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Abstract
The traditional approach to functional image analysis models images as matrices of raw voxel
intensity values. Although such a representation is widely utilized and heavily entrenched both
within neuroimaging and in the wider data mining community, the strong interactions among
space, time, and categorical modes such as subject and experimental task inherent in functional
imaging yield a dataset with “high-order” structure, which matrix models are incapable of
exploiting. Reasoning across all of these modes of data concurrently requires a high-order model
capable of representing relationships between all modes of the data in tandem. We thus propose to
model functional MRI data using tensors, which are high-order generalizations of matrices
equivalent to multidimensional arrays or data cubes. However, several unique challenges exist in
the high-order analysis of functional medical data: naïve tensor models are incapable of exploiting
spatiotemporal locality patterns, standard tensor analysis techniques exhibit poor efficiency, and
mixtures of numeric and categorical modes of data are very often present in neuroimaging
experiments. Formulating the problem of image clustering as a form of Latent Semantic Analysis
and using the WaveCluster algorithm as a baseline, we propose a comprehensive hybrid tensor and
wavelet framework for clustering, concept discovery, and compression of functional medical
images which successfully addresses these challenges. Our approach reduced runtime and dataset
size on a 9.3 GB finger opposition motor task fMRI dataset by up to 98% while exhibiting
improved spatiotemporal coherence relative to standard tensor, wavelet, and voxel-based
approaches. Our clustering technique was capable of automatically differentiating between the
frontal areas of the brain responsible for task-related habituation and the motor regions responsible
for executing the motor task, in contrast to a widely used fMRI analysis program, SPM, which
only detected the latter region. Furthermore, our approach discovered latent concepts suggestive of
subject handedness nearly 100x faster than standard approaches. These results suggest that a high-
order model is an integral component to accurate scalable functional neuroimaging.
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1. INTRODUCTION
The traditional approach to data representation utilizes a matrix structure, with observations
in the rows and features in the columns. Although this model is appropriate for many
datasets, it is not always a natural representation because it assumes the existence of a single
target variable and lacks a means of modeling dependencies between other features.
Additionally, such a structure assumes that observed variables are scalar quantities by
definition. This assumption may not be valid in certain domains, such as diffusion tensor
imaging, where higher-order features predominate, or in domains which have strong
spatiotemporal components, such as functional MRI.

Traditionally, these problems have been solved by reducing the features to scalars and fitting
the dataset to a matrix structure. However, as well as potentially losing information, this
strategy also employs a questionable approach from a philosophical standpoint: attempting
to fit the data to an imprecise model rather than attempting to accurately model the existing
structure of the data. Finally, while it may be possible to model dependencies between
features by repeating the methodology multiple times, each with a different target variable,
this yields suboptimal performance and may not be computationally feasible when real-time
performance is required or when the dataset is very large.

To address these issues, we propose to model such datasets using tensors, which are
generalizations of matrices corresponding to r-dimensional arrays, where r is known as the
order of the tensor. Using a combination of wavelet and tensor analysis tools, we propose a
novel framework for summarization, clustering, concept discovery, and compression of
high-order datasets, which we call TWave (Barnathan et al., 2010). Applying our technique
to analysis of a large real-world digital opposition fMRI dataset, we compare the
performance of TWave against voxelwise, SVD-based, wavelet-only, and tensor-only
techniques and demonstrate our TWave method achieves superior results and reduces
computation time vs. competing methodologies such as Latent Semantic Analysis.

Our approach has several advantages:

• Compression of the data model through grid quantization and wavelet
preprocessing (inherent in the WaveCluster algorithm).

• Exploitation of spatial neighborhoods and local patterns.

• Efficiency up to two orders of magnitude faster than naive tensor approaches.

• The ability to identify noncontiguous clusters based on patterns in the projected
space.

• Naturally fuzzy clustering based on similarities to discovered concepts.

• The projected space may reveal latent dataset concepts (our method revealed
information about subject handedness in our dataset).
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2. BACKGROUND
2.1 Tensor Tools

Tensors are defined within the context of data mining as multidimensional arrays. The
number of indices required to index the tensor is referred to as the order of the tensor, while
each individual dimension is referred to as a mode. The number of elements defined on each
mode is referred to as the mode’s dimensionality. The dimensionality of a tensor is written
in the same manner as the dimensionality of a matrix; for example, 20×50×10.

Tensors represent generalizations of scalars, vectors, and matrices, which are tensors of
orders 0, 1, and 2, respectively. Tensors and the notion of order are illustrated in Table 1.

An important operation applicable to our analysis is the tensor product. This product
generalizes not from matrix multiplication, but from the Kronecker product operation
defined on matrices, which is given as follows:

Given an m × n matrix A and a p × q matrix B, the Kronecker product A ⊗ B is defined by
the following mp × nq block matrix:

The tensor product is similar, but the result is another tensor rather than a block matrix.
Specifically, if given order r and s tensors  and , their tensor product  ⊗  is a tensor
of order r + s defined as follows:

For example, the procedure of taking a tensor product is shown in Figure 1, with arrows
representing the direction of multiplication:

The operation known as the Khatri-Rao product is useful in the computation of several
tensor decompositions and is defined in terms of the Kronecker product. Let A be a p × n
matrix and B be a q × n matrix. Their Khatri-Rao product A ⊙ B is as follows:

Singular value decomposition (SVD) is a unique matrix factorization by which an m × n
matrix is decomposed into two projection matrices and a core matrix, as follows:

where A is an m × n matrix, U is an m × r column-orthonormal projection matrix, V is an n
× r column-orthonormal projection matrix, and Σ is a diagonal r × r core matrix, where r is
the rank of the projection.

Singular value decomposition has a wide variety of applications: for example, truncation of
the SVD coefficients provides an optimal low-rank approximation (i.e. minimizes the
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Frobenius norm). This indicates a close relationship between Principal Component Analysis
(PCA) and SVD.

SVD is also used to discover the rank of a matrix, find the pseudoinverse, and solve least
squares minimization problems. Additionally, the solution to SVD may be used in an
unsupervised summarization technique known as Latent Semantic Analysis (LSA)
(Deerwester et al., 1999). In this technique, A is treated as a term-document matrix. Here,
singular value decomposition automatically derives a user-specified number of latent
concepts from the given terms which form a basis for the rows and columns of the matrix.
The projection matrices U and V then contain term-to-concept and document-to-concept
similarities, respectively. Thus, SVD can be used to provide simple yet powerful automatic
data summarization. This technique may be naturally viewed as a form of co-clustering, in
which the rows and columns of a matrix cluster to the same space. An alternative graphical
interpretation exists, in which clusters represent shared “waypoints” through which edges
pass between vertices. Use of the eigendecomposition or SVD is also common in a graphical
context, where it is known as spectral graph theory; here a common technique is to cluster
on the eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix,
thereby partitioning vertices along edges which are likely to be minimal cuts. This technique
is known as Fiedler retrieval. It is also possible to project new query vectors into the space
defined by the SVD, known as folding in; this enables recommendation as the query projects
to the same space as both the rows and columns and can be assessed using a distance metric.

The natural extension of singular value decomposition to tensors is known as high-order
singular value decomposition, or HOSVD. This decomposition, in turn, is a special case of
the Tucker decomposition, which is capable of concurrent data co-clustering across every
mode of a tensor. Formally, let  be a tensor of order r; i.e.  ε . We may then
define the Tucker decomposition as the following factorization into a core tensor and a
product of r projection matrices:

Note that while either the core tensor must be diagonal or the projection matrices must be
column-orthonormal, the Tucker decomposition does not guarantee that both conditions are
simultaneously true. When the projection matrices are unitary, the factorization is called
high-order singular value decomposition.

When used as a data summarization technique, the Tucker decomposition exhibits similar
behavior to singular value decomposition. Specifically, the core tensor’s elements represent
the strengths of the discovered concepts (in terms of variance captured), while the projection
matrices each represent the strength of the individual term-to-concept relationships on their
corresponding modes.

Although the Tucker decomposition generalizes singular value decomposition, evaluating it
requires computing the norm of ’s covariance matrix. This can come at a memory cost of
Ω(n2), which, for large datasets such as ours, may be prohibitive.

Fortunately, another method exists that does not suffer from this problem, called both
parallel factor analysis (PARAFAC) and canonical decomposition (CANDECOMP) due to
simultaneous discovery of the method in 1970 by Harshman (1970) and Carrol and Chang
(1970). In this paper, we will refer to the method as PARAFAC.

PARAFAC (Harshman, 1970) is a generalization of PCA and forms the basis of our tensor
analysis approach. Given a user-specified number of concepts c, PARAFAC decomposes an
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order-r tensor  into a columnwise sum of the tensor product of r projection matrices,
denoted U(1) … U(r). Formally, we define the decomposition as follows:

Where the U matrices represent projection matrices containing mode-to-concept similarities
and λ represents a c-element scaling vector, in which each element represents the strength of
a concept. The notation U1,i refers to the entire ith column of U. The number of columns in
each projection matrix will therefore be equal to the number of user-specified concepts and
the number of rows in each individual projection matrix equal to the number of observations
made on the corresponding mode of the tensor.

Both the Tucker and PARAFAC decompositions may be computed using alternating least
squares (ALS) (Sands and Young, 1980). Though the computation of the tensor
decompositions we use is outside of the scope of this paper, the procedure for computing
PARAFAC using ALS is shown below:

1. Given an order- r tensor , declare a set of projection matrices U(1), U(2), …, U(r).

2. Let i = 1.

3. Holding all other matrices constant, solve the following equation for U(i):

Where ⊙ represents the n-ary Khatri-Rao product, * represents the Moore-Penrose
pseudoinverse, and  represents  matricized (Kolda and Bader, 2007) on mode
i.

4. Repeat for all from 1 to r until convergence is attained.

The resulting PARAFAC decomposition is illustrated in Figure 2.

2.2 Independent Component Analysis
While principal component analysis results in a projection that is uncorrelated, there is no
guarantee of statistical independence. The orthogonal nature of the basis is often problematic
in spatiotemporal scenarios such as neuroimaging. Independent component analysis (ICA) is
a similar technique that assumes independence of the discovered components (Comon,
1994). As this is an important assumption in many applications, such as naïve Bayes
classification, ICA can be applied to a wide variety of areas. Of course, ICA itself performs
best when the underlying dataset meets this assumption of independence.

ICA is typically preceded by the preprocessing steps of centering (subtracting out the mean)
and whitening (equalization of the power spectral density of the dataset, resulting in “white
noise”). Though SVD is not used directly within the ICA algorithm, it is often used as a
preprocessing step to make the problem of feature extraction easier for ICA to solve.

ICA, like PCA, is an example of a “blind signal separation” technique; that is, it can separate
signals (or more generally, perform factor analysis) without preconceptions of the meaning
of the signals’ components (or other prior domain knowledge). High-order ICA methods
exist, with pioneering work in the field performed by (De Lathauwer et al., 2000; Calhoun
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and Pekar, 2000; Vasilescu and Terzopoulos, 2005), and have recently become widely
accessible within the neuroimaging domain through implementations such as The Group
ICA of fMRI Toolbox (Calhoun et al., 2002) and MELODIC (Beckmann and Smith, 2004).
We later compare a MELODIC analysis to our own clustering results.

2.3 Wavelets
Wavelets are spectral analysis tools capable of emphasizing patterns in scale space and
exploiting spatiotemporal correlations between neighboring voxels. Wavelets have been
applied to a wide variety of domains, including time-series analysis (Chan and Fu, 1999),
musical analysis (Evangelista, 2001), and computer-aided diagnosis (Dinov et al., 2005).
Among the properties of wavelets recently studied in functional MRI analysis are frequency-
adaptive wavelet shrinkage for noise removal and compression (Dinov et al., 2005; Wink et
al., 2008), multiresolution analysis (Desco et al., 2001), reconstruction variance estimation
(Aston et al., 2005), and the use of wavelets with low-order dimensionality reduction
techniques, such as PCA and ICA (Chen et al., 2003; Roussos et al., 2005; Gupta and
Jacobson, 2006), where they are capable of introducing spatial information into typically
neighborhood-insensitive dimensionality reduction approaches. Within the context of fMRI,
(Ruttimann et al., 1998) and (Turkheimer et al., 1999) pioneered the use of wavelet
decomposition as a method of statistical testing between images acquired under varying
experimental conditions, yielding a significant increase in signal to noise ratio, which is in
concordance with the results of our subject-based classification experiments. (Fadili and
Bullmore, 2002) demonstrated the approximate optimality of wavelet-generalized least
squares as unbiased linear estimators for solving least squares problems in the presence of
long-memory noise, (Wink et al., 2008) introduced the concept of wavelet shrinkage as a
denoising technique, and (Van De Ville et al., 2004) introduced the notion of wavelet-based
statistical testing in the spatial domain, which we make use of.

Wavelet analysis permits decomposition into scaled and translated copies of a function
known as the “mother wavelet”, denoted ψ. This carries the additional advantage of
localization in space as well as frequency. Furthermore, it allows multiresolution analysis
through variation of the scale parameter. These “daughter wavelets” can be obtained from
the continuous wavelet transform, which is given by the following formula:

Where * denotes the complex conjugate operation, s denotes the scaling parameter, t denotes
the translation parameter, ψ denotes the mother wavelet, and f(x) denotes the original signal.

Fig. displays an example of a single functional MRI slice (with spatial clusters highlighted)
and the linearized 4D multilevel wavelet decomposition of the volume of which this slice is
a part.

However, many applications within the realm of machine learning and computing in general
are discrete, in which case the continuous wavelet transform shown above is inappropriate.
In such cases, we may use the discrete wavelet transform, which convolves a signal x with a
low and high pass filter at each level (L[n] and H[n], respectively) and downsamples the
signal by a factor of 2, as shown in Figure 4.
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2.4 WaveCluster
WaveCluster (Sheikholeslami et al., 2000) is a grid and density-based clustering technique
that is unique for performing clustering directly in wavelet space. Specifically, the
WaveCluster algorithm:

• Quantizes data to a grid, using the counts of each grid cell in place of the original
data.

• Applies a wavelet transformation using a hat-shaped wavelet (such as the (2,2) or
(4,2) biorthogonal wavelets), retaining the approximation coefficients and
emphasizing regions in which points cluster.

• Thresholds cells in the transformed space. Cells with values above a user-specified
density threshold are considered “significant”.

• Applies a connected component algorithm to the significant cells to discover and
label clusters.

• Maps the cells back to the original data using a lookup table built during
quantization.

WaveCluster is optimally efficient [O(n)] as well as very fast in practice, can discover the
boundaries of complex shapes, and natively supports multiresolution analysis. However,
WaveCluster is primarily a spatial clustering method and is difficult to adapt to temporal
clustering or other more complex clustering domains. Due to the use of a connected
component algorithm, the algorithm will not operate on categorical modes or in other
scenarios in which meaningful neighborhood relationships may not exist. Additionally, we
observed a great deal of sensitivity to the cell significance threshold parameter in our
experiments. More fundamentally, the WaveCluster algorithm is not capable of identifying
clusters with large discontinuities. An illustration of the WaveCluster algorithm with an
example threshold of 2 is shown in Figure 5.

2.5 Survey
Tensor decompositions were introduced by Hitchcock with his seminal paper (Hitchcock,
1927), but did not receive attention until the work of Tucker (Tucker, 1963) and Harshman
(Harshman, 1970). Tensor decompositions have found many applications recently:
Vasilescu and Terzopoulos, 2002 used Tucker decomposition in computer vision, Kolda and
Bader, 2006 in web link analysis, and Savas, 2003 for handwritten digit recognition. Sun et
al., 2006 presented a method that performs tensor decompositions in an incremental way and
in (Sun et al., 2008), a method that discovers spatio-temporal patterns. A comprehensive
overview of the theory and the applications of tensor mining can be found in (Kolda and
Bader, 2007).

Wavelets are widely used in signal processing (Mallat, 1999). They have an important
advantage over the Fourier transform, which is the reason that we use them in our TWave
method: they can provide information of when each frequency appears. Several different
families of wavelets exist. We have evaluated Haar (Mallat, 1999), Daubechies (Daubechies,
1992), and CDF (Daubechies, 1992) wavelets in the context of our TWave methodology.

Thus, spikes are easily identified through the spectrum. Wavelets can be computed in a
streaming way (Gilbert et al., 2003), giving us the opportunity to adapt our method to
streaming scenarios as well.
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3. MATERIALS AND METHODS
3.1 Experimental Setup

3.1.1 Datasets and Acquisition—We analyzed the TWave, pure tensor, pure wavelet,
SVD, and voxelwise approaches on a high-order digital opposition fMRI dataset consisting
of 11 subjects performing 4 simple motor tasks: left finger-to-thumb, left squeeze, right
finger-to-thumb, and right squeeze (Khorrami and Faro, in press). We evaluated our
experiments using leave-one-out cross-validation rather than partitioning into a separate test
set due to the small number of subjects. Acquisition of the fMRI dataset took place using
one scanner and one common set of acquisition parameters. Data was acquired from each
subject over 120 time points, each 3 seconds long. The period of each task was 10 time
points (or 30 seconds); this periodicity was easily visualized in the raw time series as well as
via power spectral density.

Each volume after standard preprocessing (realignment, normalization, and smoothing,
described in section 3.1.4) consisted of 79×95×69 voxels. Thus, the dataset was most easily
represented as a 6th order tensor of dimensionality 79×95×69×120×4×11, of which the first
four modes were spatiotemporal and the remaining two (task and subject) were categorical.
Our total dataset’s size was thus 2,734,221,600 voxels, occupying approximately 9.3 GB of
space.

3.1.2 fMRI Task—Nine right handed and two left handed healthy subjects participated in
this study. The average subject age was 29.7 years. All subjects were assessed for any
psychological or neurological problems and provided informed consents after listening to a
detailed explanation of the scanning process. Handedness was defined using the inventory
proposed by Coren, 1993.

The subjects were asked to perform dominant and non-dominant hand finger to thumb
movement during the activation period. A block design fMRI experiment was performed
and the subjects were presented with 6 blocks of activation and rest conditions. During each
block (30 sec), 10 volumes of echo planar images (EPI) were acquired (thus the temporal
resolution of our study was 3 seconds). All of the active conditions were interspersed with
rest conditions of equal duration. The task lasted for six minutes. The subjects were
instructed to start and stop the movements upon hearing the “START” and “STOP”
commands. They were asked to move their hand at their own pace and keep their eyes
closed during the scanning process. This task was chosen in this study since it produces
robust and well understood fMRI activation patterns.

3.1.3 MRI Acquisition—Scanning was done using a 1.5 Tesla General Electric Imager.
Initially T1-weighted axial structural images were acquired covering the entire brain parallel
to the AC-PC line (Talairach and Tournoux, 1998). The structural imaging parameters were:
TR = 700 msec, FOV = 22 cm, slices = 26, slice thickness = 5mm. Then fMRI images were
acquired with an echo planar gradient echo (EPI) pulse sequence at the same locations as the
structural images. The imaging parameters were: TR = 3 sec, TE=50ms, FOV = 22 cm,
slices = 26, slice thickness = 5mm. The standard preprocessing methods of realignment,
normalization, and smoothing were performed as described in (Khorrami et al., 2011).
Images are represented in radiological coordinates in this paper.

3.1.4 Image Preprocessing—Images were initially inspected to ensure freedom from
substantial head movements and structural abnormalities. The post-acquisition preprocessing
and statistical analyses were performed using SPM2 (Statistical Parametric Mapping,
Welcome Department of Cognitive Neurology, University College of London, UK), running
under the Matlab® (The Mathworks, Inc., Natick, MA) environment. Images were
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converted from the DICOM format into the ANALYZE (AnalyzeDirect, Inc., Lenexa, KY)
format adopted in the SPM package. A three dimensional automated image registration
routine (six-parameter rigid body, sinc interpolation; second order adjustment for
movement) was applied to the volumes to realign them with the first volume of the time
series, which was used as a spatial reference. All functional and anatomical volumes were
then transformed into the standard anatomical space using the T2 EPI template and the SPM
normalization procedure (Friston et al., 1995). This procedure uses a sinc interpolation
algorithm to account for brain size and position with a 12 parameter affine transformation,
followed by a series of non-linear basis function transformations. Seven, eight, and seven
nonlinear basis functions were applied in the x, y, and z directions, respectively, with 12
nonlinear iterations to correct for morphological differences between the template and given
brain volume. Next, all volumes underwent spatial smoothing by convolution with a
Gaussian kernel of 8 cubic mm full width at half maximum (FWHM) (Friston et al., 1995),
to increase the signal-to-noise ratio (SNR). Per standard practice in neuroimaging, our
kernel size was chosen to be approximately twice our original voxel size of 3.5 × 3.5 × 5
mm.

3.2 Analysis Methods
3.2.1 Overview—Our methodology makes use of both wavelets and tensors. Because
spatiotemporal data tends to exhibit a high degree of spatial locality, the spatiotemporal
modes of the dataset are first preprocessed using an m-dimensional discrete wavelet
transform (obtained through cascading), where m is the number of spatiotemporal modes.
We utilized the Daubechies-4 wavelet in all techniques except for clustering. Clustering was
performed using the (2,2) and (4,4) biorthogonal wavelets, which emphasize dense regions
of points while simultaneously suppressing sparse neighborhoods. We then linearized the
wavelet coefficients to form a vector representing all spatiotemporal voxels in the dataset,
reducing the order of the tensor by m − 1 and improving performance of the techniques.
Without using wavelets, such a linearization technique would fail to capture spatial locality
patterns and would destroy vital neighborhood information in the dataset. Furthermore,
PARAFAC and other decompositions are fundamentally unaware of spatiotemporal
neighborhood relations even in the absence of linearization (a property which allows them to
be used on categorical data, but which makes them less useful for any sort of voxelwise
image data). However, encoding the wavelet coefficients circumvents this issue, as each
wavelet coefficient is the result of a convolution on its m-dimensional neighborhood. Thus
no false neighborhoods are created when the dataset is linearized – all neighborhood
information is already captured in the wavelet coefficients and PARAFAC will not discover
more. The primary purpose of wavelet analysis in our framework is thus to make the
metholodgy neighborhood-aware.

The remaining modes of the tensor are left in place after the spatiotemporal wavelet
coefficients are linearized, resulting in an order r − m + 1 tensor. Per-subject mean fMRI
volumes are subtracted from each image, as we found that task-specific deviations from the
mean yielded improved separability on handedness. The columns were then centered to have
means of 0, a standard preprocessing technique in matrix factorization, to avoid biasing the
decomposition based on the columnwise voxel intensities of the image. PARAFAC was
performed using alternating least squares and the resulting projection matrices (each
representing similarities between a single mode of the tensor and a common set of latent
concepts) were analyzed.

Because the concepts are held in common across all modes, so is the space onto which each
mode is projected. This defines tensor-based concept discovery as a form of co-clustering, in
which all modes of data are projected into the same space and associated with other modes
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using distance metrics in the projected space. Thus the purpose of the tensor decomposition
step is to integrate inter-modal reasoning and conceptual abstraction. The fewer the number
of concepts, the greater the degree of abstraction but also the greater loss of dataset fidelity.

Affinities between modes of the decomposed tensor may thus be ranked directly against
each other using a metric such as cosine or Tanimoto similarity – for instance, specific
neighborhood patterns of activation associated with left-handedness may have strong links
to left-handed subjects, corresponding to high cosine similarity in the concept space between
wavelet coefficient-to-concept similarities on mode 1 and subject-to-concept similarities on
mode 4.

This wavelet transformation and linearization step additionally allows us to (hard) threshold
the discovered wavelet coefficients and store the results in a sparse matrix to achieve
compression. This is known as wavelet shrinkage (Donoho et al., 1995). We empirically
demonstrate that it is possible to eliminate the majority of the coefficients in the dataset
while preserving the meaning of the projection into the concept space.

Following calculation of the wavelet coefficients, the data is then converted to a tensor
(which may also be stored in sparse form using the tensor toolbox). PARAFAC is then
performed using alternating least squares and the resulting projection matrices are stored and
analyzed. This method provides a general framework for further tensor and wavelet-based
analysis, including data summarization, concept discovery, compression, clustering, and
classification.

3.2.2 Other Methods—It is also possible to analyze data using wavelets and tensors
alone, or by using neither preprocessing method (the voxelwise approach). Singular value
decomposition run on the dataset in matrix representation additionally provides a benchmark
for comparison of the tensor model and techniques.

Several low-order voxelwise and wavelet-based data summarization approaches exist, such
as kernel density estimation, SVD, and data clustering. We chose to summarize the dataset
in the voxelwise approach using k-means clustering and in the wavelet approach using
WaveCluster (Sheikholeslami et al., 2000).

3.2.3 Summarization—Data summarization was performed by direct inspection of the
term-to-concept similarities discovered by PARAFAC (stored in the projection matrices U(1)

… U(r)). Both the tensor and TWave methods perform automatic data summarization
through computation of term-to-concept similarities on each mode. Additionally, concept
strengths themselves are represented by the corresponding elements of the λ vector of
PARAFAC or the core tensor of the Tucker decomposition. Consequently, no
postprocessing is necessary.

3.2.4 Concept Discovery—Concept discovery is the higher-order analogue to traditional
latent variable methods in matrices, and as such is performed using high-order projections,
such as PARAFAC, HOSVD, or Tucker. In TWave, these patterns are extracted using
PARAFAC following wavelet decomposition, normalization, and recentering (i.e.
subtracting the mean of the dataset). As shown later in Figure 6, patterns are often directly
present in the projected space and further analysis following decomposition is often
unnecessary. Each projection matrix U(i) automatically discovers patterns along the ith mode
of the dataset. However, as these methods are unsupervised, one key component in concept
discovery (as with traditional PCA) is interpretation of the derived concepts.
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Spatiotemporal concept discovery is also possible using clustering. Tensor and TWave
methods utilize a different approach to perform clustering: using the wavelet/voxel-to-
concept similarities discovered by PARAFAC, TWave assigned each voxel/wavelet
coefficient to the cluster corresponding to its strongest concept; i.e., the one to which it is
most similar – information directly present within the decomposed matrices. In this way,
PARAFAC represents an automatic fuzzy clustering on potentially noncontiguous voxels.
This method has the innate advantage of modeling voxels that belong to multiple clusters by
degree of membership in each. It is also capable of discovering voxels that do not belong to
any clusters (those with very low similarities to all discovered concepts); these may
represent outliers. Alone, this has the disadvantage of failing to capture spatial locality
patterns. However, encoding the wavelet coefficients, as in the TWave method, avoids this
issue, as the wavelet coefficients capture neighborhood information by nature. The clustered
wavelet coefficients may be mapped back to the original volume using an inverse wavelet
transformation.

3.2.5 TWaveCluster—We derive a clustering method for high-order data based on the
WaveCluster algorithm (Sheikholeslami et al., 2000), a grid and density-based method that
utilizes quantization and wavelet transformation to identify significant cells, defined as cells
whose count exceeds a user-specified density threshold. Unlike most clustering methods
which operate on high-order data, our method operates on the high-order structure directly,
without unfolding or linearization. “Hat-shaped” wavelets such as the (2,2) biorthogonal
wavelet or the Cohen-Daubechies-Feauveau wavelet are used to emphasize the center of
clustered regions while suppressing boundary information (Sheikholeslami et al., 2000).

Following wavelet transformation, the approximation (LL) subband of the wavelet
transformed space is used as the new grid and connected components are discovered among
significant cells using one of several algorithms available in the literature. Each connected
component is assigned a unique cluster label. The resulting quantized grid cells are then
mapped back to the points that quantize to them and the points are assigned the cluster labels
of the cells. This method has several advantages, including an innate potential for
multiresolution analysis, robustness against noise, and an optimal runtime of O(n)
Moreover, both the quantization and analysis are easily parallelizable, offering the potential
of an additional speedup.

As we have demonstrated that wavelets and tensors are complementary analysis tools in our
development of the TWave methodology, WaveCluster represents a logical starting point for
our own clustering methodology. As a grid-based algorithm which counts or weights points
falling in each grid cell, the WaveCluster algorithm represents a spatiotemporally
constrained version of the LSA problem, thus matrix methods are particularly applicable.
We further extend WaveCluster to operate on high-order data modeled using tensors and
sum the points in each cell by a weight rather than simply counting them to allow the
algorithm to operate on real-valued rather than strictly binary data. We call our extended
approach TWaveCluster. The primary distinction in our approach is the use of tensor
decompositions such as Tucker or higher-order SDD in place of a connected component-
finding algorithm. This carries a number of advantages: first, the concept discovery
properties of these decompositions automatically provide a parallel clustering on all modes
of the dataset, with concepts representing clusters. Different modes of the tensor (e.g.
subject, task, time point, or spatial location) are thus directly comparable in the projected
space, and each receive cluster similarity weights. Thus it is possible to map clusters to
meanings such as “activity 30 seconds into a task in the right frontal region of left handed
subjects” – an analysis which is impossible in traditional low-order clustering methods.
Furthermore, these methods are capable of automatically identifying spatially distant cluster
components based on similarity to discovered concepts. These methods also provide a
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naturally fuzzy clustering, due to the presence of concept-to-mode similarities, and
automatically provide a useful measure of clustering quality: the proportion of the dataset
variance captured by the cluster, directly represented by the strength of the concept
corresponding to that cluster within the core tensor of the decomposition (  for Tucker, λ
for PARAFAC). As the concepts are identical across all modes, discovered clusters may
even extend spatially along multiple modes of the tensor, highlighting potential associations
between as well as within modes.

The first few steps of our algorithm remain identical to WaveCluster:

• Quantize data to a grid, using the count of each grid cell in place of the original
data.

• Apply a wavelet transformation using a hat-shaped wavelet (such as the (2,2) or
(4,2) biorthogonal wavelet), retaining the approximation coefficients.

• Threshold cells in the transformed space. Cells with values above a user specified
density threshold are considered “significant”.

However, the remaining steps in our algorithm differ:

• Model significant cells as a tensor  ε .

• For a user-specified k, run a k-concept PARAFAC analysis on :

• For each c from 1 to k, recompose a tensor using only column c of each projection
matrix. Omit λc: we are interested in concept similarities, not strengths. The
resulting tensor  contains voxel similarities to concept c:

• Assign every voxel the cluster label of the concept to which it is most similar:

• Threshold: take only the s% most similar voxels to each cluster concept, where s is
a parameter chosen by the user. The higher the value of s, the fewer the number of
voxels returned but the stronger their association with the underlying concept.

Our approach exhibits a number of advantages, including the ability to create a fuzzy
clustering (where each voxel’s degree of membership in cluster c is determined by its
similarity to concept c in the decomposed tensor), the ability to cluster noncontiguous
voxels, and even the ability to discover clusters that extend across modes of the tensor. Our
approach also has the advantages of efficiency, which is comparable to WaveCluster, and
simple cluster validation, as the terms in the λ vector of the PARAFAC decomposition
automatically represent the variance captured by each cluster!

4. RESULTS AND ANALYSIS
The methodologies described in the previous sections were applied to fMRI datasets
acquired during dominant and non-dominant hand finger to thumb movement. Results of
each method are enumerated below:
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4.1 Discovered Concepts
Though the number of left-handed subjects in our dataset is small, we discovered strong
separability between left and right handed subjects in a 2-concept PARAFAC analysis,
which persisted for TWave but not for SVD. This pattern was made even more explicit
when subtracting the subject means from each subject’s set of images, suggesting that the
task residuals discriminate better between left and right handed subjects than task activations
biased by subjects’ means (however, it should be noted that variance was much greater
between subjects than among tasks performed by the same subject in this dataset). The
results of TWave using the Daubechies-4 wavelet and mean subtraction are shown in Figure
6. A larger dataset with a more complex task (e.g. a cognitive task) would be beneficial to
support these findings; however, they represent an important step towards discovering
clinically significant neuroimaging concepts using high-order approaches.

4.2 Classification
k-nearest neighbor classification experiments were run, but due to the extremely long per-
fold running times of naïve PARAFAC and Tucker decopositions and the difficulty of
folding new observations into an existing high-order decomposition, cross-validated
classification accuracies are not reported for the high-order techniques. Among low-order
techniques, subject classification accuracies on the fMRI dataset reached 52% for voxelwise
analysis and 98% for wavelet-based classification (using the Daubechies-4 wavelet). The
Haar wavelet was also used with the wavelet and TWave classification approaches, but only
yielded 82% classification accuracy in both contexts.

We were able to hard threshold up to the weakest 98% of wavelet coefficients (i.e. set these
coefficients to zero) without any loss of subject or task classification accuracy, greatly
improving time and space costs while preserving the discriminative power of the classifier.
This held true in both the low and high-order cases. Further compression is possible in the
decomposed tensor through truncation of weak concept similarities; however, this would
necessarily take place after the tensor decomposition is performed and thus would not
significantly affect the memory cost or speed of the analysis.

Task classification was more difficult because the intra-subject between-task variance (σ2 =
179.29) was much less than the between-subject variance (σ2 = 9066.85). Initial results
yielded only 2% accuracy for voxelwise analysis and 27% accuracy for wavelet-based
analysis. However, by subtracting the voxelwise mean of each subject across all tasks, we
were able to improve classification accuracy to 34% for the voxelwise approach and 68%
for the wavelet approach. From a medical standpoint, this suggests that residual task
activations between scans of the same subject have higher discriminative power in motor
task classification than overall activations with subject means included.

4.3 Clustering and TWaveCluster
We analyzed two subjects on all four spatiotemporal modes of the fMRI tensor using the k-
means (k=4) and TWaveCluster (k=5, density threshold=85th percentile) approaches.
Average running times for each individual volume were 53 seconds and 23 seconds,
respectively. Discovered clusters using traditional approaches are shown in Figure 7, while
TWaveCluster results are shown in Figure 8. A demarcation can be seen between the frontal
and temporal regions of the brain in the TWaveCluster results; this distinction is less clear in
k-means.

By contrast, SPM fails to recognize the frontal cluster at all at α = 0.05, indicating that our
method is discovering medically useful data which the leading technique in the field is
failing to pick up. Additionally, MELODIC, though it recognizes the motor cluster
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distinctly, considers the noisy regions at the corners of the volume highly significant (as
opposed to TWaveCluster, which projected them into the least significant component) while
deemphasizing the frontal task-related regions, which are more interesting from a clinical
standpoint. As a native high-order technique (with a number of bundled preprocessing
steps), MELODIC’s runtime on an individual volume was orders of magnitude higher than
TWaveCluster’s, at 1175 seconds per volume vs. 53 seconds. By contrast, a PARAFAC
analysis using alternating least squares on the raw tensor data completed in 785 seconds.
Though this may be partially due to the NIFTI imaging format used by MELODIC, which
inflated the 181 MB raw volume to 474 MB, the order of magnitude is consistent with the
performance of pure high-order techniques in our other experiments. SPM and MELODIC
results are shown in Figure 9.

The clusters discovered by TWaveCluster show a greater degree of symmetry and
homogeneity than the k-means clusters. Moreover, the most significant voxels in the first
two clusters spatially localize in the frontal and motor regions of the brain, involved with
planning and executing the motor task, respectively. As is natural for PARAFAC, clusters
are ranked by salience. Corresponding values in the λ vector were 28,812, 18,033, 15,958,
and 11,366 for the four discovered clusters. Unlike partition-based algorithms such as k-
means, the existing clusters will not significantly change as new clusters are added (and will
not change at all if a globally optimal algorithm is used to compute the PARAFAC
decomposition).

Based on the variance captured by the clustering and on visual inspection, we found that k=4
yielded good results on our dataset. Following clustering, we grouped each voxel’s time
series by cluster and generated an overall time series for the cluster by taking the mean of
these series. The individual voxel and mean cluster time series representations are shown in
Figures 10 and 11, respectively. The mean cluster time series may be used for anatomical
segmentation and discovery of functional patterns, such as frontal lobe task-related motor
learning.

4.4 Speed and Summary of Results
Classification runtime per fold was assessed for the voxelwise, wavelet-based, and TWave
approaches on a dual-processor 2.2 GHz Opteron system with 4 GB of memory. The SVD
and pure tensor approaches were measured on an 8 processor (16 core) 2.6 GHz Opteron
supercomputer with 128 GB of memory. Despite running on a much more powerful system,
the PARAFAC and SVD approaches still took significantly longer to complete than other
approaches, as shown in Table 2.

Pure high-order methods were typically dominated by the computational cost of
factorization, while low-order methods and TWave tended to be dominated by the lesser
cost of wavelet extraction, or, in the voxelwise case, by classification, as shown in Table 3.
This is expected, as each step of the methodology reduces the feature set size.

5. CONCLUSION
From these results, we may conclude that the combination of wavelets and tensors tools in
the analysis of fMRI motor task datasets yields better performance in space, time, and
accuracy than the voxelwise approach, as well as either wavelets or tensors alone.
Specifically, a combined approach achieves benefits including the sensitivity to locality that
wavelets provide and the ability to reason across modes using tensor techniques, but without
the prohibitive space and time costs of using tensors constructed on raw voxels for analysis.
Additionally, tensor tools provide powerful automatic data summarization techniques, as
demonstrated through discovery of left-handed subjects in our dataset. Of medical
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significance, our techniques were able to distinguish between left and right handed subjects
and discovered a frontal cluster which exhibited motor habituation in time and which was
not detected by SPM. Potential avenues for future research include use of different wavelet
functions, extension of our methods to streaming and sparse tensor data, and applications to
high-order datasets in other fields. We believe our method demonstrates that tensors provide
an appropriate model for datasets with interactive or nonscalar features.
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Fig. 1.
Graphical example of a tensor product.
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Fig. 2.
Illustration of a third-order PARAFAC decomposition, in which a tensor is decomposed into
a sum of outer products.
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Fig. 3.
Wavelet transformation of a volume and linearization to a feature vector.
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Fig. 4.
A single level wavelet decomposition represented as a filter. With certain wavelets, a perfect
reconstruction is possible despite downsampling.
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Fig. 5.
Step-by-step illustration of the WaveCluster algorithm. The cell corresponding to the
isolated black dot falls below the significance threshold and is labeled an outlier.
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Fig. 6.
The two concepts discovered by (a) TWave, (b) PARAFAC, and (c) SVD on the subject
mode. The outliers in the TWave and PARAFAC projections correspond to the two left
handed subjects in the dataset, while there is no linear separation of these points when using
SVD. Note the similarity of the TWave and PARAFAC spaces despite 98% compression of
the dataset and a 100x difference in runtime.
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Fig. 7.
(a) Spatial activation patterns in a right-handed subject performing a left finger-to-thumb
task and (b) the clusters discovered by k-means.
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Fig. 8.
TWaveCluster results thresholded at the top 1% most significant voxels per cluster and
overlaid on the full dataset. The two most salient clusters (a) and (b) spatially correspond to
the frontal lobe and the motor strip of the brain, respectively. The third cluster (c) centralizes
in the caudate region of the brain and the least salient cluster (d) appears to represent noise,
as is common with matrix and tensor factorizations of sufficient rank.
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Fig. 9.
(a) SPM on the same subject fails to discover significant frontal activation but does discover
the activation in the motor strip, while (b) MELODIC overly emphasizes the noisy regions
at the corners of the image but also discovers the motor activation (note that there is a
difference in coordinate orientation).
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Fig. 10.
The spatiotemporal nature of our dataset: each voxel represents a time series.
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Fig. 11.
Voxelwise spatiotemporal clustering, shown in (a) space and (b) time: each voxel is
represented as a time series and is clustered using the k-means algorithm. Colors represent
clusters and are consistently used between (a) and (b); the black cluster corresponds to
frontal lobe activation. The mean time series for the black cluster exhibits a decreasing trend
due to motor learning with repetition of the task.
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Table 1

Scalars, Vectors, Matrices, Tensors, and their orders.
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