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Abstract

Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual
differences. A confounding factor is head motion. Children move more than adults, older adults
more than younger adults, and patients more than controls. Head motion varies considerably
among individuals within the same population. Here we explored the influence of head motion on
fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro
movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects
each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation
across subjects was not linked to estimated head motion. However, head motion had significant,
systematic effects on fcMRI network measures. Head motion was associated with decreased
functional coupling in the default and frontoparietal control networks — two networks
characterized by coupling among distributed regions of association cortex. Other network
measures increased with motion including estimates of local functional coupling and coupling
between left and right motor regions — a region pair sometimes used as a control in studies to
establish specificity. Comparisons between groups of individuals with subtly different levels of
head motion yielded difference maps that could be mistaken for neuronal effects in other contexts.
These effects are important to consider when interpreting variation between groups and across
individuals.
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1. Introduction

Resting-state functional connectivity MRI (fcMRI) is widely used to explore the architecture
of brain systems. Studies of differences across the lifespan, between individuals with clinical
diagnoses, and across varied personality traits have become common (for recent reviews, see
Fornito and Bullmore, 2010; Fox and Greicius, 2010; Vogel et al., 2010; Zhang and Raichle,
2010). The technique is robust and yields reliable measures within individuals (e.g., Honey
et al., 2009; Meindl et al., 2010; Shehzad et al., 2009; Van Dijk et al., 2010; Zuo et al.,
2010). Recent family and twin studies suggest functional connectivity estimates are heritable
and thus may offer insight into how genetic variation affects brain function (Fornito et al.,
2011; Glahn et al., 2010). However, there is general awareness that resting state fcMRI is
sensitive to confounding factors including head motion even after common data
preprocessing steps (Buckner, 2010; Cole et al., 2010). Head motion has long been known to
be a confound in task-based functional MRI studies, but has become a particularly
challenging problem in recent studies using fcMRI. Effects of interest are often between
groups of subjects where differences in motion are expected such as between children and
young adults, between young and old adults, and between patients and controls. The present
paper sought to explore how head motion affects measures of functional connectivity.

2. Methods

2.1 Overview

The primary focus of the paper was to explore how between-subject differences in head
motion affect MRI measures of intrinsic functional connectivity. A large sample of data
from typical, healthy control subjects ages 18 to 30 were selected (r7=1110). All subjects
were imaged on matched MRI scanners using the same MRI sequence. Subjects with
artifacts or abnormally low temporal signal-to-noise (tSNR) were eliminated but otherwise
the sample represents a typical convenience sample of good to excellent quality data. The
movement properties of the remaining sample (/7= 1088) were characterized to illustrate the
dispersion. Functional connectivity metrics were then estimated for 1000 subjects. Head
motion was explored as a continuous variable to determine how it affected various
functional connectivity metrics including correlation strength among regions within the
default network, the frontoparietal control network, the motor network, and for a measure of
local functional coupling. Then, subjects were divided into 10 groups representing those
individuals who moved the least (Group 1) to those individuals who moved the most (Group
10). Group difference maps were constructed to illustrate how differences can arise in
functional connectivity analyses when the only known major difference between the groups
is head motion. As a final analysis we explored whether between-subject differences in head
motion are stable over time.

2.2 Subjects

Paid participants were clinically normal young adults with normal or corrected-to-normal
vision, without a history of neurological or psychiatric illness, and not taking any
psychoactive medications (/7= 1110). Subjects were excluded if artifacts were detected in
the functional MRI data (7= 2) and when the tSNR from either of the two functional MRI
runs was lower than 100 (/7= 20). The movement properties of the remaining sample (n=
1088) were characterized to illustrate the distribution. The sample was divided into 10 bins
representing those individuals who moved least (Group 1) to those individuals who moved
most (Group 10) (Table 1). Subjects were randomly selected to form groups of 100 subjects
with the only constraint that either a male or a female was removed, whichever made the
groups most balanced in terms of sex. In these 1000 subjects (ages 18 to 30; mean age =
20.6 yr; 57% female; 88% right handed) functional connectivity was analyzed. Analysis of
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variance indicated that age was evenly distributed across motion groups (#(9, 990) = 1.14, p
= 0.33), while sex was not (;(2 (9, 1000) = 18.9, p< 0.05). For the results that follow it is
important to note that Groups 1 and 10 differed significantly regarding sex distribution (y?
(1, 200) = 9.5, p<0.01), while sex was equally distributed between Groups 3 and 8 (/1/2(1,
200) =0.02, p=0.89) and Groups 5 and 6 (;(2(1, 200) =0.08, p=0.77). A total of 42
subjects (ages 18 to 26; mean age = 20.1 yr; 62 % female) were scanned on two separate
days within one year to provide a dataset amenable to test reliability. Participants provided
written informed consent in accordance with guidelines set by institutional review boards of
Harvard University and Partners Healthcare.

2.3 MRI data acquisition

All data were collected on matched 3T Tim Trio scanners (Siemens, Erlangen, Germany)
located at Harvard University and the Massachusetts General Hospital using the 12-channel
phased-array head coil supplied by the vendor. The functional imaging data were acquired
using a gradient-echo echo-planar imaging (EPI) sequence sensitive to blood oxygenation
level-dependent (BOLD) contrast (Kwong et al., 1992; Ogawa et al., 1992). Parameters were
TR = 3000 ms, TE = 30 ms, flip angle = 85°, 3 x 3 x 3 mm voxels, FOV = 216 with 47
slices aligned to the anterior-commissure posterior-commissure (AC-PC) plane using
automated alignment (Van der Kouwe et al., 2005). Two BOLD runs of 124 volumes each
were acquired. Slice acquisition order was interleaved. Earplugs were used to attenuate
scanner noise and head motion was restrained with a foam pillow and extendable padded
head clamps. Before both resting state scans subjects were instructed to simply rest in the
scanner with their eyes open while staying as still as possible. Structural data included a
high-resolution multi-echo T1-weighted magnetization-prepared gradient-echo image
(multi-echo MP-RAGE; Van der Kouwe et al., 2008). Further details of data acquisition can
be found in Yeo et al. (2011).

2.4 Functional MRI data preprocessing

Data processing was conducted as it would be for typical fcMRI data analysis including
correction for within-subject head motion. The first four volumes of each run were discarded
to allow for T1-equilibration effects. Slice acquisition dependent time shifts were corrected
per volume (SPM2, Wellcome Department of Cognitive Neurology, London, UK). Then,
rigid body translation and rotation from each volume to the first volume were used to correct
for head motion (Jenkinson et al., 2002, FMRIB, Oxford, UK). Atlas registration was
achieved by computing affine and non-linear transforms connecting the first volume of the
functional run using SPM2, with a BOLD EPI template in the Montreal Neurological
Institute (MNI) atlas space (Evans et al., 1993). Data were resampled to 2-mm isotropic
voxels and spatially smoothed using a 6-mm full-width half-maximum (FWHM) Gaussian
kernel. Temporal (band-pass) filtering removed constant offsets and linear trends over each
run while retaining frequencies below 0.08 Hz and the mean signal intensity over the run
was removed.

Several sources of spurious or regionally nonspecific variance were removed by regression
of nuisance variables including (i) six parameters obtained by rigid body head motion
correction, (ii) the signal averaged over the whole brain (global signal), (iii) the signal
averaged over the lateral ventricles, and (iv) the signal averaged over a region centered in
the deep cerebral white matter. Temporally shifted versions of these waveforms were also
removed by inclusion of the first temporal derivatives (computed by backward differences)
in the linear model. This regression procedure removes variance unlikely to represent
regionally specific correlations of neuronal origin. Regression of each of these signals was
performed simultaneously and the residual volumes were retained for the fcMRI analysis.
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See Vincent et al. (2006) and Van Dijk et al. (2010) for detailed descriptions of the above
procedures.

2.5 Measurement of head motion

Four separate metrics of head motion were calculated from the translation and rotation
parameters from the rigid body correction of head motion (Jenkinson et al., 2002). The four
metrics were: Mean Motion, Maximum Motion, Number of Movements and Rotation. Mean
Motion represents the mean absolute displacement of each brain volume as compared to the
previous volume and was estimated from the translation parameters in the x (left/right), y
(anterior/posterior), and z (superior/inferior) directions. Maximum Motion was estimated as
the maximum absolute translation of each brain volume as compared to the previous volume
in X, y, and z directions. The mean and maximum displacements in 3D space for each brain
volume were computed as the root-mean-square (RMS) of the translation parameters
(displacement = square root (x2 + y2 + z2)) and expressed in mm. Number of Movements
was estimated as the number of relative displacements > 0.1 mm in 3D space between
adjacent volumes. Thus, the metric is expressed as an integer with the minimum possible
value being 0 and the maximum n-1 where n is the number of acquired volumes in the
study. Rotation was a single angle measurement based on Euler’s rotation theorem that
expresses any 3D rotation as a single angle and corresponding axis of rotation. Rotation was
computed as the average of the absolute value of the Euler angle of the rotation of each brain
volume as compared to the previous volume. The Euler angle can be computed using the
following formula: arccos((cos(phi)cos(theta) + cos(phi)cos(psi) + cos(theta)cos(psi) +
sin(phi)sin(psi)sin(theta) — 1)/2), where phi, theta, and psi are the rotational parameters
around the three axes. For most analyses, we used Mean Motion as the central metric of
head motion but, as will be noted, use of other metrics does not change the results.

2.6 Measurement of temporal signal-to-noise ratio (tSNR)

tSNR was computed for each of the two resting-state functional runs and used as another
estimate of data quality. We have found that tSNR is a good predictor of data quality and
low values identify subjects with high head motion or other causes of data instability. Here
we formally explored the relation of tSNR to motion. For each subject, an inclusive brain
mask was estimated that included signal values > 150. The mean signal across the BOLD
run (exclusive of the first four volumes during which T1-stabalization occurred) was
calculated for each voxel, and then the mean value was divided by the standard deviation of
the signal intensity within the voxel over time. The mean tSNR value across all voxels in the
brain mask served as the measure of tSNR for the BOLD fMRI data.

2.7 Functional connectivity analysis

Four functional connectivity metrics were calculated targeting the default network; the
frontoparietal control network;, the motor network, and local functional coupling. For the
three networks, Pearson’s correlation coefficients were computed between timecourses that
were extracted from a priori spherical regions of interest (ROIs) within each network.
Fisher’s r-to-ztransformation (Zar, 1996) was applied to each correlation coefficient in
order to increase normality of the distribution of correlation values. Functional connectivity
was then averaged across all pairs of regions within the network to form a single composite
metric of functional connectivity strength. Regions forming the default network (Raichle et
al., 2001) were based on Van Dijk et al. (2010) and included the posterior cingulate cortex
(pCC: 0, =53, 26), medial prefrontal cortex (0, 54, —4), and left and right inferior parietal
lobule (-46, —48, 36 and 50, —62, 32). Regions forming the fontoparietal control network
were based on Vincent et al. (2008) and included the anterior prefrontal cortex (aPFC: -36,
57, 3 and 36, 57, 3) and inferior parietal lobule (-44, =52, 54 and 48, -50, 52). Regions
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forming the motor network were based on Biswal et al. (1995) and included the left and
right motor cortex (—42, —25, 63 and 42, —25, 63). All seed regions had a radius of 4 mm.

Finally, a measure of local functional coupling was calculated as described in detail
elsewhere (Sepulcre et al., 2010; see also Tomasi and Volkow 2010). Briefly, degree
centrality is a network measure that quantifies the number of edges (or links) that are
connected to a node in a graph (Rubinov and Sporns, 2010). Here brain voxels are the nodes
and positive correlations between voxels > 0.25 are the links. Data were down sampled to 4
mm isotropic voxels. Local degree connectivity was calculated for each voxel by counting
the number of links to other voxels within the immediate neighborhood (within a 12-mm
radius). The output is a whole brain local degree connectivity map for each subject. For the
present paper we took the ztransformed local degree connectivity map (with values ranging
from 0 to 1; Buckner et al., 2009) of 50 young healthy subjects as published previously
(Sepulcre et al., 2010) to create a binary mask of regions with high local degree connectivity
(2> 0.75). The metric of local functional coupling was the unstandardized average local
degree connectivity of all voxels within this mask. A high value for this metric means that
the data show high local functional coupling.

We also computed for each subject a functional connectivity map representing the default
network by correlating the mean signal time course from a spherical seed region within the
posterior cingulate cortex (pCC; 4-mm radius; MNI coordinates 0, =53, 26; Van Dijk et al.,
2010) with the time courses of all acquired voxels using Pearson’s product moment
correlation. Correlation maps were converted to z-maps using Fisher’s r~to-z transformation.
Group maps were computed by averaging the individual Z(r) correlation maps.

3.1 Estimates of head motion

We explored the distribution of head motion across all 1088 usable subjects by plotting the
frequency histogram of Mean Motion (the mean displacement of each brain volume as
compared to the previous volume). A few observations are notable (Figure 1A). First, there
is substantial inter-subject variability. Second, a minority of subjects displayed
disproportionately high levels of Mean Motion. Although this skewed distribution is
expected from a distance measure it is worth noting that 8.5% of the sample were outliers
and 2.8% were extreme outliers when defined as Mean Motion greater than 2.0 and 2.5
standard deviations from the mean, respectively. Third, Mean Motion was lower for females
than for males, which can be seen as a shift in their distributions (Memales = 0.049 + 0.020,
Mhiales = 0.054 + 0.024, £998) = 3.6, p< 0.001). Comparing Mean Mation to the other three
motion estimates revealed that all were correlated. Maximum Motion was the least stable
metric with a moderate correlation to Mean Motion (Figure 1B; r=0.67, p< 0.001). This
was not surprising because Maximum Motion is calculated based on a single image volume
displacement for each subject. Mean Motion and Number of Movements were near proxies
for one another (Figure 1C; r=0.96, p< 0.001), and Mean Motion and Rotation were
strongly associated (Figure 1D; r=0.84, p< 0.001). Further analyses primarily used Mean
Motion.

3.2 Head motion has a non-linear effect on temporal signal-to-noise

Figure 2 plots the strong inverse relation between Mean Motion and tSNR, which suggests
that subject motion introduces noise in the measurement. The relation was better modeled by
non-linear regression (r=-0.61, p< 0.001) than linear regression (r=-0.57, p< 0.001). Here
and elsewhere we display the quadratic regression term if it accounts for significant variance
beyond the linear term. The subjects were divided into 10 groups ranging from those who
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moved least (Group 1) to those who moved most (Group 10). Mean Motion displacement
per group is plotted by the black circles in Figure 2 that fall along the non-linear curve fit.

3.3 Head motion is associated with decreased functional connectivity in large-scale

networks

The central question of this paper is whether head motion is associated with differences in
functional connectivity estimates. Mean Motion was found to systematically affect all four
tested functional connectivity measures but not in the same direction. Analyses using
Rotation were statistically indistinguishable. Increasing Mean Motion was associated with
significantly decreased functional correlation strength among regions within the default
network (#7inear= —0.18, p < 0.001; Figure 3A) and the frontoparietal control network (/7zear
=-0.16, p< 0.001; Figure 3B). The plots and amount of variance accounted for by Mean
Motion also revealed that head motion explains only a fraction of the variance across
subjects, but that fraction may be critical and confound analyses.

To illustrate the effects of head motion on functional connectivity, we constructed contrast
maps between groups that differed in Mean Motion. Using a region in the posterior cingulate
cortex as a seed we computed the functional connectivity map representing the default
network for each subject. Contrasting Group 1 (10% of subjects that moved the least, Mean
Motion = 0.027) with Group 10 (10% of subjects that moved the most, Mean Motion = 0.10)
showed higher functional connectivity in the low motion group throughout the default
network including medial prefrontal cortex, lateral temporal cortex, and the inferior parietal
lobule in the group that moved least (Figure 4 left). A more moderate contrast between
Groups 3 and 8 (Mean Mation = 0.036 and 0.059) also showed higher functional
connectivity throughout the default network in the low motion group (Figure 4 middle).
Finally, contrasting Groups 5 and 6, with average motion parameters that are numerically
very close but significantly different (Mean Motion = 0.044 and 0.048), yielded difference
maps that resemble the canonical default network (Figure 4 right). Thus, systematic but
slight differences in head motion can produce functional connectivity differences.

3.4 Head motion increases local functional coupling

Head motion did not have the same effect on all functional connectivity measures.
Increasing Mean Motion was associated with increased functional connectivity between the
left and right motor regions (7yjzear = 0.07, p = 0.026; r;0p-sinear= 0.11, p=0.003) (Figure
3C). In addition, increasing Mean Motion was associated with higher local functional
coupling, i.e. connectivity to nearby regions (/yjnesr= 0.09, p=0.005; fon-tinear= 0.15, p<
0.001; Figure 3D). Thus, head motion can have systematically different effects on functional
connectivity depending on the network and measure.

3.5 Between-subject head motion differences are stable

The considerable dispersion among head motion estimates in Figures 1 raises the question of
whether head motion varies from run to run or reflects a trait-like stable property of subjects.
To explore this question, we examined the reliability of Mean Motion estimates across
independent scanning sessions in 42 subjects. Mean Motion was significantly correlated
between the two sessions (r= 0.57, p< 0.001 in the total sample; r= 0.66, p < 0.001 when
excluding four outliers) (Figure 5), indicating that certain aspects of head motion may
behave as a trait and present a potential confound when exploring individual differences
within a population.
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4. Discussion

The present study examined the influence of head motion on functional connectivity MRI.
The primary result is that head motion has systematic effects on functional connectivity
estimates that could easily be misinterpreted as neuronal effects. High levels of head motion
were associated with reduced functional connectivity in large-scale distributed networks
(e.g., the default network and the frontoparietal control network; Figure 3A and 3B) and
increased local functional connectivity (Figure 3C and 3D). Small differences in motion
were sufficient to produce specific effects in seed-based functional connectivity maps
(Figure 4). Head motion was stable within individual subjects from one acquisition session
to the next (Figure 5) raising the possibility that motion can confound studies exploring
individual differences within the same population.

4.1 Implications

A clear implication of the present results is that it will be necessary to carefully consider the
effects of head motion on functional connectivity MRI studies that examine individual
differences or that contrast subject groups. A cursory literature review indicates that there
are more than 100 studies that make such comparisons, many of which report between-
group decreases in functional connectivity in distributed networks of brain regions. As an
example of such a study, we examine one from our own laboratory — Andrews-Hanna et al.
(2007). While that study did not examine functional correlations acquired at rest, it did
contrast functional connectivity between subject groups during a continuous task state (a
rapid event-related paradigm) that is presumably sensitive to the motion confounds reported
here. It is thus a useful case study.

The primary finding of Andrews-Hanna et al. (2007) was robust reductions in functional
connectivity across multiple large-scale brain networks (the default and dorsal attention
networks) in healthy older adults relative to younger adults. The two groups differed in
motion as calculated in the original study using a root-mean-squared estimate of motion that
cumulated over the entire functional runs (young = 0.19 mm, old = 0.28 mm; p < 0.001).
Examining the correlation between the posterior cingulate and the medial prefrontal cortex
(one of the region pairs central to the paper) further reveals that the functional coupling
estimate is influenced by motion. Subjects who moved more showed reduced functional
connectivity across these two nodes of the default network (r=-0.47, p< 0.001). When
motion is regressed from the estimate of functional connectivity, the relation between age
and functional coupling drops from r=0.71 to r= 0.54 (remaining significant, p < 0.001).
Thus, there is an effect of the motion estimate but it does not account for the major portion
of the association.

However, it is still difficult to assess the full impact of motion. That study employed large
non-isotropic voxels and any single motion metric is certainly imperfect. Residual
components of motion may not be captured. Also, the well-intended control analysis in the
original report focused on local correlations within the visual system (which did not differ
between groups). The assumption was that artifacts and motion would globally affect
functional coupling between distributed regions. As the results in Figure 3 reveal, head
motion has different effects on different functional connectivity measures. Certain
correlations between the hemispheres (Figure 3C) and among local regions (Figure 3D)
increase with head motion. Thus, the original control is not sufficient in light of the present
observation that motion has differential effects depending of the functional connectivity
measure examined. We raise these points to make clear the complex challenges motion may
have on between-group comparisons.
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Beyond group comparisons, the present results also suggest that explorations of individual
differences within the same population may be systematically affected by motion confounds.
Figure 5 illustrates that subjects who tend to move on one occasion tend to move on another
occasion. Thus, head motion behaves like a trait and can be expected to influence individual
subject estimates in ways that may yield systematic differences. This possibility should be
carefully considered in genetic and heritability analyses.

We can place some boundary conditions on what to expect. While motion significantly and
systematically affects functional connectivity estimates, the large variability of functional
connectivity measures within motion groups, as shown in Figure 3, reveals that the major
portion of variance among people is not related to our present motion estimates. Recasting
the data illustrated in Figure 5 further clarifies this point. Head motion estimates are reliable
(r=10.57 in our present sample). The implication is that some portion (or all) of the reliable
differences in functional connectivity measures might be attributable to motion. To explore
this, we computed the test-retest reliability of four functional connectivity measures for the
42 subjects plotted in Figure 5. The functional connectivity measures showed moderate
reliability (r=0.61, 0.66, 0.43 and 0.44 for the default network, frontoparietal control, motor
network, and local functional coupling, respectively). When head motion was regressed
from the estimates, the test-retest reliability remained at about the same level (r=0.68, 0.62,
0.43, and 0.46, respectively). Thus, head motion does not seem to account for the major
portion of stable between-subject variation in functional connectivity.

Nonetheless, it is important not to underestimate the challenge of head motion. Head motion
is a particularly insidious confound. It is insidious because it biases between-group studies
often in the direction of the hypothesized difference. Given that different populations have
different data artifacts and levels of motion, and further that head motion does not affect all
functional connectivity estimates in a similar fashion, it will be important to address the
confound of motion on a case by case basis. That is, even though there is considerable
variation that is not due to head motion, in any given instance, a between-group difference
could be entirely due to motion. Paradoxically, large data samples may be particularly
vulnerable to this kind of confound where small, systematic differences in motion could
become the dominant difference as other sources of variation are matched between groups.
The rightmost panel of Figure 4 illustrates this point. The panel compares two large samples
(each n=100) that were matched for age and sex but systematically differed in a small
degree of motion (0.044 versus 0.048 mm Mean Motion displacement). A between-group
effect on functional connectivity of the default network is evident that is most likely entirely
driven by head motion. This difference in another context could easily be mistaken for a true
neuronal effect.

4.2 Potential ways to address head motion

Confronting motion artifacts is not a new challenge for the field and several potential causes
of motion have been identified. Gross motion may arise from shifts in head position during
the scan or from swallowing and jaw clenching; cardiac cycles and respiration are also
known to contribute to motion artifacts (Birn et al., 2008a; Enzmann and Pelc, 1992; Glover
et al., 2000; Huettel et al., 2004). Findings from task-based fMRI studies suggest that motion
may be more strongly related to subject groups than to properties of the task itself (Seto et
al., 2001), which is consistent with our finding that head motion behaves — to some degree —
as a subject-specific trait. We suspect that the major portion of the head motion affecting
functional connectivity in our analyses is due to gross head movement in space and,
specifically, head motion that persists after within-subject motion correction and regression
of non-specific signals from white-matter and CSF. The opposing effects of decreased and
increased functional connectivity may be caused by spatial blurring due to motion. Spatial
blurring will increase local correlation of the signal while decreasing the strength of long-
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range coupling to anatomically-specific regions. One exception might be distant coupling
between bilateral brain regions, such as the motor cortex, that could be exposed to
symmetric movements of the homologous region pairs.

Multiple strategies have the potential to address the challenge of head motion in studies
using functional connectivity that are as simple as better procedures for head immobilization
and careful instruction (and reminding) about the importance of staying still. One interesting
approach by Yang and colleagues (2005) involved real time feedback to indicate when
movement exceeded a specified threshold. Head immobilization and instruction will only go
so far to mitigate the challenge as cardiac cycles, respiration, and involuntary movements
such as swallowing will persist under the best circumstances. Other strategies to address
motion might include approaches that (1) improve traditional nuisance regression techniques
(for a recent example see Jo et al., 2010), (2) prospectively correct for motion during data
acquisition (Thesen et al., 2000; Ward et al., 2000), (3) post-hoc eliminate images or epochs
where motion is evident (Power et al., 2011), (4) regress physiological signals associated
with cardiac and respiratory motion either directly measured (e.g. Birn et al., 2008b; Chang
et al., 2009) or as estimated from the data itself (e.g. Beall and Lowe, 2007, 2010), (5)
regress motion estimates from between-subject analyses, and (6) match the level of motion
between subject groups.

5. Conclusions

Head motion significantly affects measures of functional connectivity MRI even within the
range of motion exhibited by typical, healthy young adults. The effects are dependent on the
specific measure and include decreased functional coupling for distributed networks and
increased functional coupling for local networks. Since motion was found to be a stable
property within subjects — behaving as a trait — studies of genetic associations, heritability,
and relations to behavior and personality will all need to consider the influence of head
motion. Analyses that contrast groups that differ in their tendency to move will be
particularly vulnerable to the confounding effects of motion, especially when the group
more likely to move shows reductions in distributed and increases in local functional
coupling (e.g., children and older adults). Application of strategies to reduce motion and
sophisticated methods to regress physiological signals associated with cardiac and
respiratory motion may prove beneficial for studies contrasting groups that systematically
differ in terms of head motion during the scan.
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Figure 1.

Head motion estimates across subjects. (A) The frequency distribution of Mean Motion
across the full sample (7= 1088). Mean Motion represents the mean absolute displacement
of each brain volume as compared to the previous volume. Black bars represent females;
white bars represent males. The distribution of motion for female subjects is shifted lower in
relation to the male subjects. (B) The relation between Mean Motion and the Maximum
Motion is illustrated. Each point represents a unique subject. The line plots linear regression
(r=10.67, p<0.001). (C) The relation between Mean Motion and the Number of Movements
between adjacent volumes > 0.1 mm (r= 0.96, p < 0.001). (D) The relation between Mean
Motion and Rotation angle (r=0.84, p< 0.001).
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Figure2.

Head motion is associated with reduced temporal signal-to-noise ratio (tSNR). The grey
circles each represent a unique subject from a random sampling of 1000 subjects. There is a
clear (expected) relation between Mean Motion and tSNR. The black line and curve
represent the best linear (r=-0.57, p < 0.001) and non-linear fit (r=-0.61, p< 0.001) to the
full sample of subjects. The black circles represent the mean values for each of 10 subgroups
of subjects that were divided based on Mean Motion. Each black circle is from 100 (10%) of
the sample, so the leftmost circle is from the stillest 10% of the sample and the rightmost
circle is from the 10% of the sample with the greatest head motion. Bars around the circles
represent standard errors of the mean. The last two subgroups (20% of the sample) moved
considerably more than the other eight subgroups, consistent with the skewed distribution
apparent in Figure 1.
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Figure 3.

Head motion is significantly correlated with functional connectivity but in opposing
directions for distinct measures. Plot format parallels Figure 2. (A) Functional correlation
among regions within the default network shows a significant linear (r=-0.18, p< 0.001)
decrease with increasing Mean Motion. (B) Functional correlation among regions in the
frontoparietal network also shows a significant linear decrease with increasing Mean Motion
(r=-0.16, p< 0.001). Non-linear regressions were not different from the linear fit. (C)
Functional correlation between left and right motor regions shows a significant linear (r=
0.07, p=0.026) and non-linear (r=0.11, p= 0.003) increase with increasing Mean Motion.
(D) Local functional coupling, a measure of functional connectivity to nearby voxels, also
shows a significant linear (r=0.09, p=0.005) and non-linear (r=0.15, p< 0.001) increase
with increasing Mean Motion. The most extreme movers appear to show a decrease. The
possibility of non-linear effects of head motion will be important to analysis strategies.
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Figure4.

Maps reveal functional connectivity network differences based solely on head motion.
Group functional connectivity difference maps are presented to illustrate how head motion
might confound an analysis. Each map represents the functional connectivity difference for
one group of 100 subjects with lesser motion as compared to a second group with greater
motion. Each map displays the surface projection for the difference for a seed region placed
in the posterior cingulate. The leftmost image shows the contrast between the two most
extreme groups (Group 1 is the stillest 10% of subjects and Group 10 is the liveliest 10% of
the subjects). Functional connectivity differences are observed throughout the default
network including medial prefrontal cortex, lateral temporal cortex, and the inferior parietal
lobule. The middle image shows a more moderate contrast between Groups 3 and 8. The
rightmost image shows the contrast between Groups 5 and 6 that have Mean Mation
estimates of 0.044 and 0.048 mm — an extremely subtle difference. Even in this tight range
of motion, differences in head motion yield difference maps that could easily be mistaken
for neuronal effects.
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Figurebs.

Between-subject differences in head motion are stable. Mean Motion estimates are plotted
for two separate scanning sessions conducted on separate days. Each data point represents a
unique person. The correlation is significant (r=0.57, p< 0.001) and increases further if the
four outliers (denoted by diamonds) are removed (= 0.66). Analyses of functional
connectivity will need to consider the possibility that certain aspects of head motion behave
as a trait and present a potential confound when exploring individual differences.
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Table 1

Demographics and Mean Motion displacement of study participants

Group n  Meanagel (SD) M/F8  Mean Motion in mm¥ (SD)

1 100 20.8 (2.4) 33/67 0.027 (0.002)
2 100 205 (2.3) 39/61 0.032 (0.001)
3 100 203 (2.2) 45/55 0.036 (0.001)
4 100 20.7 (2.5) 37/63 0.040 (0.001)
5 100 20.6 (2.1) 38/62 0.044 (0.001)
6 100 205 (2.4) 36/64 0.048 (0.001)
7 100 203 (2.1) 51/49 0.052 (0.002)
8 100 20.9 (2.8) 46/54 0.059 (0.003)
9 100 20.6 (2.4) 47/53 0.072 (0.005)
10 100 21.1(2.5) 55/45 0.100 (0.021)
Total 1000 20.6 (2.4) 427/573 0.051 (0.004)

nge was evenly distributed across groups,
§Sex distribution was significantly different across groups,

Mean Motion = mean displacement of each brain volume as compared to the previous volume.
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