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Abstract

The rate of learning or memory formation varies over time for any individual, partly due to 

moment-to-moment fluctuation of brain state. Functional neuroimaging has revealed the neural 

correlates of learning and memory, but here we asked if neuroimaging can causally enhance 

human learning by detection of brain states that reveal when a person is prepared or not prepared 

to learn. The parahippocampal cortex (PHC) is essential for memory formation for scenes. Here, 

activation in PHC was monitored in real-time, and scene presentations were triggered when 

participants entered “good” or “bad” brain states for learning of novel scenes. Subsequent 

recognition memory was more accurate for scenes presented in “good” than “bad” brain states. 

These findings show that neuroimaging can identify in real-time brain states that enhance or 
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depress learning and memory formation, and knowledge about such brain states may be useful for 

accelerating education and training. Further, the use of functional neuroimaging as a causal, rather 

than correlative, tool to study the human brain may open new insights into the neural basis of 

human cognition.

Introduction

The rate of learning or memory formation varies over time for any given individual, partly 

due to moment-to-moment fluctuation of brain state (Boly et al., 2007; Fernandez et al., 

1999; Gilden et al., 1995). Varying levels of alertness, attention, and motivation likely 

contribute to fluctuating brain states for learning. Blood oxygenated level dependent 

(BOLD) signal levels in specific brain regions can be used to measure such brain state 

fluctuation. Although little is known about the relationship between fluctuating brain states 

and successful memory formation, there is ample evidence about neural systems that 

underlie successful learning. Humans and other mammalian species depend upon the 

integrity of a medial temporal lobe (MTL) system that is essential for declarative or explicit 

memory for events and facts (Cohen and Squire, 1980; Corkin, 2002; Graf and Schacter, 

1985; Scoville and Milner, 1957; Squire, 1992). Within the MTL, there is considerable 

evidence that the parahippocampal cortex (PHC) is essential for successful memory 

formation for scenes. Patients with lesions in the PHC cannot learn new spatial 

environments (e.g., Epstein et al., 2001), and in healthy people there is greater PHC 

activation for scenes that are later remembered than for scenes that are later forgotten 

(Brewer et al., 1998; Gabrieli et al., 1997; Stern et al., 1996). PHC activation is also 

associated with successful memory formation for words (e.g., Wagner et al., 1998). The 

important role of PHC in learning scenes may be related to its specialization for scenes in 

high-level vision – a functional region within PHC has been termed the “parahippocampal 

place area” or PPA because it responds maximally to scenes relative to other visual 

categories such as faces and objects (Epstein and Kanwisher, 1998).

There is also evidence that the brain state occurring prior to stimulus presentation (in 

contrast to the above-reviewed studies of stimulus-evoked activation that occurs in response 

to a stimulus) influences memory formation for that stimulus. Pre-stimulus evoked response 

potentials (ERPs) correlated with memory for words (Otten et al., 2006). Within the MTL, 

pre-stimulus sustained entorhinal activation correlated with successful memory for words 

(Fernandez et al., 1999), and pre-stimulus PPA activation correlated with successful 

memory for scenes (Turk-Browne et al., 2006).

Knowledge of brain states that correlate with learning creates the opportunity to enhance 

learning itself. In animal conditioning, hippocampal theta activity (2-8 Hz oscillatory field 

potentials) predicts behavioral learning rate (Berry et al., 1978; Berry and Swain, 1989; 

Seager et al., 2002). Triggering learning trials on the basis of hippocampal theta activity 

enhanced learning in eyeblink conditioning in rabbits (Asaka et al., 2005; Griffin et al., 

2004; Seager et al., 2002). Thus, an invasive measure of brain state could be used to enhance 

learning in animals by having learning occur during an optimal brain state.
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Here, we asked whether human learning and memory could be increased or decreased by 

identifying, on a moment-to-moment basis, whether a person was in a good or bad brain 

state for learning scenes, and triggering presentation of each to-be-learned scene by the 

presence of a good or bad brain state. In Experiment 1, we examined whether such brain 

states that were good or bad for learning scenes could be identified in the PPA. In 

Experiment 2, we examined whether such brain states in the PPA, detected by real-time 

functional magnetic resonance imaging (fMRI) on a moment-moment basis, could be used 

to trigger scene presentation with the hypothesis that scenes triggered by good brain states 

would be better remembered than scenes triggered by bad brain states. Such a finding would 

offer evidence of the ability to monitor on-line whether a person is optimally prepared to 

learn, and the ability to use fMRI to causally enhance human learning in the sense that the 

real-time fMRI-measured brain state caused the scene presentation.

Experiment 1: Identification of a Brain State of Preparedness to Learn

The goal of Experiment 1 was to define the kind of BOLD signal of brain state that we could 

use to control learning in Experiment 2. Further, the location of that signal had to be a region 

that could be defined a priori in each individual, namely a PPA region (typical subsequent 

memory studies define memory-related regions a posteriori on the basis of memory 

outcomes).

Methods

Participants—Twenty right-handed participants (mean age = 27.1 years; 9 males, 11 

females) with normal or corrected-to-normal vision participated (three participants were 

excluded because of excessive movement during scanning; one participant was excluded 

because of poor behavioral performance). Participants were paid, and gave written informed 

consent approved by the MIT Committee on Human Subjects.

Task Materials and Procedure—Participants were told that a recognition test would 

follow study of scenes during scanning. Participants viewed 250 color photographs of indoor 

and outdoor scenes, presented one at a time for 3s, followed by a fixation cross for 9s. For 

each trial, they were instructed to determine whether they thought that they would remember 

or forget the presented scene later, and to respond by pressing one of two buttons. 

Participants had up to 12s (3s of stimulus duration plus 9s of fixation) to respond. 

Presentation of stimuli was randomized for all participants, and divided into 5 successive 

sessions. About 10 minutes after the scanned study phase, participants were administered on 

a computer a recognition memory test outside of the scanner consisting of 500 randomly 

presented scenes – 250 old (studied) and 250 new (unstudied foils) – with equal numbers of 

indoor and outdoor scenes in the studied and unstudied sets. Participants responded using a 

4-button confidence scale ranging from old to new.

Image Acquisition—Functional images were acquired using MRI at 3T with a 32-channel 

phased-array head coil with online motion correction enabled (Thesen et al., 2000) gradient-

echo, echo-planar imaging pulse sequence (MAGNETOM TIM Trio, Siemens Healthcare, 

Erlangen, Germany). Pulse sequence parameters were: TR = 2s, bandwidth = 2298 Hz/pixel, 
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flip angle = 90 degrees, matrix size = 64 × 64, field of view = 200 × 200 mm2, number of 

slices = 32, slice thickness = 3.5 mm and slice gap = 10%.

Statistical Analyses

All participants’ imaging data were preprocessed (realigned, normalized and smoothed) and 

analyzed in SPM5 software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm5). To 

investigate pre-stimulus BOLD signals and their correlation with successful learning, we 

performed a two-step subject-specific modeling analyses. First, each subject’s trials were 

grouped into three experimental conditions ‘remembered’ (‘hit’), ‘know’ (‘weak hit’), and 

‘forgotten’ (‘strong’ and ‘weak misses’ combined). The conditions were modeled using 

general linear modeling (GLM) with finite impulse responses (FIR) of order 6 as basis 

functions to derive subject-specific empirical hemodynamic response functions for each 

experimental condition. The second model for each subject included 2s (1TR) pre-stimulus 

conditions (i.e., ‘pre-stimulus hit’, ‘pre-stimulus weak hit’, and ‘pre-stimulus miss’) in 

addition to 3 experimental conditions. For this GLM, a FIR of order 1 was used as a basis 

function for pre-stimulus conditions, and the derived empirical HRF’s were used as basis 

functions for experimental conditions. This modeling approach accounted for the BOLD 

signals associated with the onset and subsequent encoding of scenes presented. A high-pass 

filter of 50 seconds was applied to the data.

To minimize the influence of guessing on analyses, we considered remembered scenes as 

only old scenes rated high-confident old and forgotten scenes as any old scene rated as either 

high-confident or low-confident new. Pre-stimulus activation levels for subsequently 

remembered (high-confident hits) and forgotten (misses) scenes were compared in 

individual participants. We used a PPA probability mask created from an independent set of 

fMRI data collected during a functional localizer for PPA for conducting an ROI analysis 

where the PPA was defined by greater activation for scenes than faces and objects.

Results

Recognition performance is reported in Table 1. Pre-stimulus activation in left PPA was 

significantly lower for remembered scenes than forgotten scenes (t19 = 2.21, p = 0.04 two-

tailed) (Fig. 1).

A prior report of a positive correlation between pre-stimulus PPA activation and subsequent 

memory noted that pre-stimulus PPA activation predicted subsequent memory when no filter 

was applied, but did not predict subsequent memory using a 128 s period cutoff (Turk-

Browne et al., 2006). Because stimuli are categorized a posteriori on the basis of memory 

outcome, the selection of a high-pass filter is somewhat arbitrary. Data were reanalyzed with 

no high-pass filtering or with a longer (100 seconds) high-pass filter. Without high-pass 

filtering, there was no significant PPA activation difference between remembered and 

forgotten scenes. With the 100s filter, the left PPA showed a marginally significant 

reduction in activation for remembered relative to forgotten scenes (t19 = 1.97, p = 0.06 two-

tailed). Again, there was not a reliable difference in right PPA activation. In general, fMRI 

studies use a high-pass filter to reduce low-frequency noise, but it is of interest that these 

findings are sensitive to the choice of the high-pass filtering.
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Discussion

The finding that lower pre-stimulus activation in the PPA correlated with subsequent 

memory for that stimulus is similar but opposite in direction from a previous study that 

reported a positive correlation between pre-stimulus PPA activation and subsequent memory 

for scenes (Turk-Browne et al., 2006). The difference in direction may be related to 

differences in inter-stimulus intervals (9 sec in the present study to minimize overlap of 

hemodynamic responses between a stimulus-evoked trial and the subsequent pre-stimulus 

period vs. 2-6 sec in the prior study) or the use of subject- and condition-specific empirical 

hemodynamic response functions (HRFs) in the present study to discount residual activation 

from the prior stimulus versus a canonical HRF in the prior study. Further, as noted 

previously (Turk-Browne et al., 2006), the selection of a high-pass filter value influences 

these findings.

Although the activation difference for subsequently remembered and forgotten scenes was 

significant only in the left PPA in Experiment 1, we used both left and right PPAs as ROIs 

in Experiment 2 because most studies examining memory for scenes have reported bilateral 

PHC activations associated with successful memory formation (Brewer et al., 1998; Ofen et 

al., 2007; Stern et al., 1996; Turk-Browne et al., 2006).

Experiment 2: Controlling Human Learning Via Real-time Monitoring of 

Brain State

Methods

Participants—Sixteen right-handed participants (mean age = 21.5 years; 9 males, 7 

females; all different participants from Experiment 1) with normal or corrected-to-normal 

vision participated.

Task Materials and Procedure—The real-time design required longer inter-stimulus 

periods than Experiment 1, so that we could only present 40 to 80 study scenes in 

Experiment 2 relative to 250 study scenes in Experiment 1. To compensate for the reduced 

number of scenes, we shortened the stimulus duration to 1s, and conducted the recognition 

test two hours post-scan so as to yield enough remembered and forgotten items for fMRI 

analyses. The imaging session consisted of two phases – (1) individual delineation of 

functional PPA and reference ROIs, and (2) the use of those ROIs to measure brain state and 

trigger scene presentation.

ROI Definitions: Participant-specific bilateral PPAs were defined using a functional PPA 

localizer in which participants viewed a series of color images of indoor and outdoor scenes, 

objects, and faces in a block-design and responded with a button press whenever an item 

repeated. Each experimental block was 16s in duration and consisted of 20 trials. There were 

3 repeated images in each block and each kind of block repeated 3 times over the scan. 

Within each trial, an image was displayed on the screen for 500ms followed by 300ms of 

fixation. Four 16s long fixation blocks were also included in the localizer, resulting in a scan 

that was just over 4 minutes with 128 measurements acquired. After image reconstruction 

and online motion correction, incoming images were stored to disk on a dedicated fMRI data 
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analysis computer using a custom data sender via intranet communication. Once all images 

were acquired, an fMRI analysis was done using the FMRIB Software Library (http://

www.fmrib.ox.ac.uk/fsl/) while the participant was in the scanner. The PPAs were located 

by a cluster of voxels more active for scenes than faces and objects (Epstein et al., 1999).

A general linear model (GLM) design matrix was constructed based on the stimulus 

schedule of the functional localizer with canonical hemodynamic response functions to each 

of the scenes, objects and faces conditions and their temporal derivatives as bases. A GLM 

fit was performed and the parameter estimates were then transformed into statistical images 

representing activation in experimental conditions. The PPAs were identified by voxels with 

statistically significantly higher activation levels during indoor and outdoor scenes relative 

to faces and objects.

Bilateral PPA ROIs were defined by thresholding the scenes versus faces and objects 

statistics volume until bilateral clusters in the assumed region of PPA were clearly 

delineated from the rest of PHC and became similar in size and shape to the PPA ROI 

probability mask used in Experiment 1. All voxels that survived this thresholding were 

included in the PPA ROI. We then performed a dilation operation by 5 voxels on the PPA 

ROI to slightly expand the ROI so as to anticipate potential movement in the upcoming 

scan.

The group average PPA was computed off-line to depict the average location of the ROIs 

across participants. This was done by using spatial normalization with SPM5 to compute 

transformation matrix for spatially warping mean functional image to MNI space, and then 

applying the resulting transformation to individual participant’s PPA ROIs. The PPA ROIs 

in MNI space were then averaged across participants to form a group average of PPA ROIs 

(Fig. 2).

The difference between PPA and reference ROIs was used as the signal to be monitored in 

real time. Participant-specific reference ROIs were created so that any changes in the PPA 

ROI reflected specific ROI fluctuations in BOLD signal, rather than broader, non-specific 

changes due to physiological noise or movement. Reference ROIs were constructed by 

taking the participant’s whole-brain mask and subtracting regions that were active during all 

experimental conditions of scenes, faces, and objects (vs. fixation; threshold T = 0.1) as well 

as the dilated PPA ROI.

Measuring Brain States and Triggering Stimulus Presentation using rtfMRI: In the 

same scan session, participants passively viewed a fixation cross during scans while brain 

state was continuously monitored by computing BOLD signal fluctuations within the PPA 

and reference ROIs. Incoming images were analyzed to estimate neural activation levels 

using a novel real-time fMRI method (Hinds et al., 2010).

Incoming EPI volumes were sent from the scanner via TCP/IP connection to an external 

analysis computer immediately after image reconstruction and motion-correction (Thesen et 

al., 2000), processed voxel-wise to estimate activation, and finally voxels within each ROI 

were combined. At each timepoint, an incremental GLM fit to each voxel's timeseries was 
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updated. The model design included bases to account for zeroth and first order temporal 

trends, as well as bases to account for the activation evoked by item presentation. The 

contribution of each of these nuisance signals was removed from the measured signal, 

leaving contributions from neural sources and noise. The result was converted to units of 

standard deviation (SD) from baseline using the estimated timeseries variance given by the 

GLM. The activation level within each ROI was computed as the median SD across all the 

voxels in the ROI.

A brain state was defined as the difference between the PPA and the reference ROI, with a 

“good” brain state defined as PPA activation being less than the reference ROI activation by 

a participant-specific threshold and a “bad” brain state defined as the PPA activation being 

greater than the reference ROI by the same threshold (thresholds were participant-specific so 

as to obtain a similar number of trials per participant). Whenever the absolute value of the 

difference between the PPA and reference ROI activation exceeded a predefined SD 

threshold, i.e. whenever participants enter their “good” or “band” brain state, a study trial 

was triggered and one scene was presented on the screen for one second (Fig. 3). To prevent 

activation evoked by item presentation from corrupting future fluctuation estimates, an event 

centered at the trigger TR (2s) was convolved with a canonical hemodynamic response 

function and added to the design matrix as a nuisance basis. No triggers were possible for 24 

seconds following a trial. The participant-specific threshold was determined by manually 

adapting the threshold after each functional run (from the initial threshold of 1SD) so there 

were approximately 10 triggers per each functional run. Trial trigger thresholds were 

determined at the outset of each run and held constant in that run. If there were too few trials 

triggered in a run, the threshold was adjusted prior to the next run so that enough trials 

would occur in the experiment to be support a contrast between remembered and forgotten 

scenes. Participant-specific thresholds ranged from 0.65 SD to 1 SD.

Participants were told that a recognition test would follow study of scenes during scanning. 

After a scene was presented, participants responded by pressing one of two buttons 

depending on whether the presented item was an indoor or an outdoor scene. No stimuli 

were repeated in the PPA localizer and rtfMRI encoding session. A minimum inter-trial 

interval of 24s was required before the next trigger to ensure that the evoked response to the 

previous trial had returned to baseline. Each participant underwent between 5 and 7 brain-

state triggering fMRI scans of 8 min, depending on how many good and bad triggers were 

accumulated so that each participant had minimum of 40 and maximum of 80 trials.

About two hours after the scanned study phase, participants were administered on a 

computer a recognition memory test outside of the scanner consisting of randomly presented 

studied scenes and foils. Unlike Experiment 1, participants were first asked if the test scene 

was ‘old’ or ‘new’, and when the response was ‘old’, then the participants were asked to rate 

their confidence using a 2-button scale.

Statistical Analyses

Recognition accuracy was calculated as correct identification of old scenes (% hits) minus 

incorrect identification of new scenes (% false alarms) as old.
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Results

Recognition performance for “good” and “bad” brain states are presented in Table 2. 

Participants were significantly more accurate for remembering scenes triggered by good 

brain states (Hits – False Alarms X = 22.3%, SD = 14.3%) than by bad brain states (Hits – 

False Alarms X = 15.5%, SD = 11.8%) (t15= 2.78, p < 0.014, two-tailed t-test) (Fig 4). Hit 

rates in both brain states were significantly higher than false alarm rates (t15= 6.23, p < 

0.001, two-tailed t-test). Memory improvements for scenes triggered by “good” relative to 

“bad” states were observed in 12 of 16 participants. The difference between good and bad 

brain states occurred for high-confident hits (t15= 1.95, p < 0.07, two-tailed t-test), with little 

difference for low-confident hits (t15= 0.37, p = 0.71, two-tailed t-test).

We examined the consequence of using the difference between PPA and reference-ROI 

activations as triggers for scene presentation relative to only using the PPA activation values 

as triggers for scene presentation. Using PPA values only, there was still significantly better 

memory for scenes triggered by low than by high PPA activations (t15= 3.34, p < 0.005, 

two-tailed t-test).

Mean item positions across the good and bad brain states did not differ across participants 

(t15=0.08, p = 0.94, two-tailed). We also examined the distribution of good and bad brain 

states in a repeated measures ANOVA of brain state (good/bad) × run (Figure 5), and also 

the distributions within runs (i.e., item positions within each run). The effects of state, run, 

and item positions within runs and their interactions were not significant (p’s > 0.79), 

suggesting that the differences in brain states were not related to factors such as primacy or 

recency effects or fatigue across the experiment.

Discussion

We identified a brain state in the PHG, specifically the PPA, that was associated with better 

or worse memory formation (Experiment 1), and then used real-time fMRI to monitor that 

brain state and to present information to-be-learned in either a good or bad brain state for 

learning (Experiment 2). Real-time, dynamic measurement of brain state prior to stimulus 

presentation resulted in either increased or decreased learning depending upon whether the 

brain was in a good or bad state for learning. Indeed, successful formation for memories 

increased by over a third when the PPA was in a prepared-to-learn state. Thus, human brain 

preparedness to learn can be measured and used to control the rate of learning or memory 

acquisition. There are, presently, no on-line behavioral measures of preparedness to learn 

that can be made prior to learning itself; brain measures may offer a unique window onto 

human preparedness to learn.

An unexpected finding was that decreased, rather than increased, pre-stimulus activation in 

the PPA predicted successful memory formation in both Experiments 1 and 2. This contrasts 

with the general finding that greater stimulus-evoked activation is associated with successful 

memory formation for scenes (e.g., Brewer et al., 1998; Gabrieli et al., 1997; Stern et al., 

1996), and also with the prior observation that under different experimental circumstances 

greater pre-stimulus activation was associated with successful memory formation (Turk-

Browne et al., 2006). The finding in this study that lower pre-stimulus PPA activation 
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predicted superior learning appears convincing because it was not only replicated for the left 

PPA across Experiments 1 and 2, but also it was causal for superior memory formation in 

Experiment 2. It may be speculated that lower activation reflects a lack of processing 

activity in the PPA, and that more resources are available for memory encoding during such 

an ebb of PPA activity. Further studies will needed, however, to delineate the circumstances 

under which lesser or greater PPA activation is associated with superior memory formation 

for scenes.

One limitation of this study is that because ROIs were required to be defined during the 

same scan session as the real-time fMRI component of the study, the process of ROI 

delineation involved some observer-dependent decision making. Efforts were made to keep 

the number of voxels in ROI to be as consistent as possible across participants. Future 

studies will be needed to better automate ROI definition, but because the identical ROI was 

used within each participant to define good and bad brain states per subject, ROI definition 

did not bias the behavioral outcome. A second limitation was that because there was no 

neutral baseline, we cannot know whether the increased learning or decreased learning that 

occurred in good or bad brain states, respectively, reflect only gains, only losses, or both 

relative to baseline.

We measured brain state in a functional brain region, the PPA, specifically associated with 

learning scenes, and future studies can determine whether preparedness to learn can be 

measured in other brain regions associated with either other kinds of domain-specific 

knowledge (e.g., fusiform cortex for faces, amygdala for emotional material) or with 

domain-general learning (e.g., hippocampus). The use of a contrast between the PPA and a 

reference ROI was made to minimize the possibility that the PPA signal would reflect 

movement or broad physiological noise or broad arousal state of the brain. Domain-specific 

attentional or arousal mechanisms may be relevant, and future studies could manipulate 

attention and arousal to test this possibility. However, in a similar real-time triggering study 

involving reaction time to an unpredictable visual target (Hinds et al., 2011), greater pre-

stimulus activation in motor cortex (SMA) and lesser brain activation in default brain 

regions were found to be related to faster performance. These findings suggest that pre-

stimulus measures of optimal brain states occur in neural systems that are associated with 

specific functions.

This study demonstrated that fMRI can not only identify the neural correlates of human 

behaviors, but also provide a kind of causal relation between brain activation and human 

behavior. Functional neuroimaging studies, including fMRI, are typically correlative in 

nature. In such studies, task conditions or materials are the independent variables used to 

drive variable kinds of behaviors, and the fMRI signal is the correlate of those behaviors. 

This correlative approach is fruitful in neuroscience, from single-cell animal 

neurophysiology to human brain imaging, but causal methods are a valuable complement for 

the study of brain function. In the present study, the fMRI measure of PPA activation, 

relative to a reference ROI, was the independent variable that drove stimulus presentation, 

so the fMRI signal was the cause of behavior (good or bad learning). Thus, this study shows 

that fMRI can be used as a causal tool to study the functional organization of the human 

brain. Such causal activation, however, does not fully define a brain region as being causal 
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or necessary for a behavior. For example, pre-stimulus fluctuations in the PPA may have 

correlated with brain functions in other brain regions that were causal for the memory 

formation.

Many fMRI studies have focused on impaired functions in neurological and psychiatric 

disease with the aim of understanding how impaired brain functions contribute to those 

diseases, but few, if any, fMRI studies have explored whether fMRI methods could enhance 

or optimize typical human abilities. The ability to identify when the brain is prepared to 

learn could, in theory, be useful for education and training. Either students could improve 

their ability to be prepared to learn, or teachers could recognize when students were 

prepared or not prepared to learn; in both cases learning would proceed more efficiently. 

Practical application of the newfound ability to identify brain preparedness to learn will 

require some sort of translation from fMRI to a method suitable for wider, practical use. 

How fMRI findings may be further optimized and translated into uses beyond a scanner is 

currently unknown, but these findings indicate that progress is possible in enhancing human 

learning by measuring brain states and using those measurements to guide effective learning.
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Figure 1. 
Pre-stimulus activation level in parahippocampal place area (PPA) predicts learning of 

scenes in Experiment 1. Pre-stimulus activation levels in PPA were measured in effect sizes 

(i.e., estimated parameter values of the general linear model) and plotted in arbitrary units on 

the Y axis for subsequently remembered (hits) and forgotten (misses) scenes in bilateral 

PPA in Experiment 1. Left PPA BOLD signal 2s (1 repetition time) prior to stimulus onset 

for remembered scenes is significantly lower than signal associated with forgotten scenes (*: 

p < 0.05). Error bars represent 95% confidence intervals for within-subjects design 

(Cousineau, 2005).
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Figure 2. 
Group average of PPA ROIs used for defining brain states in Experiment 2. All individual 

PPA masks were spatially normalized, and averaged to create a probabilistic map of PPA 

ROIs. Here, p > 0.2 was used as a threshold to depict group average of PPA ROIs.
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Figure 3. 
The real-time fMRI system. A real-time fMRI system was used to monitor the brain signal 

in individual PPA ROIs. Individual’s PPA regions were spatially normalized, and averaged 

to create a probabilistic map of PPA ROI across participants for this figure (regions in red 

are voxels that were in at least 30% of participants). Example from one participant plotted 

on the graph with PPA signal (red line) and the reference ROI signal (blue line). Whenever 

PPA ROI signal was less or more than reference ROI signal by an amount greater than the 

participant-specific threshold, a “good” or “bad” brain state trigger was issued to the 

stimulus presentation computer. When there was a “good” or “bad” trigger, a scene was 

presented for 1s and participants were asked to label the scene as indoor or outdoor.
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Figure 4. 
Real-time measurement of brain state alters recognition performance. Participants were 

significantly more accurate for scenes in which presentation was triggered by a good brain 

state than a bad brain state. Error bars represent 95% confidence intervals for within-

subjects design (Cousineau, 2005).
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Figure 5. 
Distribution of good and bad brain states across Experiment 2. Mean numbers of good and 

bad brain-state trials are plotted from beginning (Run 6) through the end (Run 0) of 

Experiment 2 for all 16 participants. Error bars represent standard errors computed over 

subjects for each run.
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Table 1
Average results (N = 20) from recognition memory test in Experiment 1

Old scenes (250 items) were categorized as either Hits or Misses with high or low confidence ratings, and foils 

(250 items) were categorized as correct rejections or false alarms with high or low confidence ratings.

Mean (%) Standard Deviation (%)

Studied Scenes:

 Hits (Total) 61.3 13.3

   High-confident 40.1 14.2

   Low-confident 21.1 11.8

 Misses (Total) 38.7 13.3

   High-confident 22.9 11.0

   Low-confident 15.9 16.6

Foils:

 Correct Rejections (Total) 74.4 17.9

   High-confident 36.8 22.4

   Low-confident 37.6 20.2

 False Alarms (Total) 25.6 17.9

   High-confident 10.2 16.0

   Low-confident 15.4 10.1

No Responses 0.6 0.9
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Table 2
Average results (N = 16) from the recognition memory test for the good and bad brain 
states in Experiment 2

Old scenes were categorized as either Hits or Misses, and further categorized with high or low confidence 

ratings. Foils were categorized as correct rejections (without confidence ratings) or false alarms with high or 

low confidence ratings.

Mean (%) Standard Deviation (%)

Good Brain State:

 Hits (Total) 48.8 16.6

   High-confident 27.7 14.1

   Low-confident 21.1 8.4

 Misses 51.2 16.6

Bad Brain State:

 Hits (Total) 41.9 15.8

   High-confident 21.9 11.9

   Low-confident 20.0 11.0

 Misses 58.1 15.8

Foils:

 False Alarms (Total) 26.5 11.3

   High-confident 6.9 4.2

   Low-confident 19.6 8.5

 Correct Rejections 73.5 11.3
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