.
The level of noise added to the mixing matrix, which we call intersubject
noise, was varied. Furthermore, we completely destroyed inter-subject con-
sistency for one half of the components by replacing half of the columns
(same columns for each subject) by random gaussian noise. The variance of
the noise was chosen so that the norms of the columns of the mixing matrix
was not changed on average.

The independent components were generated as Laplacian i.i.d. signals
with 10,000 time points. The standard deviation of each independent com-
ponent (or equivalently, the norm of the corresponding column of the mixing
matrix) was set to a random number uniformly distributed between 0.5 and
1.5. Finally, the independent components were mixed for each subject.

For each level of inter-subject variability, 100 randomized trials were con-
ducted, in which the common mixing matrix A0 was randomly picked from
a set of 11 different estimated mixing matrices (corresponding to different
subjects in the MEG experiments below).

Note that an intersubject noise level of 1 essentially means a signal-
to-noise ratio of 1 in creation of the individual mixing matrices from the
common one. Thus, when the intersubject noise level is larger than one, the
“intrasubject” part of the common part of the mixing matrix is larger than
the “intersubject” one.

We then estimated ICA for each subject separately using the FastICA
algorithm, and tested inter-subject consistency as explained above. To com-
pare the results with the ground truth, we assigned each estimated vector
(column of estimated mixing matrix) to one of the columns of the original
common mixing matrix A0, by finding the maximum correlation coefficient
(in absolute value) between the estimated vector and the columns of A0.

We computed two quantities as a function of intersubject noise:

• the number of times the null hypothesis was rejected, and

• the number of clusters found by the method

Further, we assessed the quality of the clusters found by dividing them into
different categories:

• “Perfect” cluster: the cluster has one vector from each subject, and
each vector is assigned to the same column of A0.
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• “Correct” cluster: each of the vectors in the cluster was assigned to
the same column of A0, but it does not contain a vector from all the
subjects.

• “Incorrect” cluster: it contains vectors which were assigned to different
columns of A0.

Ideally, the number of clusters found would be equal to 20, which is the
number of consistent clusters (one half of the PCA dimension, 40). Further,
the clusters would all be perfect, and the null hypothesis would be rejected
in 100% of the cases.

3.3. Simulation 3: Semi-realistic data with two subject groups

We further conducted a variant of the preceding simulation to investi-
gate the behaviour of the algorithm when there are two different groups
of subjects. Instead of adding general inter-subject “noise” to the mixing
matrix as in Simulation 2, we added a random perturbation to the mixing
coefficients of the consistent components for subjects with indices 6, . . . 11 so
that the perturbation was the same for all subjects (but different for differ-
ent components). The random perturbation models the difference between
the groups consisting of subjects 1, . . . , 5 and 6, . . . , 11. The numbering of
the subjects is arbitrary, so this models the general case where the subjects
can be divided into two groups and we do not know the grouping.

The norm of the random perturbation was increased in the same way and
with the same values as in Simulation 2. We analyzed the clustering in the
same way as in Simulation 2. In this case, the meaning of “incorrect” and
“perfect” clusters is not quite well-defined, but they serve as useful quan-
titative measures of the behaviour of the algorithm. We further analyzed
the data by simply plotting individual clustering results for comparing them
with the group structure.

3.4. Simulation 4: Computational complexity

Next we evaluated the computational complexity of the method to de-
termine which numbers of subjects r and PCA dimensions n are feasible.

To evaluate the computational complexity of the method, we can of
course use quite artificial data. However, we cannot use random noise be-
cause then the clustering method would find no clusters and there would be
not much to compute. So, we decided to generate data from scenario 5 of
Simulation 1, which is arguably the most realistic.

We used the same values for the number subjects and PCA dimensions,
n = r. The values used in the different trials were 8, 16, 32, 64, and 128.
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The computations were done in Matlab on a rather ordinary Linux PC with
two cores of 2.66GHz each, and 2.4 Gigabytes of memory available.

We computed the CPU time needed as well as the memory needed. The
memory usage considered only the memory needed for storing the explicit
variables, i.e. the final values of any Matlab operations neglecting any inter-
mediate results, and thus clearly provides a lower bound only.

3.5. Experiments on MEG data

3.5.1. Inter-subject consistency

We next applied the method on magnetoencephalographic (MEG) data
consisting of 204 gradiometer channels measured by the Vectorview helmet-
shaped neuromagnetometer at the Brain Research Unit of the Low Tem-
perature Laboratory of Aalto University, Finland.1 The recordings were
of spontaneous activity in 11 healthy volunteers, who received alternating
auditory, visual, or tactile stimulations interspersed with rest blocks, taken
from (Ramkumar et al., 2011). The MEG recordings had a prior approval
by the Ethics Committee of the Helsinki and Uusimaa Hospital District.

Noise and artifacts were reduced by the signal space separation method
(Taulu et al., 2004) which also reduced the effective dimension of the data
to 64. At the same time, the data was downsampled from the initial sam-
pling frequency of 600 Hz to 150 Hz. All 64 dimensions were used in ICA,
and PCA dimension reduction was not performed. Thus, 64 independent
components were estimated for each subject using Fourier-ICA (Hyvärinen
et al., 2010). Each topographic distribution of an independent components
on the gradiometer channels is a 204-dimensional vector aik, and these are
used in the intersubject consistency testing. We set αFP = αFD = 0.01.

To further analyze the results, we found in each cluster the most rep-
resentative component (the one with minimum sum of Euclidean distances
to other components) and computed its the cortical distribution using the
minimum norm estimate, as well as the Fourier spectrum.

Finally, we analyzed the modulation by each stimulation modality (some
divided into subcategories) by computing the difference of the logarithm
of average energy in each stimulation block and the preceding rest block,
separately for each component in the cluster. The differences were converted
to (uncorrected) z-scores.

1I’m very grateful to Pavan Ramkumar and Riitta Hari for giving access to these
measurements.
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3.5.2. Inter-session consistency

We further applied the method to three different recordings of a single
subject obtained in the same set of experiments as the one above. In addi-
tion to the dataset consisting of naturalistic stimulations interspersed with
rest, we also had two more recording sessions. In one of them the subject
was resting with eyes open and fixated, while in the other the subject re-
ceived the same kind of naturalistic stimulation as above but without any
rest in between. The analysis of the results was identical to the analysis
in the inter-subject consistency experiments, subjects being simply replaced
by sessions. However, we did not compute the activity modulation by stim-
ulation because there were not enough different blocks to achieve statistical
significance in that respect.

4. Results

4.1. Simulation 1: Artificial data

The “actual” false-positive rates and false-discovery rates (as defined in
Methods) are shown in Fig. 1. We can see that they are all less than the
required 5%, and well controlled in spite of the various approximations done
in developing our method. Thus, the approximations in the computation of
the p-values seem to lead to conservative testing, so the FPR and FDR do
not need to chosen particularly small.

Perhaps one could argue that the most realistic case is scenario 5 in which
the inter-subject consistency is always limited in the sense that component
is found in all the subjects, and in addition there are subjects with no
consistency with the others. In this scenario, the FPR and FDR were of the
order of 1%, which shows some tendency to conservative testing since we set
αFD = αFP = 0.05.

4.2. Simulation 2: Semi-realistic data with varying inter-subject consistency

The probability of rejection of the null hypothesis is shown in Fig. 2 a).
We see that for a reasonable intersubject noise, i.e., some inter-subject con-
sistency, the method always correctly rejected the null hypothesis. How-
ever, with really small inter-subject consistency (noise level of 2), the null
hypothesis was no longer always rejected, and intersubject consistency was
no longer detected.

The numbers of clusters found, divided into the different categories, are
shown in Fig. 2 b)-c). We see that for reasonably small intersubject noise
(0.25 or 0.5), i.e. reasonably large consistency, almost all clusters are perfect
and there are 20 (or close) of them as expected.
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Figure 1: Simulation 1: False positive rates and false discovery rates for simulated data.
Different settings of data dimension and number of subjects are given in different colours.
The data scenarios are explained in detail in the text, briefly: 1: no consistent components,
2: half of components consistent for all subjects, 3: all components consistent for half of
the subjects, 4: for half the subjects, all components consistent and half of the components
consistent for the rest of the subjects, 5: for half of the subjects, half of the components
were consistent. The desired false positive and discovery rates were set to αFP = αFD =
0.05. For scenario 1, FDR cannot be meaningfully computed since the number of true
positives is zero.
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Figure 2: Simulation 2: Semi-realistic data with half of the components consistent to
varying degrees. Horizontal axis is noise level. a) The probability (percentages) of rejection
of null hypothesis as a function of the intersubject noise level. b) The average number of
clusters found per trial, including their division into categories. Blue: “perfect” cluster,
Green: “correct” cluster, Red: “incorrect cluster”. c) Proportion of different cluster types
among all clusters found, in percentages.

For a larger noise level (= 1), clusters are fewer and they are not perfect;
one the average, 15% of them were correct only. With a very high noise level
(= 2), there were only two clusters on the average. No incorrect clusters
were observed in these simulations, but this is presumably subject to a lot
of random fluctuation and not a conclusive result.

Thus, incorrect clustering seems to happen very rarely: when intersub-
ject consistency is negligible, the method does not usually group the com-
ponents into incorrect clusters. Instead, it simply finds very few clusters.
This is of course what the method was supposed to do, and indicates that
clusters considered significant can be trusted to some extent.
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4.3. Simulation 3: Semi-realistic data with two subject groups

The results for Simulation 3 are shown in Fig. 3. We see that first,
when the difference between the groups is small (0.25 or 0.5), the method
simply ignores the difference between the groups: It clusters corresponding
components from all subjects into one cluster, which is thus “perfect” in our
classification. In contrast, with the highest group difference (2), the method
creates almost 40 “correct” clusters and few perfect ones, as well as a few
incorrect ones.

A closer examination of the clusters reveals the expected result that each
subject group has its own clusters in the case of high group difference, with
components from 5 or 6 subjects in each. This is shown in Fig. 3 d), in
which the clustering structure is given for one randomly selected trial in the
case of the highest group difference. The method found 38 clusters, 36 of
which contain exactly the subjects of one group (up to two random errors),
and 2 contain the subjects from both groups. Since the group difference was
randomized for each component, for some components the group difference
seems to have been too small to be detected.

Thus, any group differences of the subjects can lead to splitting of the
clusters by groups, provided the group differences are strong enough.

4.4. Simulation 4: Computational complexity

The computational requirements are shown in Fig. 4. Note that both
plots are in log-log scale with base 2. We can see that the memory require-
ment increases rather exactly proportionally to n2r2, which is seen as the
increase of memory by a constant of 16 = 24 when increasing n and r by
a factor of two. Regarding computation time, the progression is also close
to linear. The slope of the line is close to 5 (in logarithms) for the largest
dimensions computed, thus approximately conforming with the theoretical
prediction of n3r2 complexity.

The case n = r = 128 could not be computed due to lack of memory
in our PC. In fact, an extrapolation of the line plotted shows that it would
have required approximately 1.4 Gigabytes of memory to store the variables.
Since this value does not take into account the memory needed for temporary
storage of internal variables, the required computations were impossible with
the 2.4 Gigabytes of free memory we had. However, it would not have been
difficult for us to find a computer with the required memory capacity, so
the case n = r = 128 is not impossible, and presumably already possible in
more advanced hardware configurations.

Extrapolating the CPU time, we see that the expected computation time
in the case of n = r = 128 would have been less than 10 hours, which would
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Figure 3: Simulation 3: Semi-realistic data with half of the components consistent to
varying degrees, and subjects divided into two groups. Horizontal axis is magnitude of
group difference in a)-c). a) The probability (percentages) of rejection of null hypothesis
as a function of the group difference. b) The average number of clusters found per trial,
including their division into categories. Blue: “perfect” cluster, Green: “correct” cluster,
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in percentages. d) One randomly selected clustering for highest group difference. White
means the subject has a component belonging to the cluster, black means there is none.
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Figure 4: Simulation 4: Computational complexity. Left: CPU time in minutes (log2

scale), Right: memory required in bytes (log2 scale). The case n = r = 128 was infeasible
because it would have required more memory than was available.

still have been feasible. Thus, the computational bottleneck is really in the
memory requirements.

4.5. MEG data

4.5.1. Inter-subject consistency

When applied on the naturalistic stimulation data from 11 subjects and
a PCA dimension of 64, the method found 43 reliable clusters. The distri-
bution of cluster sizes (not shown) was rather uniform from 2 to 11, with
a slight overrepresentation of clusters of two components. The clusters in-
cluded a total of 239 components, which is 34% of the total number of
estimated components.

We show three manually selected clusters in Figs. 5–7. Fig. 5 shows a typ-
ical Rolandic cluster strongly modulated by tactile stimulation. Fig. 6 shows
a temporal component mainly modulated by speech stimulation. Fig. 7
shows an occipital visual component. Many further components modulated
by sensory input were found as well, typically in the occipital and parietal
cortices. Some of the clusters seemed to be ocular or muscular artifacts.

4.5.2. Inter-session consistency

When applied on single-subject data with three different sessions, the
method found 32 clusters. 25 of them were of size three, and the rest of size
two. Two of the clusters are shown in Figures 8 and 9. Clearly, the spatial
patterns are very similar across sessions.
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Figure 5: One cluster of sources found in real group MEG data. The cluster is modulated
by tactile stimulation. a) Topographic plots for all components in the cluster, in the same
order in which they were added to the cluster. b) Cortical projection using minimum
norm estimate, c) Fourier spectrum, d) modulation by stimulation modalities. Cortical
projection and Fourier spectrum shown for one representative component, whose row
number in a is given inside the plot in c. Modulation was computed for the following
stimulation groups: beep: auditory beeps, spch: speech, v/hf: visual stimulation showing
hands and faces, v/bd: visual stimulation showing buildings, tact: tactile stimulation.
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Figure 6: Another cluster found in real group MEG data, modulated by auditory stimu-
lation. See Figure 5 for legend.
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Figure 7: Another cluster found in real group MEG data, modulated by visual input. See
Figure 5 for legend.
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Figure 8: One cluster of sources in single-subject data with three different sessions. See
Figure 5 for legend. (Modulation by stimulation was not computed here.)
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Figure 9: Another cluster found in single-subject data with three different sessions. See
Figure 5 for legend. (Modulation by stimulation not computed here.)
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5. Discussion

We proposed a method for testing the statistical significance or reliability
of independent components based on the consistency of the columns of the
mixing matrix over subjects or sessions. While clustering of components to
solve the group ICA estimation problem has been proposed before (Esposito
et al., 2005), our contribution here was to derive statistically principled
thresholds to determine if a cluster is reliable or not. We were able to derive
such thresholds in closed form, controlling the false-positive rates for clusters
and false discovery rates for including components in the clusters. Due to
the complexity of the ICA model, the algorithm had to resort to a number
of approximations which means that the control of the error rates is not
exact. However, according to the simulations, the control of error rates was
good, and experiments on real MEG data gave plausible results as well.

5.1. Intersubject consistency in ICA theory

The multi-subject scenario has received little attention in the general
literature of ICA theory, and it is often considered more of a nuisance in
the theoretical literature, although its importance is clear in the context of
neuroimaging. Most of the methods for group ICA have been developed, in
fact, in the neuroimaging literature.

One implication of the work presented here is that having many sub-
jects is actually very useful for ICA even on a theoretical level, since it leads
to a method of testing components which is both intuitively appealing and
mathematically principled. Our statistical test discards many of the com-
ponents and shows which ones are worthy of further attention because they
are more consistently found than would be by chance. This is in contrast
to most group ICA methods, reviewed by Calhoun et al. (2009), which do
not provide any selection of the components. Our method is closely related
to the one by Esposito et al. (2005); we improve on that work by replacing
an arbitrarily set threshold by a statistically principled one which controls
the error rates. A related method based on split-half analysis of the group
was recently proposed by Varoquaux et al. (2010) but they did not provide
a principled threshold either.

We want to emphasize that widely-used group ICA methods based on
concatenation of the individual data matrices are based on the implicit as-
sumption that the same components are present in all subjects. However,
this assumption is usually not validated in any way, so there is no guarantee
that a given component is really present and meaningful in all the subjects,
or even many of them. It is possible that the ICA algorithm simply ignores
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some, or even most, of the subjects when estimating a given component.
One way to make sure that a component is present in several subjects (and
to find out in which subjects) is to compute ICA separately for each subject
and then analyse the intersubject consistency of the results.

5.2. Technical notes and future work

An important extension of the current method would be to consider the
case where we are interested in similarities of spatial patterns estimated by
spatial ICA. This is, in fact, the most frequent type of application of group
ICA methods, and dominant in the fMRI literature. We are hopeful that the
framework can be extended in that direction, and will pursue that goal in the
near future. The method as presented here is, in fact, applicable to spatial
ICA of fMRI data if one is interested in the inter-subject consistency of time
courses, i.e. inter-subject synchronization (Hasson et al., 2004; Malinen and
Hari, 2011).

Our null hypothesis implies some specific equalities of the parameters.
In particular, it implies that the subjects have the same covariance matrices,
and thus the same PCA subspaces and whitening matrices. While this may
be contradictory with their empirical estimates, it is justified by the logic
given above for introducing a minimum amount of randomness. If the data
for different subjects is actually generated by a random process which has
less restrictions, the similarities are less likely to attain any thresholds we
compute here. Thus, any thresholds for comparing inter-subject consistency
using our H0 are conservative.

This leads to the question of whether the assumption of equal covari-
ances may actually lead to overly conservative testing. One has to note
that the subspace of components which are consistent has, by definition,
approximately the same covariance matrix for all the subjects (up to possi-
ble differences in scaling of the components). So, the subspace in which the
covariance is clearly different is likely to correspond to inconsistent compo-
nents. Thus, the test is likely to be more conservative for accepting false
positives only from subspaces in which there is no consistency. This should
not be a problem if it is not likely to be much more conservative in rejecting
H0 for consistent components.

We further assumed in the case of multiple testing that we can approxi-
mate the tests to be independent. Alternatively, we might use an FDR pro-
cedure which does not make any such assumption (Benjamini and Hochberg,
1995), but we have found (results not shown) that such variants make the
test far too conservative. In simulations reported above, we found that our
test is not too permissive in spite of this approximation. In fact, it would
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rather seem to be slightly too conservative, and another topic for future
research is find methods that make the FPR rate closer to the desired one.

Our framework can also be used for analysing different recordings of the
same subject in different conditions, for example, in rest or under differ-
ent kinds of stimulation. Ultimately, one could even divide a single, long
recording into segments and analyze which components are found in many
segments. Thus, we can actually determine principled p-values in the general
context of the ICASSO method (Himberg et al., 2004) which is applicable
to any ICA analysis. It should be noted that our theory cannot be used
with bootstrapping samples because such samples have considerable overlap
so the complete inter-session randomness of H0 would be quite unrealistic.
Instead, we have to use disjoint subsets of the data points. Because of time
correlations in the data, the subsets should also be temporally contiguous,
as opposed to random subsets of time points, to make the complete ran-
domness in the null hypothesis a realistic baseline. (Related work based on
splitting the data into two halves can be found in (Groppe et al., 2009).)

Our clustering method is a simple modification of a classic one: hierar-
chical clustering by single linkage. The modification consists of allowing at
most one cluster member from each subject. There is no reason why any
other clustering method could not be used. An obvious option would be to
use other variants of hierarchical clustering, in particular complete linkage.
Variants of k-means clustering should be easily applicable as well. Whether
any benefit can be derived from such variants is another interesting question
for future research.

The definition of FDR was here based on the number of similarities
considered true although they are false. It should be noted that this is not
the number of components falsely clustered. In principle, it is possible that
the number of falsely clustered components is larger than given by FDR
because if one component is falsely clustered, it may bring other, similar
components to the same cluster. However, in our simulations, the opposite
seemed to happen, and the number of falsely clustered components was
actually smaller than the FDR. In fact, it is not quite clear how to define
the number of “falsely clustered” components in the first place, since if the
method merges two small clusters, it is not clear whether one should consider
falsely clustered all the components in the two clusters, all the components
in one of the clusters, or only one component. Our FDR definition considers,
in fact, that only one error has been committed.

In general, any estimation method should be accompanied by a testing
method in practical data analysis. In the case of ICA, the testing has been
long neglected. We hope that the present work and any related future work
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contribute to correcting that oversight.
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A. Proof of Theorem 1

We have

C =
1

r

∑

k

AkA
T
k =

1

r

∑

k

A0UkU
T
kA

T
0 = A0A

T
0 (15)

and thus, for k 6= l

AT
kRAl = UT

kA
T
0 (A0A

T
0 )

+A0Ul = UT
kUl = U (16)

where + is the Moore-Penrose pseudoinverse, and U is uniformly distributed
in the set of orthogonal matrices for k 6= l. The denominators aTjlRajl are

all one because they correspond to UT
kUl with k = l, which is identity.

B. Proof of Theorem 2

The theorem is considered well-known by some authors, and closely re-
lated to results by Fisher (1915) and Anderson (1984). The variable u is, in
fact, closely related to the correlation coefficient between two samples drawn
from two distributions with zero correlation, since our similarity is a nor-
malized dot-product just like a correlation coefficient. Its distribution has
been treated extensively in that context, but since we are unable to find an
accessible reference considering this particular case, we provide a complete
proof here.
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Here, we call a d-sphere a set of the form {x ∈ Rd | ‖x‖ = r}. The
volume of the d-sphere is C(d)rd−1 where C(d) is a constant that depends
on d. We don’t need to calculate C because its effect would be essentially
to normalize the pdf and we can do that afterwards.

By symmetry considerations, we can see that the distribution of an el-
ement of a uniformly distributed d × d orthogonal matrix is the same as
the distribution of an element of an d-dimensional vector u uniformly dis-
tributed on the unit d-sphere (i.e. d-sphere with r = 1). From now on, u
thus refers to one element of such a random vector.

Consider a fixed value u0 > 0 for |u|. Parameterize it as u0 = cosα.
The probability P (u ≥ u0) is proportional to the volume of the “cap” of the
d-sphere which is obtained for angles |α| ≤ arccos u0. This is illustrated in
Fig. 10. The volume of the set in question can be obtained by integrating
over the volumes of the segments corresponding to the part of the sphere
between the angles [α,α + δ] (red and magenta circles in Fig. 10). The
volume of such a segment, which is essentially an d−1-sphere, equals C(d−
1)(sinα)d−2δ. Thus, we have

P (|u| ≥ u0) = C ′(d)

∫ arccosu0

0
(sinα)d−2dα (17)

for some constant C ′ which depends on d only.
We make the transformation of variable

t = cos2 α (18)

Since
d

dx
arccos x =

−1√
1− x2

(19)

we obtain

dα/dt = −1

2
(1− t)−1/2t−1/2 (20)

and thus

P (|u| ≥ u0) = P (u2 ≥ u20) = C ′′(d)

∫ u2
0

0
(
√
1− t)d−2(1− t)−1/2t−1/2dt

= C ′′(d)

∫ u2
0

0
t
1
2
−1(1− t)

d−1
2

−1dt (21)

Here, we recognize in the integrand the unnormalized pdf of the beta dis-
tribution with parameters (12 ,

d−1
2 ). The constant C ′′ thus has to be the
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proper normalizing constant. Thus, we have proven that u2 follows the beta
distribution.

Next, we make the transform to Student’s distribution. From the cdf in
(21) we obtain the pdf of u as

p(u) ∝ u2×( 1
2
−1)(1− u2)

d−1
2

−1u = (1− u2)
d−1
2

−1 (22)

where the multiplying u at the end of the pdf comes from the change of
measure when going from u2 to u. We use the notation ∝ to indicate that
the expression of the pdf is missing the normalization with respect to d. The
inverse and the volume element of the transformation in (6) are given by

u =
t

√
d− 1

√

1 + t2

d−1

=
t√

d− 1 + t2
(23)

du

dt
=

1

(d− 1 + t2)3/2
(24)

and thus we have

p(t) ∝ (1− t2

d− 1 + t2
)
d−1
2

−1 1

(d− 1 + t2)3/2

= (
d− 1

d− 1 + t2
)
d

2
−

3
2

1

(d− 1 + t2)3/2
(25)

From which we finally obtain

p(t) ∝ (1 +
t2

d− 1
)−

(d−1)+1
2 (26)

which shows that t follows Student’s t distribution with d − 1 degrees of
freedom.

Let us note that if u is complex-valued, as proposed, for example, in
(Hyvärinen et al., 2010), numerical simulations indicate that |u|2 follows a
beta distribution with parameters (1, 2d−1

2 ), but we do not have an analytical
proof for this property.

C. Numerical computation of p-values

The numerical computation of either of the cumulative distribution func-
tions (cdf’s) given in the theorem is fundamentally based on the incomplete
beta function, which is essentially the cdf of the beta distribution. We have

P (u2 ≤ x) = BI(x,
1

2
,
d− 1

2
) (27)
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Figure 10: Illustration of the pdf calculation in a three-dimensional space. The entry u

takes values on the black axis. Consider the value at the point u0 = cosα where the axis
meet the green line. The probability that |u| is larger than this is proportional to the
volume of the part of the d-sphere which is to the right of the red circle. The volume can
be computed by integrating over the volumes of the d−1-spheres like the red and magenta
circles. The radius of the red circle is sinα.

where BI is the regularized incomplete beta function

BI(y, a, b) =

∫ y
0 ta−1(1 − t)b−1dt

B(a, b)
(28)

and B is the (ordinary) beta function B(a, b) =
∫ 1
0 ta−1(1 − t)b−1dt. Com-

putation of the incomplete beta function, as well as its inverse, is efficiently
implemented in many software platforms for scientific computation. In fact,
the cumulative distribution function of Student’s distribution is typically
computed using the incomplete beta function, which is why the incomplete
beta function may be preferable, although any difference in accuracy or
speed may be very small.

Whichever distribution is used, due to the corrections for multiple test-
ing, we need to compute the value of the cdf’s for values very close 1, which
easily leads to numerical problems. This is because we are in fact interested
in the values of one minus the cdf, and this difference will not be properly
presented in the value of the cdf if the difference is very small. Such a prob-
lem can be solved using the upper option of Matlab’s betainc function, or
by computing the value of the cdf of the t-distribution for −t instead of t.
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