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Abstract
Anticorrelated relationships in spontaneous signal fluctuation have been previously observed in
resting-state functional magnetic resonance imaging (fMRI). In particular, it was proposed that
there exists two systems in the brain that are intrinsically organized into anticorrelated networks,
the default mode network, which usually exhibits task-related deactivations, and the task-positive
network, which usually exhibits task-related activations during tasks that demands external
attention. However, it is currently under debate whether the anticorrelations observed in resting
state fMRI were valid or were instead artificially introduced by global signal regression, a
common preprocessing technique to remove physiological and other noise in resting-state fMRI
signal. We examined positive and negative correlations in resting-state connectivity using two
different preprocessing methods: a component base noise reduction method (CompCor, Behzadi et
al., 2007), in which principal components from noise regions-of-interest were removed, and the
global signal regression method. Robust anticorrelations between a default mode network seed
region in the medial prefrontal cortex and regions of the task-positive network were observed
under both methods. Specificity of the anticorrelations was similar between the two methods.
Specificity and sensitivity for positive correlations were higher under CompCor compared to the
global regression method. Our results suggest that anticorrelations observed in resting-state
connectivity are not an artifact introduced by global signal regression and might have biological
origins, and that the CompCor method can be used to examine valid anticorrelations during rest.
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1. Introduction
Coherent low frequency fluctuations in the resting state of the blood oxygenation level-
dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) are thought to
reflect the intrinsic organization of the brain [see (Buckner et al., 2008; Fox and Raichle,
2007) for review]. Resting-state fMRI has revealed that signals in functionally related brain
regions correlate with each other even in the absence of external stimuli (Beckmann et al.,
2005; Biswal et al., 1995; De Luca et al., 2006; Fox et al., 2005a; Fransson, 2005; Greicius
et al., 2003). Functional networks identified by resting-state fMRI have been shown to be
robust and reliable (Damoiseaux et al., 2006; Shehzad et al., 2009; Van Dijk et al., 2010;
Zuo et al., 2010), and can thus provide useful information about brain organization
differences across different clinical populations (Dosenbach et al., 2010; Seeley et al., 2009)
and during development (Dosenbach et al., 2010).

It has been proposed that some systems in the brain are intrinsically organized into
anticorrelated networks in resting-state fMRI. Specifically, the default mode network, which
consists of a set of brain regions that are commonly deactivated during tasks that demand
external attention, has been found to be anticorrelated with regions of the task-positive
network, which consists of a set of regions that are commonly activated in tasks that demand
attention and mental control (Fox et al., 2005b; Fransson, 2005; Greicius et al., 2003; Kelly
et al., 2008; Uddin et al., 2009). The strength of the negative correlation between the default
mode network regions and task-positive network regions has been linked to variability in
task performance (Hampson et al., 2010; Kelly et al., 2008) and individual differences in
task-induced BOLD activity (Mennes et al., 2010). Abnormalities in these two anticorrelated
networks have been found in patients with schizophrenia (Whitfield-Gabrieli et al., 2009),
ADHD (Castellanos et al., 2008), bipolar disorder (Chai et al., 2011), and Alzheimer's
disease (Wang et al., 2007).

However, it remains unclear whether the anticorrelations observed in resting-state fMRI are
neurobiologically valid or are instead artificially introduced by global signal regression, a
preprocessing technique for removing physiological and other noise in fMRI BOLD time
series (Aguirre et al., 1997, 1998; Desjardins et al., 2001; Macey et al., 2004; Zarahn et al.,
1997). Global signal, the average signal across all voxels in the brain, is removed in some
fMRI studies to correct for physiological noise, such as respiratory and cardiac noise, under
the assumption that global signal is not correlated with task-induced signal. However, when
global signal is influence by experimental manipulations, removing global signal can
decrease task-related activation in fMRI studies (Aguirre et al., 1998; Junghofer et al.,
2005). In seed-based resting-state fMRI analysis, physiological noise and signal fluctuation
caused by residual motion and other artifacts can introduce spurious correlation among brain
regions and result in overestimation of connectivity. Global signal is commonly removed
using a general linear model (GLM) technique to improve the specificity of functional
connectivity analysis (Fox et al., 2005b; Van Dijk et al., 2010; Weissenbacher et al., 2009).
However, global signal regression shifts the distribution of the correlation values of a seed
region toward the negative direction such that they must sum to less than zero (Murphy et
al., 2009). It has been suggested that anticorrelations in resting-state connectivity are most
likely artificially introduced by global signal regression, calling into question of the
functional significance of anticorrelations observed in resting-state connectivity (Murphy et
al., 2009). Previous studies have not reached a consistent conclusion on this issue (Chang
and Glover, 2009; Fox et al., 2009; Hampson et al., 2010; Van Dijk et al., 2010;
Weissenbacher et al., 2009).

In the present study, we examined positive and negative correlations in resting-state
connectivity using a component base noise reduction method (CompCor) (Behzadi et al.,
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2007). The CompCor method corrects for physiological noise by regressing out principal
components from noise regions-of-interest (ROI), such as the white matter and cerebral
spinal fluid (CSF) regions, in which signal is unlikely to be related to neural activity.
Compared to the average signal from white matter and CSF regions, principal components
derived from these noise ROIs can better account for voxel-specific phase differences in
physiological noise. Applying CompCor to BOLD time series significantly reduced noise
from physiological and other sources (Behzadi et al., 2007). Here we compared functional
connectivity from a default mode network seed region in the medial prefrontal cortex
(MPFC) under two separate preprocessing streams: the CompCor approach that does not
remove global signal, and the whole brain regression method in which the global signal was
removed. We hypothesized that anticorrelations from the MPFC seed should emerge without
global signal regression, when physiological and other spurious noise is effectively removed
using the CompCor approach.

2. Materials and Methods
2.1 Participants

Fifteen healthy participants (mean age: 37.3±2.4, 9 males) were included in the study. All
participants were right-handed, had no history of psychiatric or neurological illness as
confirmed by a psychiatric clinical assessment. The study was approved by the institutional
review boards of McLean Hospital. Signed informed consent was obtained prior to
participation.

2.2 Imaging procedure
Data were acquired on a 3T Siemens scanner using a standard head coil. T1-weighted whole
brain anatomy images (MPRAGE sequence, 256×256 voxels, 1×.3-mm inplane resolution,
1.3-mm slice thickness) were acquired. In addition, all participants underwent a resting
functional MRI scan of 10 mins with the instructions “keep your eyes open and think of
nothing in particular”. Resting scan images were obtained in 42 3.5-mm thick transverse
slices, covering the entire brain (interleaved EPI sequence, T2*-weighted images; 3.5-mm
inplane resolution, repetition time = 2.5 s, echo time = 24 ms, flip angle = 82, 64×64
voxels).

2.3 Data Analysis
Resting-state fMRI data were first preprocessed in SPM5 (Wellcome Department of
Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm), using standard
spatial preprocessing steps. Images were slice-time corrected, realigned and resliced into
2mm isotropic voxels, normalized, smoothed with a 4-mm kernel.

Connectivity analysis—Functional connectivity analysis was performed using a seed-
driven approach with in-house, custom software “Conn toolbox” (Whitfield-Gabrieli and
Nieto-Castanon) (http://web.mit.edu/swg/software/). We defined the MPFC seed following
the literature (Fox et al., 2005a; Whitfield-Gabrieli et al., 2009) as a 10-mm sphere around
the coordinates (−1, 49, −2) in Montreal Neurological Institute (MNI) space. Physiological
and other spurious sources of noise were removed using two separate preprocessing
approaches described below (Fig. 1). A temporal band-pass filter of 0.009 Hz to 0.08 Hz
was applied. Residual head motion parameters (3 rotation and 3 translation parameters, plus
another 6 parameters representing their first-order temporal derivatives) were regressed out.

a) Whole brain signal regression (WB-reg): The average signal over all voxels (global
mean) was computed for each time point and used as a temporal covariate and removed
using linear regression. In addition, signal from a 10-mm sphere ROI located in the center of
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the white matter and signal from the lateral ventricle were also removed (Fox et al., 2005b;
Vincent et al., 2006).

b) Anatomical CompCor (without global signal regression): Instead of removing the
global signal, non-neuronal sources of noise were estimated and removed using the
anatomical CompCor method (aCompCor) (Behzadi et al., 2007). The anatomical image for
each participant was segmented into white matter (WM), grey matter, and CSF masks using
SPM5. To minimize partial voluming with grey matter, the WM and CSF masks were
eroded by one voxel and used as noise regions of interest (ROI) (Fig. S1a). The average
volume of the white matter ROI before and after the one-voxel erosion was 622 cm3 and 198
cm3, respectively (68% of white matter voxels were removed by the erosion process). The
average CSF ROI volume before and after the one-voxel erosion was 436 cm3 and 20 cm3,
respectively (96% of CSF voxels were removed by erosion). The average volume of the
whole-brain mask that was used to estimate global signal was 1831 cm3. Principal
components of the signals from WM and CSF noise ROIs were removed with regression.
Signals from the WM and CSF ROIs were always extracted from the unsmoothed functional
volumes.

We examined the connectivity maps after removing 1, 3, 5, or 10 principal components
(PCA1 – PCA10) from the WM and CSF noise ROIs in order to determine the optimal
configuration of the aCompCor approach for resting-state connectivity analysis.

Correlation maps were produced by extracting the residual blood oxygen level–dependent
(BOLD) time course from the MPFC seed and computing Pearson’s correlation coefficients
between that time course and the time course of all other voxels. Correlation coefficients
were converted to normally distributed z-scores using the Fisher transformation to allow for
second-level General Linear Model analyses. For each preprocessing stream, the group
connectivity map was created by performing a random effects one-sample t-test across all
participants.

Creation of ROIs—To compare across different preprocessing methods, we created ROIs
for representative regions that were positively correlated or anticorrelated with the MPFC
seed, following Fox et al., (2005). The positively correlated ROIs included major nodes of
the default mode network, the medial prefrontal cortex (MPFC), posterior cingulate cortex
(PCC), left lateral parietal cortex (LLP), and right later parietal cortex (RLP). Anticorrelated
ROIs included the left and right dorsolateral prefrontal cortex (DLPFC), left and right
inferior parietal lobule (IPL), supplementary motor area (SMA), and frontal eye field (FEF).
The ROIs were created using the following steps: 1) Group-level connectivity maps from
each method (whole brain regression, and 4 aCompCor preprocessing streams with 1, 3, 5,
and 10 PCA components from the noise ROIs) were created. 2) A mask for positively-
correlated regions and a mask for anticorrelated regions were created for each method from
the connectivity map with the threshold of p < .001, uncorrected. 3) A union operation was
performed in SPM Imcalc on masks from all methods to create a combined mask for
correlated regions and a combined mask for anticorrelated regions across different methods.
4) Each ROI was restricted with the corresponding Brodmann area(s) from Fox, et al.
(2005). These ROIs for positively correlated and anticorrelated regions with MPFC (Fig. 3)
were later used to further examine the connectivity magnitude and specificity of different
preprocessing approaches via pair-wise t-tests. The rationale for using the union masks was
to make sure we include regions that were only present for a subset of the methods. Since
the CompCor approach which regressed out one principal noise signal component did not
result in significant negative correlations in several task-positive regions, a union mask was
used to examine the differences among the different analyses. To examine the positive
connectivity strengths in more restricted ROIs, we re-created the MPFC and PCC ROIs as
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intersections of the correlation maps from different methods, using a more strict threshold (p
< .05 FWE-corrected) (Fig. S4).

Specificity comparison of the different preprocessing streams—To examine the
specificity of each preprocessing approach, we compared group-level connectivity values
from regions showing significant correlation or anticorrelation with the MPFC seed with the
connectivity values from two reference regions in the visual cortex (Van Dijk et al., 2010) to
the MPFC seed in which no correlation is expected with the MPFC. The reference regions
were 10-mm spheres that were centered around MNI coordinates (−30, −88, 0) and (30, 88,
0). Following Weissenbacher et al. (2009), we define specificity as

Ztarget is the group-level fisher’s Z score from the MPFC to the anticorrelated or positive
correlated ROIs described above. Zreference represents the average fisher’s z scores from
MPFC to the left and right visual reference regions. Specificity of the target ROI Starget
ranges from −1 to 1.

To compare the specificity for different methods, we use a bootstrapping procedure
(resampling with replacement). The resampling technique consisted of creating a high
number (10^6) of new datasets from the original dataset by resampling with replacement
across subjects. Each new dataset consists of 15 data points, obtained from the original data
by choosing 15 subjects at random. Then for each of these new dataset, specificity from the
group-level averages was computed. The resulting distribution of values represents the
expected distribution of specificity values in the population. Hypothesis test p-values were
obtained by computing the corresponding percentages in the obtained distributions (e.g. the
p-value for comparing the specificity for one PCA method vs. the specificity for the whole
brain regression method was obtained by computing the percentage of times, from the
multiple datasets, where the specificity resulting from one PCA method was higher than the
specificity resulting from the whole brain regression method). p-values of two-sided tests are
reported.

3. Results
Distribution of the correlation values before and after whole brain signal regression or
aCompCor preprocessing is shown in Fig 2. Correlation values were predominantly in the
positive range before whole brain regression or aCompCor. Whole brain regression shifted
the distribution towards the negative range.

Regions positively correlated with the MPFC seed, including the posterior cingulate cortex,
left and right lateral parietal cortices, bilateral parahippocampal gyri, bilateral inferior
temporal cortices, were consistent across the both the whole brain regression and aCompor
approaches. Regions anticorrelated with the MPFC, including bilateral DLPFC, bilateral
IPL, SMA, and FEF, were present under both the whole brain regression approach and the
aCompCor processing streams when more than one PCA components were removed (Table
1, Fig. 3). These positively and negatively correlated regions corresponded closely to
previously reported default mode network and task-positive networks (Fox et al., 2005b;
Fransson, 2005).

Chai et al. Page 5

Neuroimage. Author manuscript; available in PMC 2013 January 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We further investigated the magnitude and specificity of the connectivity values of each
processing stream in subsequent ROI analysis, using masks for correlated and anticorrelated
regions described above (Fig. 4).

3.1 Magnitude of connectivity (Fig. 5)
Positively correlated regions—Compared to the whole brain regression method,
positive correlations were significantly higher or trended toward significance with the
aCompCor approach when 1 (PCA1: MPFC, p = .0002, PCC, p = .0004, LLP, p = .003, RLP
p = .008), 3 (PCA3: MPFC, p = .018, PCC, p = .003, LLP, p = .009, RLP p = .004), or 5
(PCA5: MPFC, p = .06, PCC, p = .02, LLP: p = .1, RLP, p = .07) principal components from
the noise ROIs were removed. When neither global signal nor principal components of the
signal from aCompCor noise ROI was regressed out, positive correlations were much
higher, which reflected the overestimation of correlations due to noise.

Anticorrelated regions—Compared to the whole brain regression approach,
anticorrelation strengths were less strong under the aCompCor processing streams (ps < .
05). Nevertheless, anticorrelations between the MPFC seed and all 6 anticorrelation ROIs
were significant with the aCompCor approach when 3, 5, or 10 PCA components were
removed (PCA3 – 5) (ps < 0.001). When only the first noise PCA component was removed
(PCA1), inferior parietal lobule ROIs (left and right IPL) were anticorrelated with the MPFC
seed at p < .001 level, while the anticorrelation between MPFC and DLPFC regions (ps < .
005) and FEF (p =. 03) were less strong. The SMA anticorrelation with MPFC seed was not
significant when only the first principal component was removed (p = .11). No negative
correlations emerged when neither global signal nor principal components of the signal from
aCompCor noise ROI were regressed out,

Reference regions—Connectivity from MPFC to functionally unrelated regions (in
which neither positive nor negative correlations were expected) was assessed using the
average connectivity between the MPFC and the two visual reference regions (10-mm
spheres around (−30, −88, 0) and (30, 88, 0)) (Van Dijk et al., 2010). There was artifactual
anticorrelation between MPFC and the reference regions when the whole brain regression
approach was applied (t(14) = 3.99, p = .001). With the aCompCor approach, connectivity
between MPFC and the reference regions not significant when 3, 5, or 10 noise principal
components were removed (PCA3 – 10) (ps > .14). When a single principal component from
noise ROIs was removed (PCA1), there was artifactual connectivity between MPFC and the
reference regions (t(14) = 3.21, p = .006). When neither global signal nor principal
components of the signal from aCompCor noise ROI was regressed out, we also observed
artifactual connectivity between the MPFC and the reference regions (t(14) = 3.71, p = .
002).

3.2 Specificity (Fig. 6)
Specificity of the whole brain regression approach was compared against specificity of the
aCompCor approach using the resampling simulation procedure described above (N = 10^6
iterations). Compared to the whole brain regression approach, specificity for positively
correlated regions was higher with the aCompCor approach when 5 or 10 PCA components
from noise ROI signal were removed (PCA5: PCC, p = .022, LLP, p = .028, RLP, p = .022,
MPFC, p = .038; PCA10: PCC, p = .032; LLP, p = .05; RLP; p = .032, MPFC, p = .046).
There was a trend for higher specificity for positively correlated regions when 3 PCA
components were removed compared to the whole brain regression approach (PCC, p = .
060, LLP, p = .066, RLP, p = .058, MPFC, p = .1). There was no difference in specificity for
these regions between whole brain regression and the aCompCor approach when only 1
PCA noise component was removed. Specificity for anticorrelated regions did not differ
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between aCompCor approach and the whole brain regression approach (ps > .1). Specificity
was the lowest when neither global signal nor principal components of the signal from
aCompCor noise ROI was regressed out.

Results from more conservative white matter and CSF noise ROIs, created by further
erosion of the white matter/CSF masks by two voxels, are presented in supplementary
material (Table S1; Fig. S2). To further compare the whole brain regression approach with
the aCompCor approach, we ran an additional analysis which included 5 or 10 principal
components of the global signal. Results from this additional analysis are included in the
supplementary material (Fig. S3).

4. Discussion
We examined the magnitude and specificity of resting-state connectivity using two different
data processing methods, to test the hypothesis that anticorrelation during rest is not
artificially introduced by global signal regression. Our results highlight that the global
regression can result in artifactual anticorrelations (as found between MPFC and
functionally unrelated reference regions). In contrast, the aCompCor approach correctly
removes these effects (no associations found between MPFC and reference areas) when
sufficient number of representative components are extracted from noise ROIs (3 or above
components) without incurring in artifactual anticorrelations. Robust anticorrelations
between the default and task-positive network regions emerged when the aCompCor method
was applied. Our results suggest that aCompCor is more effective in correcting for spurious
noise sources compared to global regression, and that anticorrelations observed in resting-
state connectivity cannot be fully attributed to artifacts introduced by global signal
regression and might be neuronal in origin.

Several lines of evidence from human and animal research also support the functional
significance of resting-state anticorrelations. First, global signal does not distribute
specifically to regions in the anticorrelated networks (Fox et al., 2009), but anticorrelation
between the two networks that typically show the opposite activation patterns during task
performance, the default mode network and the task-positive network, has been consistently
reported by multiple studies (Fox et al., 2005b; Fransson; Kelly et al., 2008; Uddin et al.,
2009). Second, anticorrelated relationships between the default mode and executive
attention components of the resting-state networks have been found using an independent
component analysis (ICA) approach, which does not involve global signal regression (Cole
et al., 2010; Zuo et al., 2010). Third, computational simulations of monkey and human
brains suggest existence of spontaneous anticorrelated networks (Deco et al., 2009; Honey et
al., 2007; Izhikevich and Edelman, 2008). Finally, neuronal origins of the anticorrelated
fluctuations in the BOLD signals have been explored by electrophysiological work in cats,
in which anticorrelated fluctuations of local field potential have been shown between
homologs of the task-positive and default mode systems in cats (Popa et al., 2009).

Compared to the whole brain regression preprocessing method, our results suggest that a
preprocessing stream using aCompCor, combined with the bandpass filtering and modeling
of movement parameters, may provide better sensitivity and specificity to detect positive
correlations in resting-state networks, while anticorrelations under the aCompCor approach
are similar to those with global signal regression. Physiological and subject-movement noise
sources are known to introduce artifactual positive associations between potentially
unconnected areas. When attempting to correct for these spurious effects our analyses show,
in agreement with Murphy et al (2009)’s rationale, that the global signal regression method
can effectively overshoot and introduce artifactual negative associations (as found between
MPFC and functionally unrelated reference regions), while the aCompCor method provides
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a more valid control (showing no associations between MPFC and reference regions). Also
in agreement with Murphy et al’s rationale, the connectivity between positively associated
regions (e.g., MPFC and PCC) seems to be undersestimated when using global signal
regression, compared to the aCompCor method. One possible explanation for the higher
positive correlations under aCompor is that the global signal may contain neural signal
(Scholvinck et al., 2010), and therefore removing the global signal will reduce the estimated
effects as well as the power to detect positive correlations. Moreover, the non-homogeneous
distribution of noise in the brain is not captured by the global signal, but is potentially
represented by the higher order principal components from the noise ROIs, which is
consistent with our results showing that a single principal component from the noise ROIs
only partially but not fully removes artifactual associations between MPFC and the
reference regions. Since global signal regression shifts the correlation coefficients
distribution to the more negative range, it is also not surprising to see anticorrelation
strengths to be the strongest under global signal regression.

Alternative physiological noise correction methods have been used to examine
anticorrelations in resting-state fMRI data (Chang and Glover, 2009). Chang and Glover
(2009) tested the effects of removing time-locked cardiac and respiratory artifacts
(RETROICOR) (Glover et al., 2000) and low-frequency respiratory and heart rate effects
(Birn et al., 2008; Chang et al., 2009). Physiological noise correction enhanced the extent of
negative correlations. Here we showed that aCompCor was effective in characterizing noise
of non-neural origin, yielding robust group-level anticorrelations. It is possible that other
physiological noise not modeled by Chang and Glover (2009), such as nonlinear interactions
between respiratory and cardiac effects, may be captured in aCompCor. The two approaches
combined together might provide even better noise correction in resting-state fMRI data
analysis.

Negative correlations are in general weaker in magnitude than positive correlations. This
could be due to the more varied temporal dynamics of anticorrelations compared to positive
correlations in resting-state BOLD connectivity. Chang and Glover (Chang and Glover,
2010) showed that the degree of anticorrelation between the default mode network and the
task-positive network exhibited considerable fluctuation within the course of a single
session. Furthermore, the dynamic interactions between the default mode and executive
control network have been shown to be modulated by nicotine administration in abstinent
smokers (Cole et al., 2010). Variability in the strength of the anticorrelation between the
default mode and executive control networks was linked with individual differences in
symptom improvement after nicotine replacement therapy, suggesting the functional
significance of state-dependent dynamics in anticorrelations between the two networks
(Cole et al., 2010). The majority of the studies so far have only tested stationary
relationships in resting state connectivity. Future studies are needed to better understand the
temporal dynamics between brain regions in the resting state.

When higher numbers of principal components from the noise ROIs were regressed out,
artifactual connectivity between the MPFC and functionally unrelated (reference) regions
was reduced, suggesting that removing higher number of PCA components resulted in more
effective noise correction. Residual confounding effects introduced by physiological and
subject motion are not spatially homogeneous enough to be captured by a single temporal
component. Higher number of PCA components allows these noise effects to be
characterized by a more complex set of temporal series and effectively removed, which
eliminated the artifactual correlations in the reference regions. However regressing out too
many PCA components (10 components) seemed to reduce correlation strengths, especially
positive correlations, at a similar rate as the reduction observed in the reference region. This
is reflected in the approximate saturation of the specificity results (Fig. 6) when extracting 5
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or above components from each noise ROI, consistent with the findings from Behzadi et al.
(2007) which estimated the number significant components for to be around 6. It is possible
that higher PCA components from the noise ROI may share spectral characteristics with the
neural signal which, paired with the associated reduction in degrees of freedom, may limit
the benefits of removing additional components from the noise ROIs. It is possible the noise
signal estimated from the WM/CSF masks still overlapped in a small portion with signal
from grey matter. However the extent of the contamination from grey matter signal should
be minimal compared to the global regression method. If the WM/CSF regressors share a
significant portion of its variance with the global signal regressor, one would expect similar
patterns of correlations when comparing the aCompCor method to a method that removes
principal components obtained from whole-brain voxels. In contrast we observe (Fig. S3)
faster reduction in spurious correlations with reference regions and slower decay of
correlations with positively and negatively correlated areas when using the aCompCor
method compared to regressing out principal components of the global signal. This suggests
important qualitative differences between those signals represented by the aCompCor
components and the global signal. Using more restrictive noise ROIs masks created by
eroding the WM/CSF masks by two voxels, we showed that significant anticorrelations to
task-positive regions still emerged when higher number of principal components were
regressed out (Fig. S2). Therefore we believe the CompCor method is a reasonable
alternative to the global regression method, which mathematically creates artifactual
negative correlations, as shown by Murphy et al., 2009. Based on the present analysis, we
propose that removing 5 principal components from noise ROIs, modeling residual motion,
and performing temporal pass-filtering are recommended in a resting-state connectivity
preprocessing stream.

In conclusion, we demonstrated that when physiological and other noise sources were
effectively removed, anticorrelations between the default network and task-positive network
were present without global signal regression and therefore may be of biological importance.
Future work in resting state connectivity should consider noise correction methods without
global signal regression, such as the one presented in the present study, possibly in
combination other physiological noise correction methods such as the ones described in
Chang & Glover (2009).

• Resting-state connectivity analysis without global signal regression.

• Principal components from noise regions-of-interest were regressed out
(CompCor).

• Robust anticorrelations were observed under CompCor.

• Specificity was equal or higher under CompCor compared to global signal
regression.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Illustration of the data analysis methods. The two preprocessing methods are shown in the
boxes.
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Fig. 2.
Connectivity maps (left panel) and correlations values distribution (right panel) after each
preprocessing step.
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Fig. 3.
Functional connectivity maps from the MPFC seed across all participants. a) whole brain
regression b) aCompCor, regressing out 5 principal components of the noise ROIs signal.
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Fig. 4.
Regions of interest used in the comparison of different analysis methods. Yellow: positively-
correlated ROIs. Blue: anticorrelated ROI.
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Fig. 5.
Connectivity from the MPFC seed to the positively correlated ROIs (top left panel),
anticorrelated ROIs (bottom panel), and functional related reference ROIs (top right panel).
Motion-reg: motion regression, without global regression or aCompCor. WB-reg: whole
brain regression. PCA1 – PCA10: aCompCor processing streams after regressing out 1 – 10
principal components of noise ROI signal. Bars represent the mean of the group. Error bars
are standard errors.
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Fig. 6.
Specificity for positively correlated (top) and anticorrelated (bottom) ROIs. Motion-reg:
motion regression, without global regression or aCompCor. WB-reg: whole brain regression.
PCA1 – PCA10: aCompCor processing streams after regressing out 1 – 10 principal
components of noise ROI signal. Error bars are standard errors.
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