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Abstract
Both the size and location of injury in the brain influences the type and severity of cognitive or
sensorimotor dysfunction. However, even with advances in MR imaging and analysis, the
correspondence between lesion location and clinical deficit remains poorly understood. Here,
structural and diffusion images from 14 healthy subjects are used to create spatially unbiased
white matter connectivity importance maps that quantify the amount of disruption to the overall
brain network that would be incurred if that region were compromised. Some regions in the white
matter that were identified as highly important by such maps have been implicated in strategic
infarct dementia and linked to various attention tasks in previous studies. Validation of the maps is
performed by investigating the correlations of the importance maps’ predicted cognitive deficits in
a group of 15 traumatic brain injury patients with their cognitive test scores measuring attention
and memory. While no correlation was found between amount of white matter injury and
cognitive test scores, significant correlations (r > 0.68, p < 0.006) were found when including
location information contained in the importance maps. These tools could be used by physicians to
improve surgical planning, diagnosis, and assessment of disease severity in a variety of
pathologies like multiple sclerosis, trauma, and stroke.
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1. Introduction
Many brain pathologies, including stroke, multiple sclerosis and traumatic brain injury result
in functional disability. The location and size of the affected area greatly influences the level
and type of disability that the patient incurs. Current MRI-based diagnosis and assessment of
brain injury is primarily qualitative, involving subjective interpretation of severity and
prediction of impairment based on a physician’s general anatomic and physiologic
knowledge or previous patient-based experience. Even when augmented by 3D imaging
tools that allow for objective measurement of lesion or tumor volume, the effect on brain
function cannot be sufficiently characterized. This shortcoming arises because functional
impairment is determined by both the extent and location of damage, and can be properly
assessed only by also elucidating the structural connectivity of the affected gray matter
region to the rest of the brain via its white matter fiber architecture.

There have been, however, numerous studies correlating total lesion load with severity and
prognosis in various diseases, without considering the location of damage. In particular, one
study showed a statistically significant although moderate correlation (r = 0.3–0.5) of lesion
load in MS with EDSS scores of disability (Filippi et al., 1996), while another found slightly
higher correlation by combining information from various MR modalities (Mainero et al.,
2001). The correlations are modest most likely because the location of the lesions plays a
large role in the patient’s disability. In fact, several studies using lesion location in their
analysis have shown higher correlation with severity of disability in MS (Charil et al., 2003;
Wilson et al., 2003; Vellinga et al., 2009) and with stroke severity and functional recovery in
stroke (Menezes et al., 2007; Nazzal et al., 2009). In Menezes et al. (2007), various selected
brain structures were assigned a level of influence in stroke severity by two physicians.
Using this map, a higher correlation (r = 0.79, p = 0.035) was found with the National
Institutes of Health Stroke Scale (NIHSS) scores than the correlation calculated by using
only lesion volume (r = 0.62). Another study in normal and TBI subjects showed that the FA
of particular tracts correlates better with various measures in the Attention Network Test
(Niogi et al., 2008b, 2010). Singh et al. (2010) discovered white matter ROIs with decreased
FA in TBI patients and identified white matter tracts that appeared in equivalent ROIs in a
series of normal patients. While these studies show some promise in the consideration of
spatial location of damage, none of these has taken into account the location of the damaged
tissue or tracts with respect to disruption in the overall brain connectivity network in a
spatially unbiased manner.

1.1. Diffusion Imaging and Tractography
The structural brain network has recently become an area of wide interest due to the
advances in diffusion imaging that can elucidate white matter structures (Assaf and
Pasternak, 2008). DTI is a modality in MRI, introduced by Basser et al. (1994), that enables
the localization and characterization of white matter fasciculi in the brain by assuming the
direction and magnitude of water molecule diffusion in the brain occurs at a higher rate
along white matter tracts than across them. Measurements are taken in numerous directions
and tensor decomposition is used to extract the direction and magnitude of parallel and
perpendicular diffusivity of water molecules (Basser et al., 1994; Basser, 1995). Summary
statistics of the magnitude of diffusivities, such as the mean or the normalized standard
deviation (fractional anisotropy-FA), provide interpretable values and a basis for
visualization and construction of the white matter tracts (called tractography) (Basser and
Pierpaoli, 1996, 1998; Pierpaoli and Basser, 1996).

Many tractography algorithms have been developed that use diffusion information to map
the location and size of probable white matter tracts in the brain. Streamline tractography
algorithms, for example FACT (Mori et al., 1999), begin at a user defined seed voxel and
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take steps in the direction of fastest diffusion. Failure of these methods occurs within voxels
that contain noise or have fibers that are crossing, “kissing”, diverging or merging. In an
attempt to overcome this limitation, probabilistic methods (Zhang et al., 2009; Behrens et
al., 2003; Friman et al., 2006) measure the probability of connection between regions rather
than the actual reconstruction of the white matter pathways. One probabilistic method
(Iturria-Medina et al., 2008) considers the probability of connection between two brain
regions to be proportional to the most probable tract between any voxel in the respective
regions. Once the representations of the white matter tracts are constructed, the connectivity
of different regions in the brain can be represented by a graph and analyzed using existing
methods in graph theory. In recent years, graphs and networks have been used to describe
and analyze many different complex social, biological, and mathematical phenomena
(Strogatz, 2001). These approaches have been used to investigate brain structure (Sporns et
al., 2004), function (Achard et al., 2006), and a combination of the two (Bowman et al.,
2009).

1.2. Graph Theory and Its Application to the Brain Network
A graph G = (V, E) is defined by a set of vertices V that are linked pairwise by edges E
(Gondran and Minoux, 1984). In a graph that represents brain connections, vertices
correspond to gray matter regions and edges to measures of their connectivity via white
matter tracts. Edges in a graph can be assigned a capacity or weight eij that gives the
strength of connection between any two vertices i and j, while the distance dij between
vertices i and j can be taken as the inverse of the edge weight, i.e. dij = 1/eij. A path pkl from
vertex k to l is defined to be a set of vertices such that from each vertex in the set, an edge
exists to the next sequential vertex. Once all of the possible paths between vertices k and l
are found, each path’s length, denoted |pkl|, can be found by summing the distances between
sequential vertices and subsequently the shortest path  can be identified.

Three graph metrics, defined below, are used in this paper to quantify a graph’s
characteristics and make comparisons. These metrics are defined as:

• characteristic path length (cpl): average length of the shortest path between all pairs

of vertices, i.e. ,

• efficiency (eff): average of the inverse of the shortest path length, i.e.

,

• spectral radius (sr): two norm of the graph matrix, i.e. ,

where A ∈ Rm×m is the symmetric matrix representing the connectivity graph of m gray
matter regions in the brain, whose element aij in the ith column and the jth row correspond to
the weight of the edge between gray matter regions i and j in the connectivity graph (aij = 0
for i = j).

There have been a few recent studies that show promise in exploring changes in brain
connectivity network metrics in certain disease states. Zalesky et al. (2011) showed a
decrease in the efficiency measure of structural connectivity networks in schizophrenic
patients compared to normal controls. The same study found significant correlations
between network efficiency and intellectual performance in normal controls, but not in the
patient population. Lo et al. (2010) showed an increase in path length and a decrease in
efficiency in Alzheimer’s patients compared to normal age-matched controls. In addition, a
third study (Wen et al., 2011) showed lower brain network efficiency measures correlated
with increased age and decreased cognitive performance.

Kuceyeski et al. Page 3

Neuroimage. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1.3. Paper Contribution
Thus far, analyses of brain network connectivity changes have depended on tractography
performed on brains affected by a disease, injury, or aging. It is not known, however, if
tractography methods that are highly sensitive to noise can yield physiologically meaningful
connectivity information in abnormal brains. The method proposed in this paper
circumvents this problem by assigning to a white matter region its relative importance to
network connectivity as an indicator of the amount of damage incurred when that region is
compromised.

A way to systematically and objectively quantify a white matter region’s importance to
overall brain connectivity has not yet been developed. Building on preliminary results
(Kuceyeski and Raj, 2010), the current work uses diffusion data, structural MR images of
the brain, and graph theory to systematically assign importance with respect to overall brain
connectivity to white matter regions to further elucidate the correspondence between lesion
location and cognitive deficit. This information, presented in the form of a three dimensional
quantitative connectivity importance map of the brain, can improve surgical planning,
diagnosis, and assessment of disease severity in a variety of pathologies such as multiple
sclerosis, trauma, and stroke. The importance map itself is constructed independently of any
pathological disease state, so evaluation of a patient’s brain disruption requires a measure of
the individual’s white matter integrity. Since the severity of TBI has been shown to
correspond to a decrease in FA (Rutgers et al., 2008; Niogi et al., 2008a), this measure is
used to assess a TBI patient’s white matter integrity. Validation is performed by measuring
the correlation of the predicted overall brain connectivity disruption with test scores that rate
disability and cognitive deficit in TBI. While the correlations of conventional measures such
as amount of injury alone with these test scores were not found to be significant, the addition
of the importance map information results in higher correlations that are significant.

2. Materials and methods
2.1. Data

The data used in this study were collected under a joint study between Weill Cornell
Medical College and the Brain Trauma Foundation. It consists of 14 normal controls’ (9
male and 5 female) and 15 traumatic brain injury patients’ (10 male and 5 female) structural
MR scans (T1 - FSPGR) and High Angular Resolution diffusion Images (HARDI). The mild
TBI subjects were recruited through referrals from local concussion clinics. The conditions
for inclusion were blunt, isolated TBI, post-traumatic amnesia, and a Glasgow Coma Scale
(GCS) score of 13-15 at time of injury. The conditions for exclusion were pregnancy, a
history of neurological or psychiatric diagnosis, seizure (prior to the injury), or drug or
alcohol abuse. The ages of the normal controls and TBI patients were 23.1 ± 4.7 and 35.4 ±
10.5, respectively, and all of the subjects were right-handed. The scans were performed 20.2
± 17.4 months from the time of injury and all patients had a GCS of 15.

The data were collected on a 3 Tesla GE Signa EXCITE scanner (GE Healthcare,
Waukesha, WI, USA). HARDI data were acquired using 55 isotropically distributed
diffusion-encoding directions at b = 1000 s/mm2 and one at b = 0 s/mm2, acquired at 72 1.8-
mm thick interleaved slices with no gap between slices and 128 × 128 matrix size that was
zero-filled during reconstruction to 256 × 256 with a field of view (FOV) of 230 mm. The
structural scan was an axial 3D inversion recovery fast spoiled gradient recalled echo
(FSPGR) T1 weighted images (TE = 1.5 ms,TR = 6.3 ms, TI = 400 ms, flip angle of 15)
with 230 mm FOV and 156 1.0-mm contiguous partitions at a 256 × 256 matrix. In addition
to image data, two tests of cognitive function that measure different components of attention
and verbal working memory were scored for the same set of patients, namely, the Attention
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Network Test (ANT) (Fan et al., 2002) and California Verbal Learning Test - Second
Edition (CVLT-II, Pearson, San Antonio, TX, USA) (Jacobs and Donders, 2007; Niogi et
al., 2008b). Detailed patient characteristics, including cognitive test scores, are listed in
Table A.4 of Appendix A.

2.2. Extracting healthy whole brain connectivity networks
The connectivity weights between two gray matter regions in the brain can be measured in a
variety of ways, e.g. probability of connection or the amount of white matter tissue
connecting them. The Anatomical Connection Strength (ACS) metric used here (Iturria-
Medina et al., 2007) represents potential information flow between gray matter regions
which is assumed to be related to the amount of nervous fibers connecting them. Essentially,
ACS is estimated by summing the weight of connection between two regions over all the
surface voxels of both regions and is considered to be proportional to the cross-sectional
area of the connecting fibers. White matter tracts can be constructed and their weights
assigned in many different ways. The process used here, as first described in Iturria-Medina
et al. (2007) and used in Kuceyeski and Raj (2010) and Ivkovich et al. (in press), is briefly
outlined in the next two paragraphs and summarized by Figure 1.

Individual Brain Atlases Statistical Parametric Mapping (IBASPM) (Alemá-Gómez et al.,
2005), Statistical Parametric Mapping (SPM5) (Friston et al., 2006), and Automatic
Anatomical Labeling (AAL) software packages (Tzourio-Mazoyer et al., 2002) were used in
Matlab R2009a (Natick, MA, The Mathworks Inc.). Individual T1 image volumes were co-
registered to standardized Montreal Neurological Institute (MNI) space (Collins et al., 1998)
and tissue probability maps constructed using SPM. Tissue masks were created by assigning
each voxel to the tissue class (gray matter, white matter, cerebrospinal fluid) of highest
probability. The gray matter mask was then parcellated into a standard 116-region atlas
using IBASPM and AAL. The parcellated atlas and tissue masks were subsequently mapped
back to the subject’s native T1 space and re-sliced to the diffusion volume resolution. The
orientation distribution function (ODF) of raw diffusion data was fully reconstructed using a
spherical harmonic representation of q-ball imaging (spQBI) as found in Hess et al. (2006).

The surface voxels of the parcellated cortical and subcortical structures were used to seed
the tractography algorithm in corresponding regions in the diffusion volume. The
tractography algorithm was initiated 50 times per voxel, a number that was as large as
possible without compromising computational efficiency. Proposed and validated in Iturria-
Medina et al. (2005) and used in Sotero et al. (2007), the tractography algorithm
implemented here incorporates tissue classification probability and ODF information in a
Bayesian manner, similar to work found in Behrens et al. (2003),Friman et al. (2006), and
Lu et al. (2006). A tract terminated when the algorithm reached the boundary of an image
volume, the edge of a gray matter region, a voxel not in the gray or white matter masks, or
when the angle between subsequent steps exceeded π/3. The above tractography was
performed and the connectivity graph calculated for each normal subject.

2.3. Creating the Importance Maps
A measure of importance was assigned to voxels in the white matter importance map using
the data from the normal subjects via the following process:

1. The center of a voxel identified to be in the white matter was selected as the center
point for the region of interest ri. This region corresponded to the site of a
“hypothetical lesion.”

2. The small spherical portion ri of radius 1.5 times the size of the voxel (see
Appendix B for an explanation of radius size selection) was defined and white
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matter tracts that passed through that region were removed from the collection of
tracts.

3. The modified connectivity graph Ari ∈ Rm×m (m = 116) was computed for the new
set of white matter tracts and compared to the normal subject’s original
connectivity graph A using the three metrics outlined in Section 1.2. These metrics
give information related to the change in connectivity when that region ri is
removed. This quantity was then recorded in the voxel corresponding to the region
ri in the importance map I.

4. Steps 1-3 were repeated until all the white matter regions ri were lesioned, and the
importance map completed.

The result of this process is a three dimensional volume of white matter tissue in the brain,
where each small section of tissue is assigned its own measure of importance that is exactly
the amount of connectivity change that occurs when it (and only it) is removed. Figure 2
summarizes this process for a particular white matter region of interest. In addition, a tract
probability count (TPC) map was constructed by adding the probabilities of the tracts going
through the same regions ri for which the importance map values were calculated. The
individual subjects’ importance maps, TPC map, and white matter probability map (WMP)
from SPM were coregistered to common MNI space by the process outlined in Appendix C.

Other graph summary metrics are available, but the ones selected here are widely used in
various applications. Characteristic path length and efficiency are commonly used metrics in
graph theory and brain network analysis (Zalesky et al., 2011; Lo et al., 2010; Wen et al.,
2011), and the spectral radius is a summary statistic of the graph. The methodology
proposed here can be tailored for specific applications by choosing the most appropriate
metric for the disease or the question being addressed.

2.3.1. Importance Map Scores per Subject
The FA maps of each TBI patient were calculated and coregistered to common MNI space
applying the same procedure used on the importance maps, described in Appendix C, and
then compared against the normal group by computing the z-scores per voxel. The
Importance Weighted Severity Score (IWSS) given to each TBI patient is defined as

where the value Ii is the importance map entry for voxel i and N the number of white matter
voxels. Recall that there are three different importance maps, resulting in three different
IWSSs per patient. Two other scores are also computed for each of the TBI patients: the
Tract Probability Count Score (TPCS) and the White Matter Probability Score (WMPS)
defined as

respectively, where TPCi and WMPi are the tract probability count and white matter
probability map values at voxel i. The entries in the importance, TPC and WMP maps were
scaled so that their values were between 0 and 1 in order to ensure consistency of the
different scores. The scores will be more negative if regions have lower FA (negative z-
scores) and/or higher importance, tract count, or white matter probability. In addition, voxels
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with an FA of less than 0.1 were excluded to ensure that only white matter structures were
used. A list of the various image-derived scores per patient are given in Table A.3 of
Appendix A.

3. Results and Discussion
3.1. Comparison of the Maps

Equivalent slices of the various normalized average importance maps, along with the
average WMP map and average TPC map, are shown in Figure 3. The efficiency and
spectral radius importance maps had only negative entries before scaling, signifying a loss in
brain network efficiency and a decrease in the magnitude of the principle eigenvector of the
network after hypothetical lesioning. This was an unsurprising fact, as it was expected that
there would be some decrease in the network qualities if fibers are removed. Also expected
was the increase in characteristic path length metric after lesioning, indicating an increase in
distance between nodes in the brain network. The values in the importance maps appear
quite different, which may mean that the measures provide complimentary information, i.e.
disruption in one region may alter characteristic path length more than it does the spectral
radius of the graphs. To investigate the maps’ regional differences in a quantitative manner,
the JHU-MNI-ss atlas, or so-called “Eve” atlas (Oishi et al., 2009), was used to parcellate
the white matter into 106 regions and the average importance map score over the voxels in
each region was calculated (for the list of regions and their rankings for each map, see
Appendix D). Pearson’s correlation of the white matter region scores among the different
maps was calculated (Table 1). The efficiency map’s correlation with the TPC map is
highest at a value of r = 0.74, while the other two graph measures of path length and spectral
radius also have a moderate correlation with efficiency (r = 0.59, r = 0.53). Visually the
TPC and efficiency maps are similar, with less localization over the two hemispheres which
indicates that these measures may be generally more robust. The WMP map correlations
with the TPC map and the importance maps are moderate at best. The lowest correlation is
between the spectral radius and the characteristic path length map, a result which can be
seen visually as the two maps have highly localized regions of importance in opposite
hemispheres.

3.2. White matter regions of high and low importance
The highest values in the TPC map appeared in superficial white matter, including frontal
and occipital regions. In contrast, the importance maps generally had higher values in deep
white matter structures. Probabilistic fiber tracking methods assign higher probabilities to
shorter fibers and thus white matter that is close in proximity to the surface of gray matter
regions may have a larger number of tracts with higher probability. This may mean that the
TPC map is biased for larger values in the superficial white matter. It must be emphasized
that this effect is not seen in the connectivity importance maps, as they consistently showed
higher scores in the deep white matter structures. It seems that the graph theoretical
measures used to compare intact and damaged brain networks were robust enough to
overcome the potential limitations of probabilistic tractography (see the Limitations section
3.5 for more discussion of this issue).

In the efficiency map, the right cuneus white matter, left and right sagittal stratum, right
posterior thalamic radiation and right lateral-frontal white matter had high importance. In
contrast, the map created using the path length metric had high importance in many regions
in the left hemisphere, including the anterior and posterior limbs of the left internal capsule
and the left external capsule. For the spectral radius metric, right hemisphere regions
dominated, including the right posterior thalamic radiation and right inferior occipital white
matter. To find regions identified with high importance in the various maps, the regions
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were assigned a rank of 1 to 106 depending on how important they were in the respective
maps. These ranks were summed, and it was found that the right precuneus white matter, the
right and left sagittal stratum, the right lingual white matter and the right posterior thalamic
radiation were the most important across the connectivity map metrics. Also high on the list
were the left and right hippocampal cingulum and the left and right inferior occipital white
matter. The right precuneus white matter is a part of the resting network, and the sagittal
stratum, as described in Schmahmann and Pandya (2006), is a major corticosubcortical
white matter bundle that connects regions of the parietal, occipital, cingulate, and temporal
regions to subcortical thalamic regions, the nuclei of the basis pontis, and other brainstem
structures. For a complete list of rankings, see the table in Appendix D.

Regions with low values agreed among the three importance maps and TPC map. Those
assigned low values were the column and body of the left fornix, the right fornix, the
bilateral pontine crossing tracts, bilateral medial lemniscus, and bilateral cortico-spinal
tracts. The inferior cerebellar peduncles and red nuclei also had low map values. These
structures had less than 1% of the maximum tract probability count, which would explain
the low values in the importance maps. This outcome may be an artifact, however, as the
brainstem is susceptible to movement with cardiac pulsations during the scan, resulting in
extremely noisy diffusion data, a low amount of reconstructed tracts, and therefore low
connectivity importance in these regions. The low tract count does not necessarily mean
these regions do not have fibers and are not important in the brain network, only that the
non-pulse gated imaging method used here cannot adequately capture its fiber architecture.

3.3. Comparison to findings in the literature
Many of the regions implicated in the different effects measured by the ANT (Niogi et al.,
2008b, 2010) were shown to be highly ranked in one or more of the importance maps. The
left anterior corona radiata, listed in the top 15% of regions in the combined rank and in the
path length map (Appendix D), was shown to have FA measures that correlated with the
conflict effect of the ANT. The left and right splenium of the corpus callosum were found to
be correlated with the orienting effect in the ANT; here those structures appeared in the top
35% of the efficiency importance map, with the right side of the structure appearing in the
top 20% of the combined importance map rankings. The left posterior limb of the internal
capsule, correlated to the alerting effect of the ANT, was third most important in the path
length importance map while in contrast it was halfway down the lists of structures in the
efficiency, spectral radius, and overall rank.

Other neurological studies have shown that strategic infarct dementia, a highly debilitating
condition wherein the patient experiences fluctuating alertness, inattention, memory loss,
apathy, abulia, and psychomotor retardation, results from stroke lesions in the genu of the
internal capsule (Tatemichi et al., 1995). The importance map for path length that ranked the
left anterior and posterior limbs of the internal capsule as the first and third most important
white matter regions may be capturing a center of connectivity that is affected in this type of
focal stroke.

3.4. Quantitative Validation of Maps
The hypothesis that the importance maps provide more information than just the amount or
probability of white matter alone was tested by correlating the TBI patients’ map scores with
their tests of cognitive function. Smaller (more negative) IWSS scores for a patient indicate
larger network disruption and/or greater FA loss, which should correspond to greater
functional loss and more abnormal cognitive scores. Since the goal of the importance map is
to capture overall brain network disruption, and is not function specific, the cognitive test
score used to validate the map should be functionally unbiased. One solution is to create an
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overall cognitive measure that combines the various tests of function (ANT and CVLT-II)
into one score. The well-known process of Principal Component Analysis (PCA) (Pearson,
1901) was used to create a combined cognitive score that has maximal variance over the
population and presumably captures all of the cognitive functions tested. The coefficients for
each cognitive measure are given in the last column of Table 2; note that the coefficients are
negative to mantain a positive correlation with the various imaging scores. Most of the
weight is on the ANT mean, with a small contribution from the three other ANT scores. Due
to the disparity in coefficients, future studies may focus only on correlations with the ANT
mean score.

Table 2 lists Pearson’s correlation of the average z scores of FA, the WMPS, the TPCS, and
the three IWSS with each of the cognitive test scores and the combined cognitive measure
found using PCA. Figure 4 shows the scatter plots and lines of best fit along with the root
mean squared error (RMSE) of the fit. The correlations for the individual cognitive test
scores are higher in general when including the WMP, TPC, and importance map
information than the z-scores of FA alone. Only the correlations between the TPCS and
IWSS scores and the ANT mean reaction time and the combined cognitive score are
significant at a level of α = 0.05 (with Bonferroni correction for multiple comparisons), with
the efficiency IWSS being significant at an even higher level (α = 0.01, with correction).
The relatively low correlation that exists with the more specific cognitive measures like
ANT alerting and conflict effects could be due to the lack of specificity of the map values to
any functional subnetworks in the brain; recall that the maps measure overall brain
connectivity disruption, which is better captured by the ANT overall mean reaction time or
the combined cognitive measure.

It may be argued that graph theoretical measures for the TBI patients’ brain network
extracted from their own image data might provide more information about cognition loss
than the importance map method. However, it is not known how well tracts can be
reconstructed in brains with disease-induced structural changes, including TBI, but it is a
research topic of much interest (Singh et al., 2010). As comparison, the connectivity
matrices for each of the TBI patients were obtained using the same process for the normal
subjects described in 2.2, and the graph metrics of efficiency and characteristic path length
computed directly on them. The graph metrics were then checked for correlations with the
same cognitive measures as listed in Table 2, but no correlations were found to be
significant. Therefore, the IWSS scores that estimated connectivity changes in injured brains
were a better predictor of cognitive performance than the properties of networks extracted
using tractography on image data from the TBI patient population.

3.5. Limitations
Tractography is an imperfect tool at the present, especially in dealing with partial volume
effects and crossing and kissing fibers. Probabilistic tractography, in particular, has
drawbacks in that it assigns higher probabilities to shorter fibers and thus white matter that is
adjacent to gray matter regions may have a larger number of tracts with higher probability.
Therefore, it may be an artifact that the highest TPC values appeared in superficial WM
regions. On the other hand, many U-fibers may be invisible to diffusion MRI due to limited
spatial and angular resolution. The two effects may partially cancel each other, but it is
currently impossible to quantify the extent of these effects. The advancement of
tractography techniques should remove many, if not all, of these concerns. It must be noted
that this paper is not proposing an alternative method for tractography, but merely its use for
important clinical and exploratory analyses. The importance maps proposed here will
continue to be useful as enhancements to tractography algorithms are made.
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Despite possible issues with tractography, the currently proposed methodology captures
physiologically relevant white matter importance patterns whose validity was demonstrated
by using TBI patient data. In fact, it was shown in Vaessen et al. (2010) that graph
theoretical measures like clustering coefficient, characteristic path length, and node degree
in brain connectivity networks were more reproducible between inter-subject scans and
imaging protocols even when brain region connectivity measures themselves had lower
levels of reproducibility. Thus, the use of graph theoretical measures to assess changes in
diseased brains, as outlined in this paper, may be robust to the aforementioned limitations to
tractography.

Coregistering individual brains that have anatomical abnormalities to a common space is a
well-known and difficult problem. Co-registration is particularly difficult when working
with atrophied or resected brains, and this specific issue is not investigated in the proposed
work. In the mild TBI patient population used in this study, structural changes are not large
enough to cause significant misregistration errors. If this method were to be applied to a
clinical cohort with severe morphological changes, there are tools available to minimize
coregistration errors, including the new DARTEL registration tool in SPM. For example, it
was shown in Pereira et al. (2010) that DARTEL combined with pre-processing steps of
skull-stripping and bias correction resulted in good registration of atrophied brains in
Alzheimer’s disease, Semantic Dementia, and behavioral-variant Frontotemporal Dementia.

4. Conclusions
A spatially unbiased quantitative method of assigning importance to regions of white matter
with respect to overall brain connectivity using structural and diffusion MR images,
tractography information, and graph theory is presented and validated. The importance map
approach has the benefit that it does not require tractography to be performed in diseased
brains, a notoriously difficult problem, in order to assess abnormalities in connectivity due
to injury or disease. Importance map or tract probability count information better predicts
cognitive scores in a set of TBI patients than the amount of white matter injury or injury
information combined with white matter probability alone. It was found that the efficiency
map provided IWSSs that were slightly better correlated to the outcomes of cognitive tests
and of higher significance than the IWSS using other measures or the TPCS. The different
metrics used to produce the white matter importance maps may provide complimentary
information; therefore, they may be used to quantify varying types of cognitive disability.
The current work does not assign a particular dysfunction to a location, but provides a
measure of disruption in overall brain network that may correspond to more diffuse effects
in brain function.

Even though the methodology presented here does not incorporate particular functional
domain information, the white matter regions found to be important in some of the maps can
be linked to specific pathological states. Regions of the internal capsule that were found to
be important to brain network path length have been implicated in the particular cognitive
dysfunction of strategic infarct dementia. White matter tracts shown to correlate with
measures in the ANT, including the splenium of the corpus callosum, the left posterior limb
of the internal capsule, and the left anterior corona radiata, were found to be highly ranked
in one or more of the importance maps. Since it can be argued that the task of attention
relates to general cognitive performance, this provides evidence that the importance maps
are indeed measuring some aspect of overall brain function.

4.1. Future Work
In an extension of the current method, a series of more specific connectivity maps will be
constructed for certain brain functions, such as motor control, eye movement, speech, or
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sensory processing. Functionally specific connectivity maps will be constructed by
calculating the importance map only for a subset of gray matter regions that are known to be
linked to a particular function. Such maps will be validated with stroke or multiple sclerosis
(MS) patients that have focal lesions and exhibit that specific cognitive or physical
disability.

The importance map acts as a voxel-based spatial coefficient map to obtain a scalar value
representing cognitive impairment (IWSS), but there will be extensions to non-scalar
measures of cognitive impairment that further incorporate spatial information. For example,
the dot-product of average z-scores and average importance map values for the 106 white
matter regions will be computed and regressed with the cognitive scores.

Because white matter tracts vary in location and density from one individual to another, a
tool providing probability of connection will be constructed. A database of normal subject’s
tracts will be created and subsequently validated using stroke and MS patients that exhibit
specific cognitive or physical dysfunction. The patient’s region of injury will be identified
and a list of connecting gray matter regions and functions known to be associated with those
regions will be produced and checked for accuracy against their clinical deficits.
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Appendix A. Patient Information
Table A.3

The 15 TBI patients’ various scores derived from the analysis of the images.

Patient
ID

Average
z-scores

WMPS TCPS IWSS
Spec. Rad.

IWSS
Path Leng.

IWSS
Eff.

1 0.0753 0.0073 −0.0002 −0.0015 −0.0009 0.0012

2 −0.0001 −0.0476 0.0053 0.0007 0.0004 −0.0012

3 0.0686 −0.0075 0.0032 0.0003 0.0008 0.0033

4 −0.0817 −0.0743 −0.0199 −0.014 −0.0073 −0.0237

5 −0.0964 −0.0693 −0.0104 −0.0077 −0.0015 −0.0107

6 −0.205 −0.0947 −0.0105 −0.0061 −0.0016 −0.0149

7 −0.0881 −0.0311 −0.0069 −0.0023 −0.0009 −0.0031

8 −0.1323 −0.0718 −0.0082 −0.0051 −0.0022 −0.012

9 −0.1024 0.0026 −0.005 0.0012 −0.0006 −0.0017

10 −0.0506 −0.0577 −0.0017 −0.0009 −0.0009 −0.0052

11 −0.2345 −0.1218 −0.0245 −0.0156 −0.006 −0.0276

12 0.044 −0.0616 −0.0034 −0.0044 −0.0012 −0.009

13 −0.0756 −0.0419 −0.0123 −0.006 −0.003 −0.0117

14 −0.092 −0.0031 −0.0081 −0.0031 −0.002 −0.0049

15 −0.1106 −0.0779 −0.0215 −0.0109 −0.0082 −0.0242
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Table A.4

The 15 TBI patients’ characteristics and cognitive scores, including the combined cognitive
score.

Patient
ID Sex Age GCS

Mo. from
injury

CVLT ANT
Com-
bined1 2 3 mean 1 2 3

1 F 35 15 12 7 −1.5 −0.5 639.32 −14.75 77.89 75.90 −645.44

2 F 25 15 7 10 −0.5 −1 666.16 32.05 80.64 76.32 −673.83

3 M 45 15 51 11 0.5 1 678.05 13.46 27.53 152.01 −693.37

4 M 17 15 6 8 −1.5 −1 769.75 37.43 52.38 59.81 −772.90

5 F 29 15 29 10 −0.5 0.5 670.95 0.31 2.24 151.97 −684.82

6 M 40 15 18 7 −1 0.5 759.69 78.48 21.84 307.62 −797.98

7 M 26 15 10 13 0.5 0 579.64 7.73 35.92 74.72 −585.39

8 M 44 15 40 2 −2.5 −3.5 934.39 30.80 −21.77 15.16 −925.96

9 M 37 15 20 14 1 1 646.06 33.97 71.80 49.13 −649.88

10 F 52 15 53 10 0 0.5 653.26 46.42 60.11 132.88 −668.69

11 M 37 15 10 5 −2 −1.5 920.26 10.47 73.90 145.69 −933.67

12 F 49 15 35 10 0 0 816.91 77.92 −3.08 136.55 −829.45

13 M 20 15 1 16 2.5 1 802.69 58.18 75.73 126.69 −816.66

14 M 43 15 6 4 −2.5 1 1005.45 −59.02 −71.57 19.07 −787.55

15 M 32 15 3 9 −1 1 772.23 68.47 57.77 137.10 −991.52

Appendix B. Varying the hypothetical lesion radius
As demonstration, two slices in the spectral radius importance map for one individual are
shown in Figure B.5 after varying the hypothetical lesion radius to 0.5, 1.5, and 2 times the
voxel size. It can be seen by comparing the figures that the effect of this parameter is a
smoothing and amplifying one: the larger the radius, the smoother the importance map and
the higher the values. The smoothness is much to be expected, as it essentially acts as a filter
in the image. Also expectedly, as the radius is expanded, more tracts are removed and a
larger difference in network characteristics and higher values in the importance map are
recorded. The selection of a lesion size of 1.5 times the voxel size was one that balanced
smoothness and signal amplification in the resulting maps.

Figure B.5.

Appendix C. Co-registration of Individual Maps to a common space (MNI)
The importance, fractional anisotropy, white matter probability and tract probability count
maps exist in the individual’s native acquisition space, and in order to average across
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subjects the maps must be transformed to a common template in MNI space using SPM’s
normalization routines. First, the T1 scans are mapped to the lower resolution diffusion
image space using a 12-parameter a ne transformation, then the lower resolution T1 scan is
normalized to a T1 MNI template in SPM by performing a 12-parameter a ne transformation
followed by a non-linear warping transformation to estimate the 3D deformation field at
each point. SPM uses a linear combination of 3D discrete cosine transform (DCT) basis
functions in three orthogonal directions to model the deformation field. Once the parameters
for transforming the low-resolution T1 image to MNI space were computed, and same
transformation applied to the individual maps, checked visually for agreement and
subsequently averaged, resulting in the final average map.

Appendix D. Importance Map Rankings of WM regions

Region Name TC IM
Effic-
iency

IM
Path

length

IM
Spect.
radius

Com-
bined

cuneus wm right 11 1 6 12 1

sagittal stratum left 13 2 14 5 2

lingual wm right 44 7 11 10 3

sagittal stratum right 20 12 29 1 4

posterior thalamic radiation right 32 3 39 2 5

fusiform wm left 10 8 26 11 6

cingulum (hippocampus) left 6 13 17 27 7

inferior occipital wm left 5 11 45 7 8

superior longitudinal fasciculus right 28 6 35 23 9

posterior thalamic radiation left 51 15 38 13 10

cingulum (hippocampus) right 17 21 21 25 11

inferior occipital wm right 4 16 58 3 12

superior parietal wm left 21 4 40 36 13

anterior corona radiata left 15 29 12 40 14

middle occipital wm right 12 17 57 9 15

lateral fronto-orbital wm right 3 5 9 70 16

cingulum wm left 35 14 30 48 17

inferior frontal wm left 25 26 28 39 18

splenium of corpus callosum right 62 25 33 37 19

lingual wm left 40 33 42 21 20

inferior frontal wm right 14 9 31 57 21

middle fronto-orbital wm right 1 10 7 80 22

external capsule left 82 18 2 77 23

superior occipital wm right 8 19 62 17 24

lateral fronto-orbital wm left 7 20 16 62 25

fornix(cres) stria terminalis right 42 49 15 38 26

retrolenticular part of internal capsule left 73 47 8 52 27

supramarginal wm right 26 23 54 31 28

superior longitudinal fasciculus left 53 30 48 30 29

inferior temporal wm right 36 45 59 6 30
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Region Name TC IM
Effic-
iency

IM
Path

length

IM
Spect.
radius

Com-
bined

fornix(cres) stria terminalis left 76 50 5 58 31

fusiform wm right 23 46 60 8 32

middle fronto-orbital wm left 2 22 23 69 33

superior frontal wm right 27 24 49 43 34

superior parietal wm right 34 27 56 35 35

middle occipital wm left 19 39 65 16 36

cingulum wm right 49 32 46 44 37

precentral wm left 31 41 52 29 38

middle temporal wm right 55 48 71 4 39

superior frontal wm left 18 40 63 20 40

external capsule right 59 28 22 76 41

posterior limb of internal capsule right 64 42 13 72 42

splenium of corpus callosum left 61 35 44 49 43

anterior limb of internal capsule left 67 44 1 85 44

superior occipital wm left 9 36 68 26 45

precentral wm right 29 34 55 42 46

postcentral wm right 38 31 53 47 47

posterior limb of internal capsule left 83 51 3 79 48

anterior corona radiata right 30 37 32 66 49

retrolenticular part of internal capsule right 72 63 43 32 50

cerebral peduncle right 71 62 20 61 51

superior corona radiata left 68 60 51 33 52

inferior temporal wm left 52 57 74 14 53

supramarginal wm left 33 38 64 45 54

anterior limb of internal capsule right 65 43 19 87 55

cerebellum wm right 24 69 24 60 56

superior fronto-occipital fasciculus right 69 52 37 68 57

angular wm right 22 54 86 19 58

superior temporal wm right 58 70 79 15 59

superior temporal wm left 54 64 67 34 60

superior corona radiata right 63 56 61 50 61

middle frontal wm left 47 61 82 24 62

cerebral peduncle left 88 77 10 81 63

superior fronto-occipital fasciculus left 70 74 36 59 64

postcentral wm left 57 53 66 51 65

inferior fronto-occipital fasciculus left 46 68 18 86 66

substancia nigra left 92 78 4 90 67

middle cerebellar peduncle right 77 79 34 63 68

pre-cuneus wm right 60 55 69 53 69

posterior corona radiata left 80 59 72 46 70

posterior corona radiata right 79 71 80 28 71
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Region Name TC IM
Effic-
iency

IM
Path

length

IM
Spect.
radius

Com-
bined

middle temporal wm left 75 72 85 22 72

middle cerebellar peduncle left 81 84 27 75 73

tapatum right 85 80 90 18 74

pre-cuneus wm left 66 58 73 64 75

cuneus wm left 37 73 84 41 76

cingulum (cingulate gyrus) left 74 65 70 65 77

cerebellum wm left 45 83 47 74 78

substancia nigra right 90 82 41 82 79

middle frontal wm right 41 67 83 55 80

angular wm left 43 66 88 54 81

superior cerebellar peduncle right 91 91 25 93 82

inferior fronto-occipital fasciculus right 50 75 50 88 83

cingulum (cingulate gyrus) right 78 76 76 71 84

tapatum left 86 86 91 56 85

genu of corpus callosum left 48 87 75 73 86

rectus wm left 16 81 78 83 87

body of corpus callosum left 84 88 89 67 88

rectus wm right 39 85 77 91 89

genu of corpus callosum right 56 89 81 84 90

body of corpus callosum right 89 90 93 78 91

superior cerebellar peduncle left 93 93 87 97 92

uncinate fasciculus left 87 92 97 89 93

inferior cerebellar peduncle right 95 94 96 92 94

red nucleus left 100 95 92 98 95

red nucleus right 97 96 98 94 96

inferior cerebellar peduncle left 96 97 95 99 97

uncinate fasciculus right 94 98 99 95 98

medial lemniscus right 98 99 94 102 99

corticospinal tract right 101 102 103 96 100

corticospinal tract left 102 100 101 100 101

medial lemniscus left 99 101 100 103 102

pontine crossing tract right 105 104 102 101 103

pontine crossing tract left 103 103 104 104 104

fornix right 106 105 106 105 105

fornix (column and body) left 104 106 105 106 106
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Highlights for Kuceyeski, et al.

• We create and validate a white matter connectivity importance map

• It gives the amount of connectivity disruption that occurs when a region is
damaged

• Some tracts important in executive function were of high importance in maps

• We validate by correlating the map’s prediction vs cognitive scores of TBI
patients

• We find the correlation is higher when including map information
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Figure 1.
The process by which the connectivity matrices or graphs are obtained.
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Figure 2.
The process by which the importance map is created. First, a region of white matter is
identified and any tracts that pass through it are removed. The connectivity matrix is then re-
computed and compared to the original intact matrix, and this difference is entered into the
white matter region in the importance map. The difference is calculated in multiple ways,
i.e. the difference in the spectral radii of the matrices, the difference in the graphs’
efficiencies, and the difference in the graphs’ path lengths.
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Figure 3.
The different maps in radiological coordinates (left of the image corresponds to the patient’s
right). (top-left) white matter probability, (top-right) tract probability count, (middle-
left,middle-right,bottom) importance map using the difference in the spectral radius,
characteristic path length and efficiency, respectively.
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Figure 4.
Scatter plots of different scores (x-axis) versus the combined cognitive score (y-axis). The
line of best fit and root mean squared error (RMSE) are also listed. The different scores are
the average z-score of the FA (top left), the WMPS (top right), the TPCS (middle left), and
the importance weighted severity score (IWSS) for three different metrics of network
disruption: the difference in spectral radius (middle right), characteristic path length (bottom
left), and efficiency (bottom right).
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Table 1

Pearson’s correlation of the average importance map value per white matter region and the WMP (white
matter probability) map, the TPC (tract probability count) map, and the different importance maps (IM).

Map Metric TPC IM
Spectral Radius

IM
Path Length

IM
Efficiency

WMP 0.21 0.04 0.28 0.21

TPC 0.36 0.33 0.74

IM Spectral Radius 0.05 0.53

IM Path Length 0.59
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