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Abstract
The diversity of experimental designs that can be used with functional magnetic resonance
imaging (fMRI) has played a key role in its widespread application to studies of human cognition.
This flexibility is possible because the fMRI response to external stimuli is remarkably well
approximated as the response of a linear time variant system. The experimental demonstration of
this property provided the foundation for the development of event-related designs, in which the
fMRI response is modeled as the linear summation of the hemodynamic response to discrete
events. Building upon prior work from the fields of engineering, neuroscience, and statistics,
researchers in the field have created a rich collection of event-related designs and developed a
rigorous theoretical framework for characterizing and optimizing the performance of designs.
Ongoing challenges include the optimization of designs in the presence of experimental
constraints and the development of more time-efficient optimization algorithms.
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INTRODUCTION
Event-related designs are now a standard part of the fMRI experimental repertoire. The
paper by Scott Huettel in this issue provides an excellent discussion of the importance of
event-related designs for cognitive neuroscience. In this paper, I will review the technical
development of designs for event-related fMRI. In the spirit of this special issue of
NeuroImage, in addition to describing the overall arc of the technical development of
experimental designs for fMRI, I will also provide a bit of personal perspective on some of
the challenges faced and insights gained along the path.

One can trace the birth of event-related fMRI design to the work of (Blamire et al., 1992),
which appeared in the same year that the first papers demonstrating human fMRI were
published. This work showed that one could measure the fMRI response to brief stimuli that
were widely spaced and provided an early example of what is now commonly referred to as
the hemodynamic response function. It was also the first example of a slow event related
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design in which the wide spacing between stimuli allowed the experimenter to isolate the
responses to individual stimuli. Such designs have been used to measure the brain response
to isolated events (McCarthy et al., 1997), and have also been a standard tool for basic
studies of the dynamics of the hemodynamic response (Behzadi and Liu, 2006; Huettel et
al., 2001).

One of the key advances needed for the progression to more complex designs was the
introduction of the convolution model for fMRI analysis by (Friston et al., 1994). This
framework was subsequently extended to the analysis of slow event related fMRI
experiments (Josephs et al., 1997). A key assumption of these studies was that the fMRI
signal could be modeled as the output of a linear time invariant system. The seminal work of
(Boynton et al., 1996) provided the field with the experimental data showing that the
assumption of linear time variance was reasonable. Additional support for this assumption
was subsequently provided by (Dale and Buckner, 1997).

Selective averaging and rapid presentation rates
The demonstration of linearity gave researchers in the field the confidence to explore fast
event related designs in which the hemodynamic responses from different stimuli could
overlap. The initial step was taken by (Dale and Buckner, 1997), who demonstrated the
ability to obtain robust activation maps when using left and right-hemifield visual
checkerboard stimulus presented in a random order and spaced as little as 2 seconds apart.
Adopting a key concept from prior work on selective averaging of event-related potentials,
the authors counter-balanced the presentation of the stimuli so that in forming the average
BOLD response for a desired trial type (e.g. left hemifield stimulus) the contributions from
all other trial types (e.g. right hemifield stimulus) would average out. (Clark et al., 1998)
used a similar approach to show that experiments with rapid presentation rates (2 second
spacing) could be used to distinguish responses in higher-order cortical areas for a study of
face perception and memory. Building upon this prior work, (Burock et al., 1998) obtained
convincing visual BOLD responses using randomly ordered stimuli spaced only 500 ms
apart. In their work, they made use of “non-events”, which were defined as periods in the
stimulus sequence that contained a fixation condition, such as a blank screen with a small
central fixation cross (Buckner et al., 1998). The estimate of the hemodynamic response for
a stimulus was obtained by subtracting the event-related average of the non-event trials from
the average of the event types of interest. These non-events have also been referred to as null
events, which is the terminology that has been more widely adopted (Friston et al., 1999).

Optimizing Design Performance
The promising results obtained with randomized event-related designs led researchers in the
field to ask what type of design was optimal. Was it a design with randomized rapid
presentation of events or a periodic single trial design in which the spacing between stimuli
was fixed and on the order of the length of the hemodynamic response? How did these
event-related designs compare to the more traditional blocked design? In 1999, three related
efforts used the framework of the general linear model to provide some initial answers to
these questions (Dale, 1999; Friston et al., 1999; Josephs and Henson, 1999). The
performance of a design was defined as its statistical efficiency, which is inversely
proportional to the variance of the experimental contrasts of interest. This definition of
efficiency was equivalent to the A-optimal definition of efficiency that had long been used
in the statistical literature (Seber, 1977).

With the introduction of this formal measure of efficiency into the fMRI literature, a firm
basis was established for the rigorous comparison of various experimental designs. And yet
the papers published in 1999 seemed to differ on what constituted an optimal design. The
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work of (Dale, 1999) concluded that efficiency was maximized with designs in which the
stimuli were presented in a randomized manner, with efficiency increasing as the spacing
between stimuli was decreased. In contrast, while (Friston et al., 1999) also found that the
efficiency of a randomized design increased with decreased stimulus spacing, they
concluded that the most efficient design was obtained with a conventional block design.

This apparent contradiction was addressed in an abstract that Buxton and colleagues
presented at the Human Brain Mapping meeting in San Antonio in June of 2000 (Buxton et
al., 2000). They pointed out that the efficiency for detecting an activation when the shape of
the hemodynamic response is known was distinctly different from the efficiency for
estimating the shape of an unknown response. Now it should be noted that (Friston et al.,
1999) had already mentioned this range of potential knowledge with regards to the
hemodynamic response and advocated the use of temporal basis functions to gracefully
model varying assumptions about the shape of the response. However, the examples in their
paper focused on modeling the hemodynamic response with either one or two basis
functions, which corresponded to assuming a great deal of knowledge about the shape of the
response. In contrast, (Dale, 1999) had used an finite impulse response model of the
hemodynamic response in which the basis functions are the Kronecker delta functions (e.g.
unit impulse functions) and the number of basis functions is equal to the number of points in
the estimated response. The use of this model corresponded to making no assumptions about
the response shape, other than assuming the length of the response.

After pointing out the distinction between the two types of efficiency, Buxton et al. went on
to demonstrate the trade-off between these two types of efficiency using a plot similar to that
shown in Figure 1. In the plot the efficiency for detecting an activation with an assumed
shape for the hemodynamic response is referred to as detection power, while the efficiency
for estimating an unknown shape is referred to as estimation efficiency. Because the lines
demonstrating the trade-offs resembled tentacles dangling from a central point, these types
of plots were referred to as “jellyfish” plots by members of the UCSD MRI Physics group,
which included Rick Buxton and myself at the time. When Rick first showed me his
preliminary results in early 2000, I was struck by the geometric structure of the jellyfish and
thought it would be interesting to look for a mathematical explanation for the structure.

In searching for a suitable framework, I relied heavily on prior knowledge in the areas of
estimation efficiency from the statistical literature (Seber, 1977), sub-space based
approaches to signal estimation and detection from the electrical engineering literature
(Scharf and Friedlander, 1994) and quadratic forms and the Rayleigh quotient from my
undergraduate linear algebra textbook (Strang, 1980). Integrating these concepts with the
intuition provided by the jellyfish plots led to the understanding that the observed trade-off
between detection power and estimation efficiency was indeed fundamental. In addition, this
trade-off could be modeled by varying the spread of the eigenvalues of the Fisher
information matrix XTX formed from the design matrix X used in the general linear model
(Liu et al., 2001). An equal spread of eigenvalues provides optimal efficiency when one
wants to estimate the shape of the hemodynamic response, while concentrating a design's
energy into one dominant eigenvalue is optimal when one wants to detect an activation with
an assumed hemodynamic response shape. These two limits correspond to randomized and
block designs, respectively. In between these two limits, there is a wide range of other
possible designs that offer various trade-offs between detection power and estimation
efficiency, such as the dynamic stochastic designs proposed by (Friston et al., 1999), the
semi-random and mixed designs in (Liu et al., 2001), the varying stimulus duration designs
of (Birn et al., 2002), and the probability distribution based designs of (Hagberg et al.,
2001). A geometric interpretation of the fundamental trade-off is provided below.
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Extension to Multiple Trial Types and the Importance of m-sequences
Once the fundamental trade-off between detection power and estimation efficiency had been
demonstrated for experimental designs containing one trial type plus a null event (e.g. a
simple design with visual flicker as the trial type and a fixation cross as null event), the next
logical step was to see if this trade-off held for designs with multiple trial types. Although
preliminary simulations indicated that the trade-off observed for designs with multiple trial
types was similar to that found for single trial types, it wasn't clear how to demonstrate this
from a mathematical viewpoint. After several brief attempts in 2000 and 2001, I finally
decided in the summer of 2002 to make a concerned effort towards extending the
mathematical framework to handle multiple trial types. It turned out that a key step was to
approximate the Fisher information matrix as the Kronecker product of two matrices -- one
matrix representing the average auto-correlation (across trial types) of the experimental
designs and the other matrix containing information about the cross-correlation between
designs from different trial types (Liu and Frank, 2004). With this approximation, it could be
shown that the theoretical trade-off between detection power and estimation efficiency was
independent of the number of trial types. Thus, the basic framework that had been developed
for single trial type designs could be readily extended to multiple trial type designs. An
unexpected bonus of the extension of the framework to handle multiple trial types was the
ability to derive an expression for the optimal frequency of occurrence for presentation of
stimuli. This expression showed that the optimal frequency depended on the relative
importance assigned to estimation of individual events versus pair-wise contrasts and
provided a rigorous justification for the inclusion of null events.

An important difference between single trial type and multiple trial type designs was pointed
out by Giedrius Buracas who was experimenting with m-sequences at the Salk Institute. He
found that event-related designs based upon m-sequences could generally provide greater
estimation efficiency as compared to designs based upon random search (Buracas and
Boynton, 2002). For single trial type designs, the advantage offered by m-sequences is not
typically that great since a random search can usually return a design that offers nearly
optimal estimation efficiency (Liu et al., 2001). However, as the number of trial types
grows, the space of possible designs expands rapidly and it becomes increasing unlikely that
a random search can find a design that is even close to optimal (Liu, 2004). To make this
point clear, consider going from a design with 1 trial type to a design with 4 trial types.
Assuming a null trial type is included in each design and that each design has 100
timepoints, then there are approximately 1040 times more possibilities for the 4 trial type
design. In contrast to designs based on random search, m-sequences can come very close to
achieving the theoretical upper bound on estimation efficiency because of their nearly
optimal autocorrelation properties (Liu, 2004). The advantageous properties of m-sequences
have also made them a good starting point for designs that attempt to achieve flexible
tradeoffs between estimation efficiency and detection power, such as the clustered m-
sequence designs of (Liu, 2004) and the genetic algorithm based designs discussed below.

Modeling assumptions with basis functions
A deeper understanding of the trade-offs inherent in fMRI design can be gained by revisiting
the work of (Friston et al., 1999), who pointed out that the use of basis functions allows us to
flexibly describe our assumptions about the shape of the hemodynamic response. If we
assume that the shape is completely known, then there is just one basis function that is equal
to the assumed shape. The main drawback to making this assumption is that the shape of the
hemodyanmic response can vary greatly between subjects (Aguirre et al., 1998) and can be
altered by modulation of the baseline vascular state due to factors such as age, disease, or
medication (Cohen et al., 2002; D'Esposito et al., 2003). As a result, a design that is
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optimized for one assumed shape can perform quite poorly if the actual response differs
significantly from what is assumed (Liu et al., 2001).

On the other hand, if we assume no knowledge of the response shape, then as discussed
above, the basis functions are simply the Kronecker delta functions (i.e. unit impulses), with
one basis function for each point in the response. However, this is an overly conservative
assumption, since there is quite a lot of prior knowledge about the shape of the
hemodynamic response. For example, the vast majority of hemodynamic responses that have
been observed over the past twenty years are smooth functions that rise and fall with
transitions lasting several seconds or more. This prior knowledge can be captured through
the use of a set of smooth basis functions, such as the gamma density function and its
temporal derivatives (Friston et al., 1999). All possible hemodynamic responses are then
assumed to live within the space spanned by these basis functions. By choosing a limited
number of basis functions, one can achieve a significant gain in estimation efficiency, since
the number of parameters that needs to be estimated is greatly reduced. When it is assumed
that the response may be represented by smooth basis functions, the optimal design lies
somewhere between the block design that is optimal when there is just one basis function
and the fully randomized design that is optimal when the basis functions are unit impulses
(Liu, 2004).

Despite the advantages of using basis functions and the availability of sophisticated
processing approaches (Woolrich et al., 2004), their adoption for estimating response shapes
in event-related fMRI has been limited. I believe this is partly due to concern about the bias
introduced by potential misspecification of the basis functions. This bias occurs when the
shape that one wants to estimate does not lie within the space spanned by the basis
functions. Although hemodynamic responses are generally smooth functions, they can
exhibit interesting features that may not be captured by a limited set of basis functions.

The Geometry of fMRI Designs
As the mathematics underlying fMRI design can sometimes be a bit daunting, I have found
it helpful over the years to use geometric arguments to understand the basic principles. To
develop a geometric picture, we start with the general linear model y = Xh + n where y is
the observed fMRI time series, X is the design matrix that contains the stimulus timing
information, h is the hemodynamic response function, and n represents additive noise. For
any given level of additive noise, the optimal design will be the one that maximizes the
energy of the desired signal component Xh. In the case where we assume full knowledge of
h, we simply need to find the design matrix that maximizes Xh. However, in the cases
where there is either no knowledge or only partial knowledge about the hemodynamic
response, there will be a range of possible values for Xh and our goal is to find the design
matrix that maximizes the minimum value. To achieve this goal, it is helpful to first review
what a matrix does.

As discussed in detail in (Trefethen and Bau, 1997), we can think of any m × n matrix X as
an operator that stretches a unit sphere within an n-dimensional space into a hyper-ellipse
within an m-dimensional space. In two dimensions, the unit sphere is a unit circle and the
hyper-ellipse is an ellipse. As shown in middle column of Figure 2, the principal semi-axes
of the unit circle are given by the right singular vectors vi of the matrix X. These semi-axes
are transformed by the matrix into the principal semi-axes of the ellipse, where the length of
each semi-axis is given by the corresponding singular value σi. In mathematical notation,
multiplying each right singular vector by the matrix produces the scaled vector σiui = Xvi
where ui denotes the ith left singular vector. Essentially, the matrix stretches the unit circle
into the ellipse, where the amount of stretching along each axis is specified by the singular

Liu Page 5

Neuroimage. Author manuscript; available in PMC 2013 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



values. Note that the singular values are simply the square roots of the eigenvalues of the
Fisher information matrix presented in a previous section.

To apply this understanding to fMRI experimental design, we first have to consider how our
assumptions about the hemodynamic response map onto the unit circle. Under the
assumption of perfect knowledge of the hemodynamic response, the response is represented
by a single vector h with a specific orientation within the unit circle (shown by the red
vector in the middle column of Figure 2a). The response Xh will be maximized when the
right singular vector v1 closest to h has the largest singular value σ1, so that the portion of
the unit circle in this direction is maximally “stretched”. At the same time all other singular
values are minimized, resulting in a design matrix that takes the unit circle into a very
skinny ellipse. In contrast, when there is no knowledge about the shape of the response, then
the response can be represented by any vector terminating on the surface of the unit circle
(shown as red vectors in the middle column of Figure 2c). Because there is no preferred
orientation, we should stretch all right singular vectors equally, such that the unit circle is
simply transformed to another unit circle. This equal stretching of directions occurs when all
the singular values are the same. When basis functions are used to express some knowledge
about the shape of the response, then the vector h lies within a subset of the unit circle
(shown as vectors spanning a sector of the circle in the middle column of Figure 2b). The
optimal design will amplify vectors within the subset and lies between a design with one
dominant singular value and a design with equal valued singular values.

Spectral Interpretation
Because the spread of the singular values is related to the shape of the power spectrum of the
design (Haykin, 1996), there is a corresponding spectral interpretation of fMRI designs (see
lefthand column of Figure 2). A design with a dominant singular value, such as a block
design, will have a dominant peak in its power spectrum which allows it to concentrate most
of its energy at a single frequency. On the other hand, a design with equally spread
eigenvalues corresponds to a flat power spectrum. Under the assumption that we know
nothing about either the shape or spectrum of the hemodynamic response, this design is
optimal because it spreads the energy equally across all frequencies. When basis functions
are used, the spread of the singular values results in a power spectrum that lies between a
perfectly flat spectrum and a spectrum with a few dominant peaks (see Figure 2b). Such a
design will attempt to place the majority of its energy in a band of frequencies where there is
the greatest overlap of the spectra of the expected hemodynamic responses. Although
beyond the scope of this paper, the spectral and geometric interpretations of optimal design
can also be extended to aid in the understanding of the effects of correlated noise (Liu and
Frank, 2004).

Genetic Algorithms
The mathematical framework that has been developed for fMRI design tell us what levels of
performance are achievable, but except for a few limiting cases (such as m-sequences and
block designs), can only provide general guidance on how to generate additional designs
(e.g. clustered m-sequences). These designs can achieve various trade-offs between
efficiency and power, but are not guaranteed to find optimal points within the large search
space. In addition, the basic framework does not provide predictions of how the performance
may be affected by key experimental factors, such as non-linearities in the BOLD response
or the inclusion of additional constraints on the experimental design. As an example of the
latter factor, in many event-related experiments, there exists a constraint on the order of the
different trial types - e.g. a probe event is always be followed by a distractor event, which is
then followed by a decision event. This constraint limits the space of possible designs. An
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extension of the currently available framework to predict the optimal performance in the
presence of the constraints would be useful.

A practical approach to finding optimal fMRI designs is the genetic algorithm design
method first proposed by (Wager and Nichols, 2003). This method allows the experimenter
to specify all of their assumptions and constraints as well as their desired performance
criteria, which can include multiple objectives. The performance of the genetic algorithm
method has been recently improved by (Kao et al., 2009), and the improved algorithm has
been applied to generate designs that are optimal for linear estimation in the presence of
uncertainty in the noise autocorrelation structure (Maus et al., 2010) and for nonlinear
estimation of hemodynamic response parameters (Maus et al., 2011). The genetic algorithm
approach can take advantage of known good designs, such as block designs and m-
sequences, as starting points. The resultant designs will typically perform better than those
found through random search, especially when the search space is large, as is the case for
multiple trial type designs. A disadvantage of this approach has been the long time required
to search for optimal designs, but recent work indicates that significant reductions in search
time may be possible with improved algorithms (Kao and Mittelmann, 2011).

The Future of fMRI Design
Although the basic trade-offs involved in fMRI design are now generally well known by the
community, the actual design of experiments has not necessarily benefited from the latest
technical developments in the field. Many researchers still use routines provided in open
source fMRI software packages to randomly generate and evaluate designs, even though m-
sequences or genetic algorithms would provide better performance in many cases. Of
course, even a random search is preferred to arbitrarily picking a design without first
evaluating its performance. The continued development of intelligent search approaches,
such as the genetic algorithm based method, will be beneficial to the field. For these
advanced approaches to be more widely adopted, the software implementation will need to
be robust and easy to use. In addition, further theoretical work that takes into account the
effect of practical design constraints (such as the ordering of trials) on efficiency would
complement the computer-based design approaches by providing bounds on performance
and general guidelines for design under such constraints.

Although much of the prior work has focused on efficiency in the context of detecting or
estimating hemodynamic responses, there is growing interest in optimizing designs to
estimate more subtle aspects of neural activity, such as adaption and habituation (Aguirre et
al., 2011). In addition, as more sophisticated analysis methods, such as multi-voxel pattern
analysis (Norman et al., 2006) and dynamic causal modeling (Friston et al., 2003), become
more widely adopted, there will be a need to develop designs that optimize estimates
obtained with these approaches. Researchers who take up this challenge may very well
discover the next class of optimal designs for fMRI.
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Figure 1.
The fundamental trade-off between estimation efficiency and detection power. Each of the
symbols indicates the estimation efficiency and detection power for a particular design. The
solid lines are based on the theory developed in (Liu et al., 2001), where this figure was first
presented. Example stimuli and responses based on permutations of a 4-block design are
shown on the right-hand side. A is a random design, B and C are semi-random, and D is the
block design. The performance and stimulus pattern for a periodic single trial experiment are
shown in the lower left-hand corner.
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Figure 2.
Geometric and spectral views demonstrating the principles underlying optimal fMRI design.
(a) When full knowledge of the shape of hemodynamic response function (HRF) is
assumed , then the HRF is represented by the single red vector in the unit sphere. The
optimal design will maximally amplify this vector, while minimizing the gain in other
directions. This transforms the unit circle into a narrow ellipse. In the spectral domain, the
HRF spectrum is fully specified (blue line), and the optimal design will place a spectral peak
near the maximum of the spectrum. This is typically achieved with a block design , similar
to the example design shown below the spectrum. (b) When some knowledge of the HRF
shape is assumed (e.g. with the use of a limited set of basis functions), then the possible
HRF vectors span a sector within the unit circle. The optimal design will focus on
amplifying vectors within the sector, transforming the unit circle into an ellipse. In the
spectral domain, there is a range of similar HRF spectral shapes, and the optimal design will
tend to have a broadband spectrum (blue shaded area) that has relatively more energy where
the average HRF spectra overlap. This is achieved with a semi-random design. An example
design is shown below the spectrum. (c) When no knowledge of the HRF shape is assumed,
then the possible HRF vectors span the entire unit circle. The optimal design must equally
amplify all directions, such that the unit circle is transformed into another unit circle. In the
spectral domain, there can be widely varying HRF spectral shapes, and the optimal design
must therefore place equal energy at each frequency. This is achieved with a random or m-
sequence design, as shown below the spectrum.
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