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Abstract 

Behavioral studies have long shown that humans solve problems in two ways, one 

intuitive and fast (System 1, model-free), and the other reflective and slow (System 2, 

model-based). The neurobiological basis of dual-process problem-solving remains 

unknown due to challenges of separating activation in concurrent systems. We present a 

novel neuroeconomic task that predicts distinct subjective valuation and updating 

signals corresponding to these two systems. We found two concurrent value signals in 

human prefrontal cortex: a System 1 model-free reinforcement signal and a System 2 

model-based Bayesian signal. We also found a System 1 updating signal in striatal areas 

and a System 2 updating signal in lateral prefrontal cortex. Further, signals in prefrontal 

cortex preceded choices that are optimal according to either updating principle, while 

signals in anterior cingulate cortex and globus pallidus preceded deviations from 

optimal choice for reinforcement learning. These deviations tended to occur when 

uncertainty regarding optimal values was highest, suggesting that disagreement 

between dual systems is mediated by uncertainty rather than conflict, confirming recent 

theoretical proposals. 
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Introduction 

The notion that cognitive processes can be partitioned into two main categories, intuition and 

reason, is as old as the study of human thinking. In contemporary form, this distinction 

underlies various dual system models of judgment and decision making (Evans, 2008). 

According to these models, choice can be determined either through a fast and reflexive process 

("System 1") or through a more reflective and slow process ("System 2"). Pointed examples in 

the context of problem solving involving probabilities have System 1 generate quick answers 

based on substitution of the given problem by another one for which the correct answer is 

readily available (Kahneman and Frederick, 2002). 

Behaviorally, the evidence for the existence of a dual system appears to be clear (Evans, 2008; 

Fermin et al., 2010; Sloman, 1996). However, its neurobiological foundations have not been 

established. Recent evidence of activation relating to distinct regions in the human brain 

depending on context  ,(De Martino et al., 2006; Tzieropoulos et al., 2011) is based on inter-

subject comparisons. While these findings are consistent with dual system theory (Bossaerts et 

al., 2008; Kahneman and Frederick, 2007), they leave open the possibility that different subjects 

engage unique albeit group-specific decision making modules. Different patterns of activations 

across contexts (Hsu et al., 2005; McClure et al., 2004) likewise have been deemed insufficient 

evidence in favor of dual-system theory because they could merely reflect divergence in 

measurement of relevant components, and not fundamental differences in the way these 

components are integrated to determine choice (Kable and Glimcher, 2007; Levy et al., 2010). 

Ideally we would like to find evidence for the concurrent processing of the two systems, i.e. the 

presence of two sets of signals both contributing to the final decision. Naturally this introduces 

a need for adjudication, for those inevitable situations where the two systems disagree. 

Theories of how this arbitration may take place have emerged but are as yet untested (Daw et 

al., 2005; De Neys and Glumicic, 2008; Kerns et al., 2004). 

Recent neuroeconomic insights provide a novel approach to testing whether dual systems 

underlie human choice. A basic principle of economics is that choice is based on subjective 

valuation and that decision makers choose the option that maximizes their subjective utility. 

While this has long been interpreted as an “as if” procedure (the decision maker chooses as if 

she is maximizing a utility function), recent evidence in the neuroeconomics literature supports 

the idea that this is to be taken literally. Specifically, signals have been identified in the human 

(Plassmann et al., 2007; Tobler et al., 2007) and nonhuman primate (Padoa-Schioppa and 
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Assad, 2006; Platt and Glimcher, 1999; Tremblay and Schultz, 1999) brain that encode the 

subjective valuations revealed through choice, and these signals predict future choice (Tobler et 

al., 2007). Further, related studies established the existence of an update signal alongside the 

valuation signal, thus allowing the study of the process that drives changes in these valuations 

(McClure et al., 2003; O'Doherty et al., 2003). 

A new neurobiological hypothesis emerges when we confront dual-system theory with these 

neuroeconomic insights. Specifically, if choice were based on the evaluation of the outcomes of 

two systems, it would predict the existence of two concurrent subjective value signals in the 

brain, a System 1 value signal and a System 2 value signal. Work done by Daw et al. 2005 

directly provides a way to compare the systems by identifying System 1 with a habitual model-

free reinforcement learning system, and the rule based system with a near-optimal model-

based (e.g. Bayesian) system. Further, because the two systems at times generate conflicting 

choice, these two value signals would not always coincide and would require a means to 

adjudicate between them.  Here, we test this new hypothesis by searching for the existence of 

such concurrent subjective value signals, whether such signals predict subject choice, and the 

conditions under which one or the other signal guides subject choice (adjudication).  

Methods 

Twenty three subjects, Caltech students as well as subjects recruited by online advertising, 

participated in the experiment. All subjects were instructed about the general purpose of the 

experiment and signed a consent form as approved by the Caltech IRB. Subjects were given 

written instructions for the experiment and were tested briefly to make sure they understood 

the mechanics of the game. 

<INSERT FIGURE 1 AROUND HERE> 

 

Stimuli and game 

Subjects were placed inside the MRI-scanner and all stimuli were presented on MRI compatible 

goggles and generated using the Psychophysics toolbox (Brainard, 1997). Subjects were 

visually presented with three doors and instructed to choose the order of the doors at their own 

pace. The average response time was 1.9 s. 
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After 6-8 seconds the location of the money would be revealed behind one of the doors and 

subjects would be rewarded according to the following: $.50 if the money was behind their first 

choice, $0 if behind their second choice and $-0.50 if the money was behind the third choice. 

They therefore had an incentive to try to order the doors according to the likelihood of the 

money appearing behind that door.  

As part of the instructions they had been informed that the sequence of locations for the money 

had been chosen randomly before the experiment, and was therefore independent of their 

choices, and that money was equally likely to appear behind a door in each round, i.e. the 

likelihood did not change over time. 

Each subject played three sessions of 40 rounds with different distributions over the doors in 

each session. The money symbol had the following chance of appearing behind the doors (left, 

center, right): [0.1, 0.3, 0.6] in the first session, [0.4, 0.4, 0.2] in the second session, and [0.2, 0.2, 

0.6] in the third session. The beginning and end of each session were clearly indicated and 

subjects were explicitly instructed to ignore anything they learned in previous sessions 

regarding the distribution of money. For the purposes of the modeling of the learning we 

assume that the learning models are reset at the beginning of each session. 

Subjects made between $0 and $18 during the three sessions and were also paid a show up fee 

of $20. 

System 1 model 

The behavioral data from each subject, i.e. the order of the doors in each round, was used to fit 

the learning rate, α, in a simple reinforcement learning (RL) model.  According to this model in 

each round, t, the expected value Vj,t  of choosing a combination of doors (e.g. left, right, center) 

gets updated at the time of the reveal screen according to: 

Vj,t=Vj,t-1+ α * (Rewardt - Vj,t-1). 

This is the Rescorla-Wagner updating rule (Rescorla and Wagner, 1972) which is a special case 

of the Q-learning algorithm (Sutton and Barto, 1998). Only the chosen order of doors, Vj,t get 

updated in a round. The expected value (reward) for a certain round, t, is given as max(Vj,t ). We 

assumed that the likelihood of subjects’ choosing a certain combination of doors, j, is given by a 

softmax function over the values Vj,t :  
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We used the maximum likelihood (ML) of the data given the model to fit the learning rate, α, 

and the softmax steepness, β, to the data. The expected values in the model of the subjects’ 

choices were therefore dependent on the choices themselves as well as the individual learning 

rate. The steepness of the softmax, represented by β, captures any randomness in the subject 

behavior; a high beta signifies very little deviation from a model, while a low value means the 

subject performs seemingly random. The fitted learning rate was only used for behavioral 

model comparison, for the fMRI results a fixed value of 0.4 was used in order to regularize the 

results and avoid overfitting (similar to previous modeling of fMRI data (Daw et al., 2006; 

Gläscher et al., 2010)). The learning rate was chosen arbitrarily, but as behavior should reflect 

both a fixed system 1 learning rate and an effectively decreasing system 2 learning rate we 

would expect the true system 1 learning rate to be larger than the fitted value. The results 

presented here are not dependent on the exact learning rate (see SOM). 

When fitting the learning rate to the subject data, we found a negative learning rate for five 

subjects, indicating they were not performing the task correctly, instead following a strategy 

closer to the Gamblers Fallacy (Tversky and Kahneman, 1974). We therefore chose to disregard 

these subjects for the purposes of this study, leaving 18 subjects. 

As a measure of the subjective uncertainty of System 1 we used the exponentially smoothed 

average of past squared prediction errors: 
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where for the fMRI analysis we set the steepness of the decay equal to the learning rate, λ=0.4. 

While the choice of value for this parameter is arbitrary it seems reasonable to expect it to operate 

on the same time scale as the learning rate.
 

System 2 model 

An optimal Bayesian observer (System 2) was also applied to the data using a Dirichlet prior 

updated by a multinomial likelihood function. At each round, t, the posterior distribution is also 

a Dirichlet distribution with mean, the probability of the reward being behind door i, given by 
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where ni is the previous number of times the reward has been observed behind door i. Given pi,t, 

the Bayesian expected value of the game is given by 

,
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where k is the chosen order of the doors and r1=$-0.50, r2=$0 and r3=$0.50.  Hence the optimal 

thing to do is to order the doors by their posterior probability of hiding the money, so that 

   , ,
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The expected value in the Bayesian model was therefore only dependent on the history of 

appearances of the money, independent of the subjects’ subsequent choices and hence identical 

across subjects. For the purpose of comparing the models, we also used a variant of the softmax 

function to calculate the likelihood of the subjects’ choices:  
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Notice that the posterior probability is bound between 0 and 1 (unlike the value in System 1), 

hence we use the log of the probability for comparison in the softmax, leading to the equation 

above. We used the maximum likelihood (ML) of the data given the model to fit the steepness 

parameter, γ, individually for each subject. 

As a measure of the subjective uncertainty of System 2 we used the full entropy of the 

distribution, taking into account the uncertainty of the Dirichlet distribution 1, 2, 3,
( | , , )

t t t t
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fMRI  acquisition 

Subjects were scanned in a Siemens Trio 3T using a T1-weighted MPRAGE anatomical sequence 

(256 x 256 matrix, 176 1mm sagittal slices) and subsequently while performing the task. The 
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sequence used for the acquisition of the BOLD images was a T2*-weighted PACE EPI (TR = 2000 

ms, TE = 30 ms, 64 x 64 matrix, 3 x 3 mm2, 30 3mm slices, no gap). The scanning session lasted 

35-40 minutes (~1100 scans each).  

Data was processed and analyzed using Brainvoyager version 1.8 (Brain Innovation, 

Netherlands) and MATLAB (Mathworks, MA). Preprocessing included motion correction, spatial 

smoothing (Gaussian half-width 6 mm), slice timing correction, high pass filtering and 

normalization to Talairach space. 

Regressors 

A general linear model (GLM) was calculated for each subject using block regressors and 

parametric regressors. Block regressors were used for the time of the choice screen, the time of 

the reward screen and the pre-decision period. The parametric regressors were: System 1 

(reinforcement learning) value of the game for the pre-decision period max(Vj,t), System 2 

(Bayesian) value of the game for the pre-decision period  
t

R  , System 1 learning error 

(Rewardt - Vchosen,t) at the reward screen and System 2 updating (<Rt> -<Rt-1>) at the reward 

screen. In total 3 block regressors and 4 parametric regressors were put into the same GLM 

with results presented in Figure 2 and 3. The block regressors represent activity non-specific to 

the learning, e.g. visual activity, while the parametric regressors track the learning related 

activity. Notice that the Value regressors are at the same time period and thus have to share the 

variance in the data. 

Separate GLMs were created for Figure 4a-b) based purely on block regressors, with a 

regressor covering the choice screen, reward screen and the time period 0-4 seconds before the 

choice screen, aligned to end at the onset of the choice screen. For the pre-choice periods a 

block was either assigned as ‘choice correct’ or ‘choice incorrect’ based on the choice during the 

following choice screen. A separate GLM was created for System 1 and System 2. 

The regressors were ortho-normalized and a random effects analysis was done on the 

parametric regressors using Brainvoyager (Brain Innovation B.V., Netherlands), testing if the 

activation was significant on the subject group as a whole. The results presented in this study 

were not dependent on the orthogonalization (see SOM). Plots in fig. 2, 3 and 4 were 

thresholded at p<0.001 and restricted to cluster sizes of a minimum of 5 voxels.  

Results  
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The ability to test whether the brain generates a System 1 and System 2 value signal requires a 

task that satisfies two conditions. First, to discriminate between brain activations encoding 

either value signal, there must be ample opportunity for these valuations to differ. Second, to 

identify the parameters that capture the subjectivity in either valuation principles, subjects’ 

choices need to follow one principle a significant number of trials, while being consistent with 

the other one in other trials.  

Here, we present evidence that our experimental paradigm satisfied these two conditions. First, 

while the valuations eventually converged (also evident from Figure 1c), the overall correlation 

of the estimated System 1 and System 2 values was sufficiently low: r=0.51+-0.05. . The habitual 

System 1 is mainly characterized in this task by its use of a fixed learning rate (signifying the 

possibility of a changing environment) as well as a lack of knowledge of the structure of the task 

leading it to only rely on the direct experienced feedback (i.e. whether a choice was rewarded, 

punished or had no effect). In contrast the System 2 learner assumes that no changes happen 

through a session (and thus can integrate over all information) and understands the task well 

enough to be able to update the value of choices not taken (counterfactuals) based on the 

feedback. Thus the two systems can lead to markedly different behavior with System 2 

converging to the correct values faster than System 1, at the cost of more complex computations 

(potentially leading to errors in updating (Daw et al., 2005)).  

Second, subjects’ choices reflected both valuation approaches a sufficient number of times (see 

Figure 1c). Cross-sectionally, we recorded significant (p<0.001) positive correlation between 

the fits of the two models (see Figure 1b). Subjects evidently differ more in the extent to which 

they paid attention or were engaged in random exploration, rather than in the extent to which 

they are predominantly System 1 or System 2 users.  

Functional MRI shows activation of both value systems in PFC 

We next examined whether there was evidence for separate encoding of System 1 and System 2 

value signals. We found separate activations in medial prefrontal cortex (mPFC) that correlated 

significantly (p<0.001 uncorrected, minimum volume 5 voxels) with the System 1 value (Figure 

2a; SOM) and the System 2 value of the game (Figure 2b; SOM). There is substantial overlap in 

these activated areas; no sub-region emerged significantly (p>0.01) in the contrast between 

activation to System 1 value and to System 2 values. Overlap disappeared, however, after 

applying a stricter criterion to determine regions of significant activation (p<0.0001). 
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Furthermore, subjects whose choices tended to be more in line with System 1 learning did not 

display relatively stronger activation in mPFC correlating with System 1 value, suggesting that 

the imaging results are not an artifact of group aggregation (see SOM).    

<INSERT FIGURE 2 AROUND HERE> 

 

We next examined value update signals, or prediction error signals. It has been shown 

repeatedly (McClure et al., 2003; O'Doherty et al., 2003) that such signals accompany valuation 

signals. They provide the crucial input to improving valuation accuracy. We set out to identify 

and localize activation correlating with the prediction errors for the two learning approaches in 

our task. In sub-cortical striatal areas (putamen, caudate head, ventral striatum) we recorded 

phasic activation that  correlated (p<0.001 uncorrected, minimum volume 5 voxels) only with 

the prediction error from the System 1 approach (change in RL value of the chosen strategy 

only, Figure 3a). No subcortical striatal activity correlated with the update of the System 2 

(Bayesian) value of the game. The latter update significantly activated left Brodmann area (BA) 

10 (Figure 3b), and right inferior frontal gyrus (IFG; for a full list of activations see SOM).  

<INSERT FIGURE 3 AROUND HERE> 

 

Pre-Frontal activity precedes subjects’ choices 

We also found activations that predicted subjects' choices. We found separate activations in 

mPFC that preceded,  0-4 seconds (adjusted for hemodynamic response delay) before 

appearance of the choice screen, (i) an optimal Bayesian choice (Figure 4a), (ii) an RL-optimal 

choice (Figures 4b). Given an average response time of the order of 2 seconds, this activation 

preceded the actual choice by 4 seconds on average. In Figure 4b, activation in anterior 

cingulate cortex and globus pallidus correlates negatively, and hence, precedes deviations from 

RL-optimal choice.  

To gain further understanding of the influence of the different model components on the 

decision process we performed a simple psychophysical interaction analysis. PPI is one way to 

examine the influence of one brain area on another (granger causality and DCM are more 

advanced versions, see (Valdes-Sosa et al., 2011)), by studying the effect some 'external' 

variable has on the correlation between two brain areas. As many studies have found that the 
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ventral striatum is encoding a reinforcement learning error signal, we were interested in how 

that influences areas in vmPFC. 

. We tested whether the correlation between Ventral Striatum and vmPFC was stronger for 

rounds where subjects performed a choice according to the System 1 model (thus implying a 

causal relationship). Specifically we used the average activity in the region of Left Ventral 

Striatum for which activity was found to be significantly correlated with the reward error (see 

Figure 3a) and looked at the correlation between this region and the activity of the vmPFC for 

the time period 4 seconds before the onset of the choice screen. We then compared this 

correlation for rounds where subjects were about to follow System 1 versus rounds where 

subjects deviated from System 1 and found a significant increase in vmPFC (see table S5 in the 

Supplementary Online Material for a list of areas, including areas outside PFC), at least part of 

which (peak activity p<0.0005, 15 voxels, uncorrected) overlapped with the area shown in 

Figure 2 to be encoding the expected reward according to System 1. That is, when subjects are 

about to perform according to the System 1 strategy the ventral striatum is significantly more 

correlated with the vmPFC, than when failing to follow such a strategy. 

This implies that a strong correlation between Ventral Striatum and prefrontal cortex can 

prevent subjects from diverging from the correct Model-free strategy, in turn supporting a link 

between the computation of the Model-free error and Model-free value.  Given the strong 

connectivity from VS to vmPFC/OFC (see e.g., (Haber and Knutson, 2009) for a recent review), 

such an influence is feasible but we do not know of any studies that have found behavioral 

correlates of such influence. Also we do want to emphasize that this is merely a correlational 

result, hence we can not rule out other mechanisms for this effect.   

No areas were found where activation correlated significantly (at p<0.001 uncorrected, with 

minimum of 5 voxels) with the absolute difference between the System 1 value of a strategy and 

the System 2 value of the game. The absence of such a signal of conflict suggests that arbitration 

between the two systems is not necessarily triggered by competing output (Kerns et al., 2004).  

<INSERT FIGURE 4 AROUND HERE> 

 

Relative uncertainty has been suggested as an alternative way to arbitrate (Daw et al., 2005). As 

measures of the uncertainty for System 2 we used the entropy of the distribution (after taking 

into account uncertainty in the estimation of this property, see Methods). Behavior was 
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consistent with the hypothesis that arbitration increased with uncertainty: the full System 2 

entropy was larger for rounds where subjects deviated, than for when their choice was guided 

in accordance with System 2 (significant at p<0.05 for 15 out of 17 subjects, unpaired two-

tailed t-test with unequal variance, one subject was excluded from this analysis for having too 

few deviations from System 2). 

Regarding deviations from System 1 optimal strategy, we discovered significant predictability 

based on an estimate of the uncertainty of the System 1 value, namely, an exponentially 

smoothed average of past squared prediction errors (unpaired two-tailed t-test across subjects, 

significant at p<0.005). This further corroborated the idea that valuations were arbitrated 

based on uncertainty.  

To study this further we created a separate GLM that included these two Uncertainty variables 

as regressors, as well as the previously specified block regressors. However no brain areas 

showed enough activity to pass our significance level (p<0.005, more than 4 voxels). 

Discussion 

The presence of two concurrent signals in PFC, one correlating with the System 1 value 

corresponding to a reflexive, reinforcement learning approach, and another one correlating 

with the System 2 value of the game representing a reflective, Bayesian learning approach, 

provides the first unequivocal neurobiological evidence in support of the dual systems 

approach. The location of the value signals accords with prior findings (Padoa-Schioppa and 

Assad, 2006; Plassmann et al., 2007; Tobler et al., 2007). Corresponding to the two value 

signals, we reported two learning signals at outcome presentation. They are (i) the prediction 

error of the System 1 value of the chosen strategy, and (ii) the update of the System 2 value of 

the game. The former is located in striatal areas, which suggests that it corresponds to the usual 

reward prediction error generated by the dopaminergic system (McClure et al., 2003). The 

signal for the update of the System 2 value of the game is located in frontal cortical areas, in 

particular, left BA 10. This area has been associated with tasks that, like Bayesian learning, 

require evaluation of relationships, in particular, deductive reasoning (Monti et al., 2007).  

When two different value signals are generated, a resolution mechanism is needed. Two 

mechanisms have been proposed, one based on conflict (Kerns et al., 2004) and one based on 

uncertainty of the value signals (Daw et al., 2005). We did not find any support for such a 

conflict signal (the absolute difference between the System 1 and 2 valuations); engagement of 
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anterior cingulate cortex (Kerns et al., 2004)  and globus pallidus (Yoshida and Tanaka, 2009) 

as a precursor of deviations of choice from System 1 optimal indirectly suggests adjudication 

across System 1 valuations through error correction. Consistent with recent theorizing that 

adjudication need depends on uncertainty, we found that subjects tended to deviate from the 

System 1 and System 2 optimal strategies when valuation uncertainty was highest.  

A few previous papers have examined the issue of model-free versus model-based learning 

using fMRI. Hampton et al. (Hampton et al., 2006) used a simple reversal learning task and 

found activity in vmPFC that was better described by a state-based (system 2) learner than a 

reinforcement (system1) learner, however no analysis of the converse was done. This is 

compatible with our findings of both systems being present in slightly different area, with parts 

of vmPFC being better activated by either model. 

 A very recent paper (Gläscher et al., 2010) also attempted to find neural correlates of the two 

value systems. While they do not report any value activation for either system, they did find 

prediction errors for both systems in ventral striatum and lateral PFC for system 1 and 2 

respectively, similar to the results we here present for the prediction errors and updating of 

system 1 and 2 respectively. Our ability to disentangle the value signals can therefore be seen as 

encompassing the work by Gläscher et al. while extending it by finding the expected values.  

While our study was inspired by the work by Daw et al. 2005, our task means we deviate 

slightly from their approach. For the setup imagined by Daw et al. the main difference between 

the model free and model based learner is how each builds its model of the world, either 

updating the values sequentially or building up a transition matrix for the possible states in the 

system. In our task the main difference between the two systems is in the assumptions 

underlying the learning, none or fully informed. No assumptions means that there is no 

knowledge about the structure of the task, which could change without warning, while fully 

informed means the model knows everything we have told the subject. Specifically this leads to 

a difference in the treatment of the information, either a steeply discounting model free system 

versus an integrator that treats all rounds equally. However it is straight forward to see the 

model-based learner in our task as estimating the probabilities of transition e.g. from a choice 

to reward states, and acting upon these probabilities. Thus while our experiment was designed 

to frame the question in a slightly different way than Daw. et al, the analysis can be shown to be 
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congruent. Despite this difference in interpretation we believe we are true to the spirit of the 

proposal by Daw et al. and future studies will have to expand upon these ideas. 

The role of counter-factuals has been studied in a few recent papers, including by Coricelli et al. 

(Coricelli et al., 2005), who found  encoding of the counterfactual in medial OFC upon 

revelation. However in our task the counter-factuals are perfectly negatively correlated with 

the rewards received in the task, making it impossible to distinguish the two. 

Our findings may seem to contradict recent reports of a single valuation signal in intertemporal 

choice tasks (Kable and Glimcher, 2007) or tasks contrasting known (pure risk) and unknown 

(ambiguity) probabilities (Levy et al., 2010). However, our experiment concerns a situation 

where, true to the spirit of dual-system theory, the optimal choice can simultaneously be 

computed based on two different principles (in our case, RL and Bayesian learning). This 

contrasts with contexts where the values of two options conflict, yet a single over-arching 

valuation principle exists which explains choice. In intertemporal choice tasks, the hyperbolic 

discounting model provides the unifying valuation principle (Kable and Glimcher, 2007), while 

alpha-maxmin choice theory explains values and choices in comparisons between pure-risk and 

ambiguous gambles (Levy et al., 2010). 

In summary, our findings constitute neurobiological evidence in favor of dual system theory of 

decision making. In accordance with recent neuroeconomic evidence, we discovered distinct 

subjective value signals and prediction error signals corresponding to System 1 and System 2 

processes. Only, here we reported two, often divergent valuation signals for the same choice 

situation. One was based on a fast way to learn value (RL); the other required more 

sophisticated thinking, originating in Bayesian updating. Adjudication appeared to happen 

when uncertainty was highest, consistent with recent theoretical modeling (Daw et al., 2005). 
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Figure 1: Experimental design and fit of subjective valuation models.  

A. Subjects were presented with images of 3 doors and had to rank them by pressing buttons 1, 2 and 3 in the 

corresponding order (Choice Screen). Responses were self paced. After 5-7 seconds of fixation the correct door 

would be indicated and the results screen would be displayed for 1.5 seconds showing a gain, no change or a loss 

(Results Screen) dependent on whether subject had chosen that door as their 1st, 2nd or 3rd preference. After 

another 5-7 seconds of fixation the next round would begin. 

B. The log-likelihood of the RL (System 1) versus that of the Bayesian (System 2) model. The performance of 

the two models is highly correlated (p<0.001). 

C. Classification of subjects’ choices (first ranked door) over time as Bayesian (green circle) or RL (blue 

cross) optimal. Note that the two models will agree in certain rounds and that the first trial in each session is not 

classified. 

 

 

Figure 2: System 1 and System 2 values are concurrently encoded in mPFC. Saggital slice (x=-3) and coronal slice 

(y=53) showing the BOLD activation correlated with the System 1 value (A) and System 2 value (B) at the time of 

the pre-results screen. Threshold was set at p<0.001 with a minimum of 5 voxels in each cluster.  

 

Figure 3: System 1 errors are encoded in striatal areas while updates of the System 2 value correlate with 

activation in BA 10. A) Saggital slice (x=-3) and coronal slice (y=5) showing the activation pattern that significantly 

correlated with the error in the RL model at the time of the reveal screen. B) Saggital slice (x=26) and coronal slice 

(y=32) showing the activation pattern that significantly correlated with the change in Bayesian value of the game 

at the time of the reveal screen.  Threshold for all activations was set at p<0.001 with a minimum of 5 voxels in 

each cluster. 

 

Figure 4: Activations in mPFC precede choices guided by either System 1 or System 2. A)  Saggital slice (x=-4) and 

coronal slice (y=1) showing activations predicting choice consistent (yellow; red) or inconsistent (blue) with 

System 1, 0-4 seconds before display of the decision screen (HRF corrected). B) Saggital slice (x=-4) and coronal 

slice (y=1) showing increasing activation for a correct (relative to the System 2) decision 0-4 seconds before the 

decision screen is presented (corrected for HRF). A single area in prefrontal cortex showed activation. Threshold 

for all activations was set at p<0.001 with a minimum of 5 voxels in each cluster. 


