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Abstract
This paper describes a general kernel regression approach to predict experimental conditions from
activity patterns acquired with functional magnetic resonance image (fMRI). The standard
approach is to use classifiers that predict conditions from activity patterns. Our approach involves
training different regression machines for each experimental condition, so that a predicted
temporal profile is computed for each condition. A decision function is then used to classify the
responses from the testing volumes into the corresponding category, by comparing the predicted
temporal profile elicited by each event, against a canonical haemodynamic response function. This
approach utilizes the temporal information in the fMRI signal and maintains more training
samples in order to improve the classification accuracy over an existing strategy. This paper also
introduces efficient techniques of temporal compaction, which operate directly on kernel matrices
for kernel classification algorithms such as the support vector machine (SVM). Temporal
compacting can convert the kernel computed from each fMRI volume directly into the kernel
computed from beta-maps, average of volumes or spatial-temporal kernel. The proposed method
was applied to three different datasets. The first one is a block-design experiment with three
conditions of image stimuli. The method outperformed the SVM classifiers of three different types
of temporal compaction in single-subject leave-one-block-out cross-validation. Our method
achieved 100% classification accuracy for six of the subjects and an average of 94% accuracy
across all 16 subjects, exceeding the best SVM classification result, which was 83% accuracy
(p=0.008). The second dataset is also a block-design experiment with two conditions of visual
attention (left or right). Our method yielded 96% accuracy and SVM yielded 92% (p=0.005). The
third dataset is from a fast event-related experiment with two categories of visual objects. Our
method achieved 77% accuracy, compared with 72% using SVM (p=0.0006).
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Introduction
There has been increasing interest in pattern classification of fMRI data. In contrast with the
conventional mass univariate approach, which aims to find the brain regions that correlate
with the experimental conditions, the goal of the pattern recognition approach, also known
as the decoding framework, is to predict the experimental stimuli and cognitive state from
the brain activation patterns. Many studies have shown high accuracies of decoding fMRI
patterns with machine learning methods (Chu et al., 2010b; Friston et al., 2008; Haxby et al.,
2001; Haynes and Rees, 2006; Mitchell et al., 2004; Strother et al., 2004).

Many of the benefits of neuroimaging may come from its potential to make predictions,
rather than from the estimates of statistical parameters. Attempts had been made try to apply
fMRI decoding into practical and clinical applications (Craddock et al., 2009; Davatzikos et
al., 2005; Fu et al., 2008). Unlike some decoding works that used the classification
accuracies as the surrogates of hypothesis testing (Hassabis et al., 2009; Haynes et al.,
2007), improving prediction accuracies is always important in practical applications, for
example brain-computer interfaces (BCI). Higher prediction accuracy also plays a major
role in the design of real-time fMRI and neural feedback experiments (Weiskopf et al.,
2007). If the experimental stimulus depends on the feedback of the prediction, near-perfect
prediction may be necessary.

One common technique to improve predictive accuracy is to apply feature selection over the
spatial domain (Chu et al., 2010a; De Martino et al., 2008; Mourao-Miranda et al., 2006).
Common methods include filtering out non-informative voxels with univariate statistical
maps e.g. SPM maps, recursive feature elimination (RFE) (Guyon and Elisseeff, 2003), and
knowledge-based spatial priors. In the PBAIC 2007 competition (Chu et al., 2010b), we
found that feature selection, based on prior knowledge of brain function, significantly
improved performance in predicting two of the ratings (barking and inside/outside). In this
manuscript, we introduce a different method that improves classification accuracy by
utilizing the temporal information. Temporal and spatial information are orthogonal to each
other, so one can apply both to obtain the best performance. However, the current work only
focuses on optimizing the use of temporal information.

Several studies of fMRI decoding have employed the support vector machine (SVM) or
other binary classifiers (LaConte et al., 2005; Mourao-Miranda et al., 2005). In these
approaches, fMRI volumes are treated as the input features and the patterns are the strength
of Blood Oxygenation Level Dependent (BOLD) signal. However, there is strong temporal
correlation in the fMRI time series, especially due to the delay and smoothing from the
hemodynamic response (HRF). For a block design, temporal shift is often applied to account
for the hemodynamic delay and the volumes are averaged over each block (Cox and Savoy,
2003). Such strategies ignore the temporal profiles caused by the hemodynamic response.
An alternative method, which preserves the HRF information, involves applying the
regression to obtain parameter maps, sometimes referred to as “Beta maps” (Eger et al.,
2008; Kriegeskorte et al., 2008). However, all these methods involving temporal compaction
greatly reduce the number of training samples from the number of time points to the number
of stimulus trials, hence hinder the training process, especially when the repeated conditions
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are few. Inspired by the Pittsburgh Brain activity Interpretation Competition (PBAIC) (Chu
et al., 2010b), we propose a novel approach that treats the problem as one of regression. We
used a matching function to compare the predicted time series with canonical time series
patterns for each target class, selecting the closest match as our prediction. The matching
function can also be considered as a simple classifier. This new method greatly improves the
prediction accuracy of experimental conditions within a single subject, over the
conventional SVM with different temporal compression, especially for small numbers of
training trials. We applied the proposed method to three different datasets, with multi-class
classification and binary classification. The first and second dataset are from experiments
using block designs, whereas the third dataset is from a fast event-related design experiment.

In addition, we also introduced a convenient way to derive a temporally compacted kernel
directly from the original input kernel. Conventionally, temporal compaction is often applied
before generating the kernel matrix from input features. Because this is a linear operation,
we show how to compact the input kernel matrix into three common forms: boxcar
averaging, beta-map, and spatial-temporal (temporal concatenation).

Methods
Kernel methods

Kernel methods are a collection of algorithms that, instead of evaluating the parameters in
the space of input features, transform the problem into its dual representation. Therefore,
solutions are sought in the kernel space, and the complexity of the algorithm is bounded by
the number of training samples. A simple linear kernel can be calculated from the dot
products of pair-wise vectors with equal elements. We define the input matrix as X, where X
= [x1x2···xn]T, each row of X is one fMRI volume with d voxels. The linear kernel matrix is
calculated by K = XXT. An advantage of kernel methods is the use of the so called “kernel
trick”. Because the algorithm only requires the similarity measures described by the kernel
matrix, implicit feature mapping into higher or even infinite dimensional space is possible,
such as when using the radial basis function (RBF) kernel (Shawe-Taylor and Cristianini,
2004). Therefore it is possible that a nonlinear pattern in the original input space may appear
linear in the higher dimensional feature space. Practically, since the images are already in a
high-dimensional space, we did not apply any non-linear kernel in this work. Typical kernel
algorithms include the Support Vector Machine (SVM), Relevance Vector Machine (RVM)
and the Gaussian Process models (GP) (Cristianini and Shawe-Taylor, 2000; Rasmussen and
Williams, 2006; Tipping, 2001; Vapnik, 1998).

Intuitively, the kernel matrix can be conceptualised as a matrix of similarity measures
between each pair of input features. It contains all the information available about the
relative positions of the inputs in the feature space. In other words, if we rotate and translate
the data points in feature space, the information contained in the kernel matrix will not
change, although the values of the kernel matrix may change. Because the information is
encoded in the relative similarity, kernel methods require the training data when making
predictions. If a sparse kernel method is used, at least the signature samples (e.g. support
vectors or relevance vectors) would be required for the predicting phase. An exception is
when the linear kernel is used, when it is possible to project the training results back into the
original feature space. The general equation for making predictions with kernel methods is

(1)
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Here, t* is the predicted score for regression, and if it is a classification algorithm, then it is
the distance to the decision boundary. N is the number of training samples, xi is a feature
vector of the training sample, and is the x* is the feature vector of the testing sample. Each
kernel weight is encoded in ai and b is a constant offset, both of which are learnt from the
training samples. K(.,.) is the kernel function, which contains dot-products for a linear
kernel.

Detrend using residual forming matrix
Simple linear regression is often used to remove low frequency components in the fMRI
time series at each voxel. This linear procedure can be reformulated as applying a residual
forming matrix (Chu et al., 2010b) R = (I = CC+) to the fMRI time series, where C is a set
of any basis functions that model the low frequency components. For example, a linear basis

set could model a constant term as well as a linear drift by . C+ = (CTC)-1CT

denotes the pseudo-inverse of C. For the same input matrix X defined previously, the
detrended data can be computed by Xdetrend = RX. Recall that the linear kernel is calculated
as K=XXT. To compute the linear kernel from data with drifts removed:

(2)

This operation is simpler than detrending each voxel separately. In this work, we only use
simple linear detrending.

Temporal compaction of kernel matrices
Because the parameter maps, i.e. beta maps, are obtained from linear regression, it is
possible to formulate some forms of temporal compaction as matrix operations. In fact, both
“average of volumes” and “beta maps” are a weighted linear combination of the images in
the time series. So far, a square residual forming matrix has been described for removing
uninteresting signal from the kernel, but other forms of the matrix may also be used. Instead,
it can be a matrix for converting a kernel matrix generated from the original data, into a
kernel that is obtained by generating dot products from the parameter images.

Mathematically, we can define a vector of weighting coefficients, p, which has the same
number of elements as the number of images in the time series. This weighting vector is
generated by taking the pseudo-inverse of the regressor in the design matrix of the
corresponding block. Usually, the regressor is the HRF convolved block (see Figure 2) or a
boxcar function with six seconds of delay (two TRs in our experiment) after the onset of the
stimulus, which comes from the delay of the peak of the HRF. If every block has the same
length, we can use the Kronecker product to generate the “average forming matrix” or “beta
map forming matrix” (temporal compressing matrix) by P = I⊗pT, where I is the number of
blocks by number of blocks identity matrix. This approach can be extended to event related
fMRI as well. If each event is modeled as a separate regressor in the design matrix, the
temporal compaction matrix, P, is simply the pseudo inverse of the design matrix. The new
data matrix can be evaluated by X ̃ = PX and the compressed kernel can also be evaluated
directly from the original linear kernel generated from all image volumes, K̃=X ̃X ̃T =
PXXTPT=PKPT. The dimension of this new kernel will be the number of blocks or events,
rather than number of fMRI volumes in the series (see Figure 2).

There is also another formulation called “spatial-temporal” (Mourao-Miranda et al., 2007).
In this formulation, images in each block are concatenated into one long vector, hence the
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input features contain both spatial and temporal information, i.e. the temporal information is
not averaged. Unfortunately, this formulation cannot be arranged into the same matrix
operation. Therefore, we express each element in the condensed kernel as a sum of weighted
kernel elements in the original kernel (Figure 3).

(3)

where k̃ol is the element at row o and column l in the compressed kernel, n is the number of
image volumes in each block. D is the n by n weighting matrix containing the coefficients
dol for each of the elements in the original kernel. Because the kernel matrix K is symmetric,
the weighting matrix is also symmetric. The weighting matrix for the ‘beta map’ and
‘average of volumes’ can be computed directly from their weighting vector p, by D = ppT .
For the spatial-temporal operation, the weighting matrix is a partial diagonal matrix, such

that , where S is the set of images concatenated in the block, and it is often
selected to be the same set as the averaging operation. Generally speaking, the full kernel
matrix from the entire time series is often utilized in the kernel regression framework,
whereas the compacted kernel matrix is used in classification problems, where the objective
is to categorise events.

Support Vector Machine (SVM)
In this work, SVM specifically refers to support vector classification (SVC). SVC is also
known as the maximum margin classifier (Cristianini and Shawe-Taylor, 2000), and has
shown superior performance in practical applications with high-dimensional data. Motivated
by statistical learning theory (Vapnik, 1995), the decision boundary is chosen so that it
achieves the maximum separation between both classes. The standard formulation of
optimizing the hard-margin SVC is

(4)

This is often known as the primal form of the SVC optimization. Here, w is a vector of
feature weights, t ∈ {-1,1} is the label for the classes, x is a vector of input features, and b is
an offset. Although it is possible to solve this optimization in the primal form (Chapelle,
2007), the optimization is often solved in the dual formulation by introducing Lagrange
multipliers.

(5)

Here, ai is a vector of Lagrange multipliers, and H is a N by N matrix defined by hi,j =
(titjxi

Txj :i, j = 1,..., N). More generally, we can replace xi
Txj by the kernel K(xi,xj). This

formulation makes SVM a kernel algorithm, and can be optimized by standard quadratic
programming, but is also often solved by more efficient algorithms e.g. Sequential Minimal
Optimization (SMO) (Platt, 1999). The computational complexity of SMO is between linear
and quadratic in the training size, and depends on the sparsity of the data. Once the
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Lagrange multipliers ai and the offset parameter b are computed, the prediction can be made
based on equation (1) for a new testing sample, and the decision boundary is at the line
where equation (1) yields zero. In this study, we used the implementation of hard margin
SVC in LIBSVM (Chang and Lin, 2001).

Multi-class SVC
The original SVC is a binary classifier. To perform multi-class classification, the common
approach in the neuroimaging field is to combinine a number of binary classifiers (Hassabis
et al., 2009; Mourao-Miranda et al., 2006). For situations with H classes, there are two
commonly used approaches; one is the “one versus the rest” classifier. This works by
training H classifiers, each of them trained with one class versus the other H-1 classes. The
classification for a testing point is determined by the classifier that achieves the highest
classification scores i.e. furthest away from the decision boundary toward the particular
class. Another approach is called the “one versus one” classifier, which works by
introducing H(H-1)/2 or CK

2 classifiers. Each of the classifiers is trained with one class
versus another class only. The assigning of a testing point is achieved by majority vote. In
other words, it is assigned to the most frequent class to which it is classified by all the
classifiers. Ambiguous cases may occur in this approach. For example if we have three
classes 1, 2, and 3, then we will have three classifiers (1vs2, 1vs3, 2vs3). The testing point
may be classified into class 1, class 3, and class 2 from the three classifiers respectively.

Alternatively, one can use error correcting output codes to improve the performance
(Dietterich and Bakiri, 1995). In the example of three classes, the error codes can be
generated from six binary classifiers (1 vs 2, 1 vs 3, 2 vs 3, 1 vs (2+3), 2 vs(1+3), 3 vs
(1+2)). This approaches can avoid ambiguous cases and aggregate more information. There
are also classifiers that are capable of doing multi-class classification, for example
multiclass Fisher's discriminant, multiclass logistic regression (Bishop, 2006; Girolami and
Rogers, 2006), and decision tree methods (Quinlan, 1993).

Multi-class classifier using kernel regression (MCKR)
We design a multi-class classifier that is very similar to one versus the rest classification for
fMRI experiments. This method utilizes the temporal information without compressing it
into a reduced kernel. Our approach breaks the classification into three stages: 1. Training K
regression models; 2. Predicting the temporal profiles for a testing block; 3. Matching the
predicted K profiles with the canonical profile, which can be computed by convolving one
block with the canonical HRF (Friston et al., 2007) (see Figure 4). This approach was
originally inspired by the PBAIC (Chu et al., 2010b), therefore we took a similar approach
in the training phase. That is, we only changed the target variable, but used the same input
features. In our case, the experiment had three conditions in the design. We trained three
different regression machines, where each of the machines took the same kernel generated
from the fMRI volumes as input features, but the target variables were the corresponding
regressors (columns) in the design matrix. In the predicting phase, temporal profiles of the
test block (multiple fMRI volumes) were predicted from all three regression machines. To
assign class membership, we compared all the predicted profiles with the canonical profile.
We tried both covariance and correlation as the metric to measure similarities. Both
measures ignore the constant offset, and covariance considers the magnitude of the
prediction, while correlation ignores the information of magnitude. In practice, the results
using correlation and covariance are not statistically different. The class was assigned to the
condition for which the machine achieved the highest similarity between the predicted
profile and the canonical profile. Although this technique is introduced as a multi-class
classifier, it works the same for binary classification. This method was applied to data from
block designs (dataset 1 & dataset 2) and fast event related designs (dataset 3).
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Kernel ridge regression (KRR)
Kernel ridge regression is the kernel formulation of the ridge regression. Ridge regression is
the standard least square regression with regularization that penalizes sum of squares of the

weights (parameters) , where λ ≥ 0 is the regularization
parameter. It has been shown that kernel ridge regression yields the same solution from the
standard (primal) ridge regression (Shawe-Taylor and Cristianini, 2004). The kernel
formulation can gain computational efficiency when the dimensions of the feature vectors
are greater than the number of training samples, which is true in most neuroimaging data.
The formulation of kernel ridge regression is

(6)

where K is the kernel matrix, and I is the identity matrix. Notice there is no offset parameter
(b) in kernel ridge regression. Prediction can be computed from equation (1). The
regularization, λ, was fixed to 1e5, which was based on our experience and empirical results
from PBAIC (Chu et al., 2010b). In this study, the overall accuracies varied by less than 3%
when λ was in the range of 1e2 ~1e5 (i.e. the regularization parameter did not have to be
very precise, as it yielded very similar results in a very wide range of values) .Because of the
matrix inversion, the computational complexity of KRR is O(N3), where N is the number of
examples in the training data.

Relevance vector regression (RVR)
Relevance Vector Regression (RVR) is a sparse kernel method, and is formulated in the
Bayesian framework (Tipping, 2000, 2001). Strictly speaking, RVR is not a standard kernel
method, because it does not have the interchangeable formulation between primal and dual.
Instead, RVR treats the kernel matrix as a set of linear basis function. This implies that the
input of RVR does not need to be a Mercer kernel (i.e. symmetric and positive-definite).
However, the standard RVR often uses the Kernel appended with one column of ones as the
input, Φ =[1,K], with K denoting the kernel matrix and 1 denoting a column of ones. The
likelihood function of the observation is modelled by a Gaussian distribution, p(t | a,σ2) =
N(t | Φa, σ2I), where t is the vector of observed target values, a is the weight vector, and σ2

is the variance of the noise. The prior of the weights, a, are also modelled by zero mean

Gaussian, . The solution involves optimizing the marginal likelihood
(type-II maximum likelihood).

(7)

where C = σ2I + ΦΩ-1ΦT is the covariance of the marginal likelihood, and Ω =
diag(α0,α1,...,αN) is the diagonal matrix of the inverse of the variance for each weight. The
objective of the optimisation is to find the hyper-parameters, α, σ2, which maximise the
“evidence” of the data (Mackay, 1992; Tipping, 2001). This is closely related to restricted
maximum likelihood (ReML) and estimation of covariance components in the statistical
literature (Friston et al., 2002; Harville, 1977). The covariance matrix that maximises the
marginal likelihood can be obtained by iterative re-estimation. After finding the hyper-
parameters, the posterior weights can be estimated by a = (ΦTΦ + σ2Ω)-1ΦTt.
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When maximising the marginal likelihood, some of the α will grow very large, and
effectively results in the posterior probability of those weights, a, sharply peaking at zero.
This property allows irrelevant columns of the basis functions to be pruned out, and is
known as automatic relevance determination (ARD) (MacKay, 1995). As with all other
kernel methods, the prediction can be computed from equation (1). The computational
complexity of RVR is O(Ñ3) (Tipping, 2001), where Ñ is the averaged training size. In
practice, the computation time depends on the implementation (e.g. stopping criteria).

One thing to be aware of is that all these machine learning methods (SVC, RVR, KRR)
assume that the data points are independent and identically distributed (iid), whereas the
actual noise for fMRI data is not i.i.d. This does not mean those algorithm will fail
completely, but does imply that such mis-specified models may give sub-optimal results
(Chu et al., 2010b; Rasmussen and Williams, 2006).

Weight map
Because we used a linear kernel, it was possible to project the weights back into the voxel
space for both SVC and Kernel Regression. The weight map from one training of the
regression machine, either KRR or RVR, was computed by w = (aTRX)T, where X is the
original input matrix, R is either a detrending or residual forming matrix, and a contains the
kernel weights obtained from the training. Unlike SVC or other binary classifiers, which
only generate one map for binary classification, the regression machines generate one map
per class. In other words, the regression machines generate two maps for a binary
classification.

To generate the map for SVC using a compacted kernel matrix, we can simply add the
compaction matrix and rewrite the equation as w = (aTPRX)T. For spatial-temporal SVC, P
is the matrix that selects the specific fMRI volumes for each block. Each time, only one
spatial map can be generated, and the temporally successive maps (i.e. the spatial map at
different TR) can be computed by fixing the kernel weight, a, and changing the matrix P to
select different volumes.

Materials
Dataset 1

The dataset used in this study is the same as described by (Hardoon et al., 2007; Mourao-
Miranda et al., 2007; Mourao-Miranda et al., 2006) And involves functional MRI scans from
16 male right-handed healthy college students (age 20–25 years). The study was performed
in accordance with the local Ethics Committee of the University of North Carolina. The data
were collected on a 3 T Allegra Head-only MRI system (Siemens, Erlangen, Germany). The
fMRI runs were acquired using a T2* sequence with 43 axial slices (slice thickness, 3 mm;
gap between slices, 0 mm; TR = 3 s; TE = 30 ms; FA = 80°; FOV = 192 mm = 192 mm;
matrix, 64 = 64; voxel dimensions, 3 mm 3 mm 3 mm). In each run, 254 functional volumes
were acquired.

Experimental design—The experimental stimuli were in a standard block design. It was
a passive experiment with visual stimuli. The visual stimuli were categorized into three
different active conditions: viewing unpleasant (dermatological diseases), neutral (people)
and pleasant images (girls in bikinis). Each active condition was followed by a resting
condition (fixation) with equal duration. In each run, there were six blocks of the active
condition (each consisting of seven image volumes) alternating with resting (fixation) over
seven image volumes. Six blocks of each of the three stimuli were presented in random
order. There was only one run for each subject.
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Pre-processing—The data were pre-processed using SPM5 (Wellcome Trust Centre for
Neuroimaging, London, UK). All scans were first realigned and resampled to remove effects
due to subject motion. This had the effect of increasing the similarity among scans, and
compacting the low dimensional manifolds on which the images lay.

To further increase the signal-to-noise ratio, those voxels that were, a priori, considered
non-informative were removed. BOLD signal change is generally believed to occur mainly
in grey matter, because its major cause should be the local neuronal activity (Logothetis et
al., 2001). Empirical results from the Pittsburgh Brain Activity Interpretation Competition
(PBAIC) 2007 also showed that masking out non-grey matter voxels improves the
classification performance (Chu et al., 2010b). Masks defining grey matter were generated
for each subject by segmenting the average fMRI scan of each subject using unified
segmentation implemented in SPM5 (Ashburner and Friston, 2005). This also accelerates
the computation of the kernel matrices, as only about 20% of the whole image is used.

To perform multi-subject prediction, all scans were also non-linearly aligned to their
population average using DARTEL (Ashburner, 2007), which is more accurate than
conventional SPM spatial normalization (Bergouignan et al., 2009; Klein et al., 2009). After
estimating the inter-subject alignment by matching tissue class images together, the warping
parameters were used to transform each subject's fMRI volumes. An additional smoothing
with 8mm FWHM Gaussian Kernel was applied. The amount of smoothing was chosen to
be to the same as that in the previous studies (Mourao-Miranda et al., 2007; Mourao-
Miranda et al., 2006), allowing the results to be compared (see Figure 1). Although a recent
study (Op de Beeck, 2010) suggested that spatial smoothing does not affect the decoding
performance, our empirical findings from PBAIC 2007 (Chu et al., 2010b) showed that
spatial smoothing can improve accuracies for some subjects. Temporal normalization was
also applied to each voxel for each subject, which involved dividing the voxel time courses
by their standard deviations. This procedure minimized the variation of temporal scale
among different subjects.

Cross-validation: To compare the accuracies of MCKR with the multi-class SVM in
previous studies, we performed leave-one-block-out cross-validation (LOBOCV) within
each subject separately. The fMRI volumes for LOBOCV were in the native space. In each
LOBOCV trial, one block (active + rest) was removed from the dataset as the testing block
i.e. one volume for SVM after compression or 14 volumes for MCKR. The training used the
remaining dataset, and the label of the testing block was predicted with the parameters
obtained from the training. The averaged accuracy was then calculated by averaging of the
predicted accuracies from all subjects.

We also performed leave-one-subject-out cross-validation (LOSOCV) for each subject. The
fMRI volumes for LOBOCV were in the population-averaged space (by DARTEL). In each
LOSOCV trial, one subject was left out as the testing sample, and the data from the
remaining 15 subjects were used to train the classifier. After the training, all 18 labels were
predicted from the testing subject. The averaged accuracy was calculated.

Dataset 2
Details of this dataset are described fully in the thesis of (Chiu, 2010). Briefly, fifteen
neurologically intact right-handed, healthy adults (four males, mean age = 21.3 yrs) were
recruited from the Johns Hopkins University community. All participants completed and
signed an informed consent approved by the Johns Hopkins Medicine Institution Review
Board. Whole brain functional data were acquired with 40 slice echo-planar images (EPIs)
in an ascending sequence, TR = 2000 ms, TE=30 ms, flip angle = 70°, scan time = 314 sec
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(one run), matrix = 64 × 64, slice thickness = 3 mm, SENSE factor = 3, yielding 3-mm
isotropic voxels.

Experimental design—The original experiment had 15 runs, but we only used three runs
of sustained attention task, which are relevant to fMRI decoding. At the beginning of each
sustained attention run, participants were instructed to start monitoring either the left or the
right target stream of characters for a fixed block of 20s (10 volumes), during which they
responded to the appearance of “5” in the attended stream by pressing both buttons. The
initial stream (left or right) was randomly selected for each run. At the end of each block, a
shift cue “X” appeared in the currently attended stream, instructing participants to shift their
attention to the other side (i.e., left to right and vice versa). There were a total of 14 shift
cues, creating seven blocks of sustained attention to the left and seven to the right in each
run, with an additional block of attention to the initial attended location. In our decoding
task, the last block was omitted to obtain an even number of conditions.

In summary, there were 15 subject, and three runs for each subject. There were two
conditions (left or right) in the experiment, and each run had seven attend-left block and
seven attend-right blocks. The length of each block is 10 volumes (20 s).

Pre-processing—The data were preprocessed using BrainVoyager QX v1.10 software
(Brain Innovation, Maastricht, The Netherlands). Functional data were slice-time corrected
(with cubic spline interpolation), motion corrected (rigid-body translation and rotation with
trilinear interpolation), and then temporally high-pass filtered (3 cycles per run). No other
spatial-smoothing or normalization was performed. Simple intensity-based masks were used
to exclude non-brain tissues.

Cross-validation: Although, binary classification (left or right) was performed in this
dataset, for the consistency of naming, we still called the proposed method MCKR in this
dataset and dataset 3. Because there are multiple runs in this dataset, we performed leave-
one-run-out (LORO) cross-validation, which is more conservative, for each subject. In each
LOROCV trial, one run was left out as the testing sample, and the data from the remaining
two runs were used to train the classifier. After the training, all 14 testing blocks in the test
run were predicted. The averaged accuracy was then calculated by averaging over the
predictive accuracies of all 15 subjects.

Dataset 3
This dataset was used and described by (Kriegeskorte et al., 2008; Misaki et al., 2010). Only
a part of the original dataset was used to demonstrate the proposed method. Four healthy
subjects participated in this event-related experiment. The data were collected on a 3T GE
HDx MRI scanner with a receive only whole brain surface coil array (16 elements). Whole
brain functional data were acquired with 25 slice echo-planar images (EPIs) with SENES
(Acceleration factor =2), TR = 2000 ms, TE=30 ms, scan time = 544 sec (one run), matrix =
128 = 96, slice thickness = 2 mm, SENSE factor = 3), yielding 1.95 mm = 1.95 mm = 3 mm
voxels. Only the occipital and temporal lobe were covered.

Experimental design—There were a total six runs in the experiment. In each run, 96
color pictures of objects on a gray background were shown. There were 48 inanimate objects
and 48 animate objects. The duration of each stimulus was 300 ms. Each stimulus was
shown only once in each run, in random order. The stimulus onset asynchrony was random
(4s, 8s, 12s,16s). The decoding task was to discriminate animate stimuli from inanimate
stimuli.
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Pre-processing—The data were slice-time corrected and realigned using BrainVoyager
QX. The time series in each voxel were normalized to percent signal change. No other
spatial-smoothing or normalization was performed (Kriegeskorte et al., 2008). Linear
detrending was applied. A mask of the human inferior temporal cortex (hIT) with 1000
voxels was computed from the overlapping voxels of an anatomical mask and a thresholded
statistical map from a separate experiment (i.e. element-wise AND operation to the
anatomical mask and the thresholded t-map).

Cross-validation: We also applied LOROCV in this dataset. We followed the procedure
described in (Misaki et al., 2010) to perform SVC classification. In each LOROCV trial, one
run was left out as the testing run, and the data from the remaining five runs were used to
train the classifier. The beta-map estimates were computed from the two sets independently.

For MCKR, although dataset 3 is a fast event-related experiment, we modelled each
stimulus as a small block, and performed the procedure in the same way as for a block-
design experiment. In the predicting phase, we used image volumes from the onset to 14s
after the onset (seven volumes) for temporal profile matching. We predicted the temporal
profile within the 14s windows (based on the HRF profile) per stimulus, and then applied
the matching function to make one classification for that temporal profile. In other words,
we still made one prediction per stimulus per run using the proposed method, which had
exactly the same number of test estimates as the SVM.

Results
Classification performance was compared between different methods, using paired t tests
(Misaki et al., 2010). We found that the choice of whether covariance or correlation was
used as the matching function made no significant difference. We therefore chose
covariance as the matching function in all datasets and subjects because it was considered
“simpler” (i.e. correlation is covariance normalized by the standard deviations, so more
operations are needed to compute correlation than to compute covariance). Following
Occam's razor, when a simpler procedure yields equivalent performance, we should prefer
the simpler one. Although SVC with beta maps yielded higher mean accuracies than SVC
with averages, predictive accuraries with either method were not significantly different from
each other. MCKR using RVR performed slightly better than MCKR using KRR, but both
methods were also not significantly different. There were two variants of MCKR and three
variants of SVC, so to avoid multiple comparisons, we compared the worst performing
MCKR (MCKR-KRR), with the best performing SVC (SVC beta map). Although this
approach was very conservative, we found that MCKR performed significantly better than
SVC in all three datasets (p=0.008, p=0.0006, p=0.005, respectively). The original cross-
validation accuracies in each run and each subject are shown in the supplementary material.

Dataset 1
Within-subject classification—The averaged accuracy of LOBOCV was very high
when the proposed method, MCKR, was applied. Perfect classification (100% accuracy)
was obtained for 6 subjects (2 subjects by SVC beta map) and an average of 94% accuracy
was achieved across 16 subjects. We achieved slightly higher accuracies for SVC compared
with the previously published work (Mourao-Miranda et al., 2006). The accuracies of “one
versus the rest” multi-class SVC were around 3% higher than the “one versus one” multi-
class SVM, so we only present the result from “one versus the rest” SVM in this paper
because we want to compare the best SVC method with the worst MCKR method. The best
classification accuracy for SVC was 87.5% using the beta map, average of volumes resulted
in 86% accuracy, and spatial-temporal had the worst performance with 66% accuracy (Table
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1 and Figure 5). Despite using the best SVC results, the classification accuracy from multi-
class SVC with beta maps was significantly lower than the worst performing MCKR
(p=0.008). For multi-class classification, it is not possible to compute the receiver operating
characteristic (ROC). Therefore we present the confusion matrix of MCKR with RVR,
which is similar to the results from MCRK with KRR, and the confusion matrix of multi-
class SVC compressed by “average of volume”, which is similar to the result from using
beta-maps.

In addition to performing the LOBOCV, we also performed cross-validation (CV) trials with
reduced training blocks. In each of the CV trials, we randomly sampled M (a number
ranging from one to five) blocks, which were used for training the classifiers. For each
selected M, we repeated the sampling and CV 40 times. Surprisingly, even when we used
only one training block, all methods still achieved classification accuracies above chance
level (33%) (Figure 6). The results also showed that MCRK always outperformed multi-
class SVC, regardless of the number of training samples (from training size of one block to
five blocks, p=0.49, p=0.017, p=0.065, p=0.063, p=0.025, respectively). MCKR with only
two training blocks can perform as well as SVC with four training blocks (p=0.3, no
statistical difference).

Inter-subject classification—The accuracy of multi-class SVC improved greatly in
LOSOCV, and the average accuracy was 95% regardless of compaction methods. However,
the averaged accuracy of MCKR decreased to 91% (Figure 7 and Table 3). Despite higher
accuracy in SVC, paired t tests showed no significant difference between MCKR and SVC
(p=0.55). There were two subjects that had extremely low accuracy in MCKR, whereas the
other 14 subjects had similar results for both methods. Also, MCKR achieved equivalent
performance to multi-class SVC for classifying pleasant and unpleasant stimuli. The
reduction of averaged accuracy came from a significant drop in the ability of MCKR to
classify neutral stimuli (85%), especially in those two subjects (see Supplementary
material). The confusion matrix of RVR (Table 4) from LOSOCV, shows a strong bias
toward misclassifying a neutral stimulus as unpleasant.

We also performed the LOSOCV with reduced numbers of training subjects (Figure 8). In
each of the CV trials, we randomly sampled M (1,2,3,4,5,7,10,13) training subjects. For
each selected M, we repeated the sampling and CV 40 times. The accuracies of MCKR with
KRR and SVC with beta-maps reached a plateau when the number of training subjects was
seven or more. The accuracies of SVC with spatial-temporal reached the plateau much later,
when 13 training subjects were used. SVC was only significantly better than MCKR when
training with 10 and 13 subjects (p<0.05).

The major clusters in the weight maps generated by training all 16 subjects (Figure 9) were
very prominent. Maps generated from KRR and SVC have very high correlation in both
pleasant and unpleasant stimuli (r=0.76, r=0.80, respectively), but the correlation is lower
(r=0.69) between maps from KRR and SVC in neutral stimuli. This may also explain the
comparable performance between MCKR and SVC in classifying pleasant and unpleasant
stimuli, but their different performance for classifying neutral stimuli.

Dataset 2
We only performed LOROCV for SVC using beta map and MCKR with KRR. This
experiment had a very high contrast-to-noise ratio (CNR). The averaged accuracy of
LOROCV was very high when the proposed method, MCKR, was applied, achieving an
average accuracy of 96% (Figure 10). Perfect classification (100% accuracy) was obtained
for 32 runs out of 45 (15 subjects times 3 runs per subject) comparing to 23 runs using the
SVC beta map approach. SVC also performed well, achieving an average accuracy of 92%.
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However, paired t tests showed MCKR to be significantly better than SVC (p=0.006). There
was no bias toward predicting one particular class.

Dataset 3
This dataset had relatively lower CNR because of the fast-event related design. Only
LOROCV for SVC using the beta map approach and MCKR with KRR were employed.
MCKR achieved 77% accuracy and SVC achieved 72% accuracy (Figure 11). MCKR
performed significantly better than SVC (p=0.0006), and resulted in the lowest p-value
among the three datasets. We also found no bias toward predicting one particular stimulus
category.

Discussion
We developed a novel multi-class classifier using the kernel regression method. Our MCKR
method uses all the information in the fMRI volumes during training instead of compacting
them into a smaller set. The results demonstrated that our MCKR method was consistently
better than multi-class or binary SVC in LOBCV or LOROCV within each individual
subject. The same performance from RVR and KRR implies that the superiority of our
method comes mainly from the architecture of the procedure (Figure 4) rather than the
specific choice of regression algorithm. Other methods, such as support vector regression or
elastic net, should also perform similarly. The choice of matching function also made no
statistical difference, but we used covariance in the matching function for reasons described
earlier. This implies that the predicted profile contains information mainly in the shape of
the profile. We suggest that MCKR performs better than SVC because of more training
samples and the ability to learn the subject's individual response to each condition. With
more training samples, the solutions from the kernel machines (either regression or
classification) would have higher degrees of freedom, leading to more accurate estimates the
noise variance. From figure 6, we can see that when the number of training samples
increases, the accuracy gap between MCKR and SVC with beta-maps or averages becomes
smaller. Perhaps with more repeats and a longer experiment, SVC may achieve the same
performance as MCKR.

The MCKR did not show strong prediction bias, but SVC seemed to have a strong bias
toward mistaking the condition of unpleasant as pleasant (Table 2). This result shows that
the temporally compressed fMRI pattern under unpleasant stimuli were more similar to the
pattern under pleasant stimuli than neutral stimuli. Conversely, the unbiased result from
MCKR implies that the patterns between the three stimuli are equivalently distinct when
more temporal information was used.

After evaluating maps generated from each individual subject and maps from training all
subjects, we found that although maps generated by both regression machine and SVC are
different, the main clusters in the maps are very similar. The shapes and sizes of the clusters
are different, but the locations are the same. In other words, one would find the clusters in
the same brain regions using either map and probably would make the same inference in
brain functions using either method.

The improvement of SVC in the LOSOCV (i.e. inter-subject cross-validation) can be
explained by the increase of training samples (Figure 9). We suspect that the reason why the
MCKR machine did not work well between subjects, as opposed to in single subjects, was
due to the inter-subject variability of activation size (different number of activated and
deactivated voxels) and strength. The MCKR approach is more sensitive to inter-subject
variability than is SVC with temporal compression, because regression machines have cost
functions of least squares, and the inter-subject MCKR assumes all subjects have the same
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magnitude of multivariate-activation. Although we normalized every voxels of each subject,
some inter-subject variance still remained. For example, some subjects had uniform
activation among the three stimuli, whereas some subjects had relatively low activation for
the neutral stimuli. Also, some subjects have more activated voxels (bigger clusters) than
others subjects. Consider a subject with slightly more activated voxels in one condition, the
multivariate response of that condition for that subject would be stronger than others. This
stronger response would have less impact on SVM because such effects would only result
the training samples from the class/condition moving further away from the decision
boundaries, and not being considered as support vectors. Such confounds would sabotage
the training of MCKR with least-square objective function. If we ignored the neutral stimuli,
MCKR and SVC would perform equally well. On the other hand, if we could apply feature
selections to limit the number of voxels and regions, the prediction performance of the
MCKR may also be as good as SVC.

The experimental design of dataset 2 was very similar to dataset 1. The duration of the block
in both experiments was around 20s. The only difference was that experiment in dataset 2
had no resting condition. Because we applied LOROCV, the prediction should not be
confounded by the potential temporal correlation in the training. The empirical results from
dataset 2 further support the proposed method.

Although dataset 3 was from an event-related experiment, the proposed method still
performed well. We applied LOROCV to prevent confounds due to overlapping events in
the training. This dataset yielded the lowest p-value, probably because there was no ceiling
effect. In experiments with high CNR (dataset 1 and 2), SVC could often achieve 100%
classification.

In addition to introducing MCKR, we also presented an efficient method to perform
temporal compaction and reformulation (Figure 3). Such a formulation can bring a different
perspective to the process. In our experimental design, because of the long block design, the
block operator for generating beta-maps is very similar to that for generating the average
over volumes (Figure 3). This was why both compressions resulted in similar accuracy. Both
beta-map and average of volumes employed off-diagonal information from the kernel,
whereas the spatial-temporal only used the diagonal components. The inferior performance
of spatial-temporal with low training samples may imply that the covariance between
neighbouring volumes temporally contains useful information to discriminate the conditions.
This kernel formulation of temporal manipulation can also be extended to frequency
decomposition, for example, by applying a discrete cosine transform matrix. The effect of
temporal filtering on fMRI decoding efficiency can then be studied. Also, in a fast event
related experiment, it is often suggested to average over a few trials to create a beta-map (i.e.
multiple trials in one column of the design matrix). The number of trials to average is often
arbitrary. When a new number is selected, the general linear model needs to be re-fitted. It is
more computationally efficient to apply the matrix operation on the kernel matrix directly
using the formulation we proposed.

Regarding to the weight maps, we make no attempt at inference about the significance of a
given region with high weights on a weight map nor do we point out any given region. This
is because it is not the intent in the proposed method to draw conclusions about regionally
specific effects. The proposed method was not designed to generate maps that were
comparable because the final classification also depends on the matching between the
template (canonical profile) and the predicted temporal profile. If the template is changed,
the same “trained regressors and maps” may yield different classification accuracies. The
matching function makes the inference between voxel weights and the classification results
non-linear.
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In summary, our proposed method, MCKR, performed significantly better than the
conventional multiclass SVC and binary SVC when the number of training samples was low
and the training and testing were performed within the same subject. Many fMRI studies
have performed decoding only at the level of a single subject (Hassabis et al., 2009; Haynes
et al., 2007). Our method is ideal for experiments that have limited repeats of stimuli, this
implies one can design an experiment with fewer repeats and more conditions, or shorten the
duration of experiments. Also, if the prediction system is going to be trained online, e.g.,
real time fMRI decoding, our MCKR should be the recommended option, especially when
nearly-perfect classification is needed. Using the canonical HRF would result sub-optimal
solutions and the commonly used classification approach with temporal compacting also
suffers from the same disadvantage. One direction for future research is to try to learn the
optimal HRF profile from the training set.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The pipeline of normalizing the fMRI volumes into a common space (population average).
The mean Echo Planner Images (EPI) were firstly segmented using unified segmentation.
DARTEL was used to warp all 16 subjects into the evolving population average iteratively.
The final deformation parameters were then applied to all the EPI of each subject without
modulation.
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Figure 2.
Illustration of temporal compression using matrix operation.
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Figure 3.
Illustration of temporal compression and manipulation using a more generate operation.
Spatial-temporal can only be derived using this operation.
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Figure 4.
Illustration of temporal compression and manipulation using a more generate operation.
Spatial-temporal can only be derived using this operation.
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Figure 5.
Leave one block out cross-validation accuracies (within-subject cross-validation) averaged
over 16 subjects with five different classifiers for different stimuli conditions. Error bars
show the standard error.
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Figure 6.
Leave one block out cross-validation accuracies (within-subject cross-validation) with
different size of training blocks. Each accuracy was calculated from averaging 40 cross-
validation trials with randomly selected subsets. Error bars show the standard error.
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Figure 7.
Leave one subject out cross-validation (inter-subject cross-validation) accuracies averaged
over 16 subjects with five different classifiers for different stimuli conditions. Error bars
show the standard error.
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Figure 8.
Leave one subject out cross-validation accuracies with different size of training subjects.
Each accuracy was calculated from averaging 40 cross-validation trials with randomly
selected subsets. Error bars show the standard error.
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Figure 9.
The weight map (feature weights) from training all volumes of all subjects. The top row
shows the feature map generated from SVC and the bottom row shows the feature map
generated from KRR. From left column to right, the maps were generated form training
pleasant stimuli versus the other two, neutral versus other two, and unpleasant versus other
two, respectively.
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Figure 10.
Leave one run out cross-validation (within-subject cross-validation) accuracies averaged
over 15 subjects (3 runs per subject) and with MCKR KRR and SVC beta map for different
direction of visual attention. Error bars show the standard error.

Chu et al. Page 27

Neuroimage. Author manuscript; available in PMC 2012 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Leave one run out cross-validation (within-subject cross-validation) accuracies averaged
over 4 subjects (6 runs per subject) with MCKR KRR and SVC beta map for different
categories of visual objects. Error bars show the standard error.
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Table 1

Within-subject classification accuracy (%) of cross-validation

Multi-class classifiers Conditions

Average Accuracy Unpleasant Neutral Pleasant

MCKR with RVR 94.0(1.8) 94.8(2.4) 91.7(3.3) 94.8(2.4)

MCKR with KRR 93.8(1.8) 93.8(2.9) 92.7(3.3) 94.8(2.4)

SVC (average) 86.5(2.8) 83.3(2.8) 88.5(2.8) 87.5(3.0)

SVC (beta-map) 87.5(2.2) 83.3(4.2) 90.6(3.0) 88.5(2.8)

SVC (spatial temporal) 66.3(4.5) 66.7(5.0) 62.5(6.8) 69.8(6.0)

Values inside the parentheses are the standard error (%)
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Table 2

Confusion matrix of MCKR with RVR and multi-class SVC compressed by “average of volume” within-
subject.(LOBOCV)

Predicted class % MCKR with RVR Actual

Unpleasant Neutral Pleasant

Predicted Unpleasant 93.8 3.1 2.1

Neutral 3.1 91.7 3.1

Pleasant 3.1 5.2 94.8

Predicted class % Multi-class SVC (average of volume) Actual

Unpleasant Neutral Pleasant

Predicted Unpleasant 83.3 4.2 8.3

Neutral 5.2 88.5 4.1

Pleasant 11.5 7.3 87.5
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Table 3

Inter-subject classification accuracy (%) of cross-validation

Multi-class classifiers Conditions

Average Accuracy Unpleasant Neutral Pleasant

MCKR with RVR 91.3(2.2) 94.8(2.4) 85.4(4.6) 93.8(4.1)

MCKR with KRR 91.0(2.2) 93.8(4.1) 85.4(4.6) 93.8(2.0)

SVC (average) 95.5(1.5) 93.8(2.0) 95.8(2.8) 95.8(1.8)

SVC (beta-map) 95.5(1.4) 93.8(2.0) 96.9(2.2) 95.8(2.3)

SVC (spatial-temporal) 95.1(1.3) 95.8(2.3) 96.9(1.6) 92.7(2.5)

Values inside the parentheses are standard error (%)
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Table 4

Confusion matrix of MCKR with RVR and multi-class SVC compressed by “average of volume” inter-subject
(LOSOCV).

Predicted class % MCKR with RVR Actual

Unpleasant Neutral Pleasant

Predicted Unpleasant 94.8 9.4 6.3

Neutral 0 85.4 0

Pleasant 5.2 5.2 93.7

Predicted class % Multi-class SVC (average of volume) Actual

Unpleasant Neutral Pleasant

Predicted Unpleasant 93.7 2.1 1.1

Neutral 4.2 95.8 3.1

Pleasant 2.1 3.1 95.8
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