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Abstract
A key challenge in functional neuroimaging is the meaningful combination of results across
subjects. Even in a sample of healthy participants, brain morphology and functional organization
exhibit considerable variability, such that no two individuals have the same neural activation at the
same location in response to the same stimulus. This inter-subject variability limits inferences at
the group-level as average activation patterns may fail to represent the patterns seen in individuals.
A promising approach to multi-subject analysis is group independent component analysis (GICA),
which identifies group components and reconstructs activations at the individual level. GICA has
gained considerable popularity, particularly in studies where temporal response models cannot be
specified. However, a comprehensive understanding of the performance of GICA under realistic
conditions of inter-subject variability is lacking. In this study we use simulated functional
magnetic resonance imaging (fMRI) data to determine the capabilities and limitations of GICA
under conditions of spatial, temporal, and amplitude variability. Simulations, generated with the
SimTB toolbox, address questions that commonly arise in GICA studies, such as: (1) How well
can individual subject activations be estimated and when will spatial variability preclude
estimation? (2) Why does component splitting occur and how is it affected by model order? (3)
How should we analyze component features to maximize sensitivity to inter-subject differences?
Overall, our results indicate an excellent capability of GICA to capture between-subject
differences and we make a number of recommendations regarding analytic choices for application
to functional imaging data.
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1. Introduction
Spatial independent component analysis (ICA) has emerged as a powerful technique for the
analysis of functional neuroimaging data. Based on the optimization of spatial
independence, ICA identifies brain regions with temporally coherent activity and linearly
decomposes data into a set of spatial components with corresponding activations (McKeown
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et al., 1998, 2003; Calhoun et al., 2009). Unlike conventional regression approaches, ICA
does not require an explicit temporal model, making it an ideal tool for applications where
brain activation is difficult to specify a priori, such as complex cognitive paradigms or
resting-state studies. The development of group ICA (GICA) frameworks (Calhoun et al.,
2001b; Beckmann and Smith, 2005) has further increased the utility and popularity of this
data-driven approach, permitting straightforward application of ICA to multi-subject
datasets without post-hoc matching or merging of components (Calhoun et al., 2001a;
Esposito et al., 2005; Schöpf et al., 2010). Using temporal concatenation of individual
datasets, GICA identifies group-level spatial components that can be back-projected to
estimate subject-specific components, comprised of individual spatial maps (SMs) and
activation time courses (TCs). This approach has been utilized in numerous studies to
describe inter-subject differences in intrinsic networks in both health and disease, e.g.,
(Calhoun et al., 2008; Jafri et al., 2008; Filippini et al., 2009; Beckmann et al., 2009; Biswal
et al., 2010; Allen et al., 2011).

Despite successful application, it is important to consider that multi-subject data may not be
consistent with the spatial stationarity assumption of ICA models. That is, by estimating
sources at the group level, we implicitly assume that spatial activations occur at the same
position and with the same shape in all individuals. However, striking neuroanatomic
variations exist across individuals, both with regard to topology and function (Ono et al.,
1990; Rademacher et al., 1993; Thompson et al., 1996; Uylings et al., 2005). Though gross
differences in size and shape can be moderated by spatially normalizing subjects into a
common anatomical space, it is well established that considerable variability in functional
localization persists (Amunts et al., 2000; Xiong et al., 2000; Wilms et al., 2005; Duncan et
al., 2009; Derrfuss et al., 2009).

The impact of inter-subject spatial variability on GICA is largely unknown. Such questions
are difficult to address in real data, where the true shape and extent of activations are
typically not available, but are well-posed for simulation studies where variability can be
parameterized and estimated features can be compared to a known ground truth. Previous
studies have used simulations to study spatial variability as an all-or-none phenomena,
where subjects either do or do not have a component. In a demonstration of the GICA
framework, Calhoun et al. (2001b) showed that if only 1 in 9 subjects exhibited a particular
component it could be faithfully reconstructed for the individual without erroneous
activation in other subjects. Later work by Schmithorst and Holland (2004) supported these
findings and determined that a given component need be present in as few as 10–15% of
subjects to be well estimated at the group level. While these simulations provide important
information for the application of GICA, they do not accurately model the spatial variability
that exists between individuals, nor do they address the effect of spatial variability on
estimation quality. Additionally, previous studies have not fully investigated the ability of
GICA to capture inter-subject variability in other domains, such as differences in component
amplitude and temporal coherence.

Motivated by the sparsity of published work and guidelines in this area, we have undertaken
a comprehensive set of simulation-based experiments to evaluate estimation quality of
subject activations under conditions of spatial, temporal, and amplitude variability.
Simulations are constructed with the SimTB toolbox (Erhardt et al., 2011a) and are modeled
after typical fMRI datasets with realistic dimensions, spatiotemporal activations, and noise
characteristics. Experiments 1–3 address inter-subject spatial variability. Guided by studies
describing variable functional organization between subjects (Xiong et al., 2000; Wilms et
al., 2005; Duncan et al., 2009; Derrfuss et al., 2009), we vary both component shape
(Experiment 1) and component location (Experiments 2 and 3) to determine the effects on
estimation and identify the point at which subject reconstruction fails. In Experiments 4 and
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5, we vary the level of activation (i.e., component amplitude) across subjects and determine
the most appropriate method to estimate amplitude information from subject components.
Notably, the estimation of component amplitude is strongly affected by the absence
(Experiment 4) or presence (Experiment 5) of spatial variability. Experiment 6 focuses on
the temporal domain, and investigates the estimation of functional network connectivity
(FNC), the temporal correlation between component TCs (Jafri et al., 2008), when this
quantity varies across individuals. Experiment 7 continues the study of temporal features,
but rather than incorporate differences between subjects, we examine factors that encourage
the separation of sources into distinct components, so-called “component splitting”. Finally,
Experiment 8 incorporates all the aforementioned types of inter-subject variability and
models a common scenario where the goal is to compare components between two groups.
We use this experiment to determine analysis strategies that maximize sensitivity to group
differences and we recommend a set of best practices for feature analysis in real data.
Throughout the experiments, we consider ICA model order as an additional factor that
affects the ability of researchers to appropriately compare subject activations. We address
the estimation and choice of model order in the Discussion, along with a thorough treatment
of the limitations and benefits of multi-subject analyses.

2. Materials and methods
Experiments involved manipulations of simulation parameters around a set of base values
that are listed in Table 1. Base parameters controlling the dimensions and quality of data
were specified to fall within the range of values typically reported for whole-brain fMRI
studies at conventional voxel sizes and field strengths. To keep dataset size and
computational time manageable, we used fewer voxels than are typically present in real data
(~17,000 versus ~50,000 intracranial voxels). Accordingly, we set the true number of
sources to be roughly one third the number of components that can be consistently and
stably estimated in real data, which appears to be in the range of 70 to 100 (Kiviniemi et al.,
2009; Ystad et al., 2010; Abou-Elseoud et al., 2010; Allen et al., 2011).

Below we provide the details of simulations and experimental manipulations, the
implementation of GICA, and the metrics used to assess the accuracy of GICA estimation.
MATLAB code for all data generation and analysis are available from the authors upon
request.

2.1. Simulations
Simulated data are generated with the MATLAB toolbox, SimTB (Erhardt et al., 2011a),
which we have developed to facilitate the testing of different analytic methods for multi-
subject datasets and is freely available for download (http://mialab.mrn.org/software). In
SimTB, we adopt a data generation model that is consistent with the assumptions of ICA,
that is, data can be expressed as the product of activation TCs and non-Gaussian sources
(SMs). For subjects i = 1, …,M, we model C components, each consisting of a SM and
corresponding TC. In our base simulation, M = 30 subjects and C = 25 components. SMs
have V = 148×148 voxels and TCs are T = 150 time points in length with a repetition times
(TRs) of 2 seconds per sample.

SMs are defined by 2-D density functions that can independently be rotated, translated, and
contracted or expanded for each subject. Figure 1 displays the C = 25 components used in
our base simulation. Sources are all super-Gaussian and are modeled after activation patterns
typically seen in axial slices of real fMRI data. SMs are normalized to have values in [0, 1]
and for each subject, SMs are reshaped as the 1 × V row-vectors Sic and are concatenated to
form the C × V matrix Si.
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Component TCs are simulated as the convolution of a canonical hemodynamic response
function (HRF) (difference of two gamma functions) with “neural” events (Friston et al.,
1995). In most experiments, events occur with a probability of 0.5 at each TR and are unique
to components and subjects. In experiments 6 and 7, where we explore the effects of
temporal correlation on source estimation, components of interest share common events in
addition to unique events. For each subject, TCs are normalized to have a peak-to-peak
range of one and the TC column-vectors, Ric, are concatenated to form the T × C matrix Ri.

The no-noise (nn) subject data matrix, , is constructed as a linear combination of the
amplitude-scaled component pairs:

where gi is the C × 1 vector of component amplitudes defined as percent signal changes

from the baseline,  is a T × V matrix of ones, bi is the baseline intensity,  is a T × 1
column of ones, uΤ is the V × 1 vector describing the spatial intensity profile, and ⊙ denotes
the Hadamard (element-wise) matrix product. For simplicity, all subjects have the same

arbitrary baseline intensity of bi = 800 and spatial profile , which is uniform ones inside
the “head” and zero outside. In most experiments, we set the component amplitude (peak-to-
peak percent signal change) gic = 3 for all subjects and components. In experiments 4, 5, and
8, we study component amplitude and vary gic around 3.

To construct the noisy subject data matrix, Yi, we add Rician noise to the data relative to a
specified contrast-to-noise ratio (CNR) (Gudbjartsson and Patz, 1995). Here, we define
CNR as σ̂s/σ̂n, where σ̂s is the temporal standard deviation of the true signal and σ̂n is the
temporal standard deviation of the noise. We calculate σ̂s as the 30% trimmed mean of the
standard deviations of the no-noise voxel timeseries (i.e., columns of ). Each element of

Yi is then , t = 1,…,T and v = 1,…,V, where ν1tv and ν2tv are

distributed as Normal .

2.2. Experiment 1: Spatial Rotation
Experiment 1 examines the effect of variable component shape. This is done in order to
simulate activation patterns across subjects which share a common peak but differ along
individual gyration patterns (Rademacher et al., 1993; Ono et al., 1990; Thompson et al.,
1996; Uylings et al., 2005). A single component of interest (S25) is stretched to form an
oblong ellipse (Figure 2A, red box) and is rotated such that subject SMs are equally spaced
over the range of rotation (Δθ). In a set of five simulations, we parametrically increase Δθ
to be 0°, 45°, 90°, 135°, and 180° for Steps 1 through 5, respectively. Thus, in Step 1,
subject SMs overlap perfectly and in Step 5 they are maximally distributed around the circle
and have minimal overlap. Note the peak position is common across the M = 30 subjects in
all simulations. Each step of the experiment is repeated ten times to reduce variability, with
noise and TC activations varying between repetitions.

2.3. Experiment 2: Spatial Translation
Experiment 2 studies the effect of variable component position. We simulate the well known
case of variable activation locations (Rademacher et al., 1993; Amunts et al., 2000; Xiong et
al., 2000; Wilms et al., 2005; Duncan et al., 2009; Derrfuss et al., 2009). S25 is circular with
a FWHM of 12.3 voxels (Figure 4A, red box) and is translated across subjects according to a
bivariate normal distribution with mean zero and specified standard deviation σx,y. In a set
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of five simulations, σx,y is specified as 0, 2, 4, 6, and 8 voxels for Steps 1 through 5,
respectively. S25 is relatively isolated and has little overlap with other sources, though
exceptions occur with extreme translations in Steps 4 and 5. The experiment is performed
with M = 30 subjects and is repeated ten times with randomized noise, TCs, and component
translations.

2.4. Experiment 3: Translation of Multiple Components
Experiment 3 builds on Experiment 2 and explores the scenario where several neighboring
sources may be poorly aligned across subjects, see e.g., Amunts et al. (2000). S25 is again
circular in a relatively isolated region and is translated vertically according to a normal
distribution with mean zero and standard deviation σy (Figure 5A, red box). A second
component of interest, S24, is surrounded by sources S1 and S12 (Figure 5A, blue box). All
three components are vertically translated together according to σy. For Steps 1 through 5,
σy is 0, 1.25, 2.5, 3.75, and 5 voxels, respectively. As σy increases, sources S1, S12 and S24
will be increasingly misaligned across subjects, e.g., S24 of subject i may be spatially
coincident with S12 of subject j. Because S25 is designed to serve as a control for S24 (i.e.,
translation in isolation versus translation with overlap), we explicitly match the distribution
of vertical displacements for S24 and S25. That is, for each simulation we draw a set of M =
30 translations for S25, which are permuted across subjects and assigned to S1, S12, and
S24. Thus, we ensure that any difference in the estimation quality between S24 and S25 is
due to source misalignment. The experiment is repeated ten times with randomized noise,
TCs, and component translations.

2.5. Experiment 4: Amplitude Variation
Experiment 4 evaluates how well GICA can capture inter-subject differences in component
amplitude. The spatial configuration of S25 is identical to the base simulation (Figure 6A,
red box) and is constant across subjects. Component amplitude (gi25) is varied linearly over
subjects from 2 to 4 in 10 steps. For M = 30, groups of three subjects share the same
amplitude, facilitating characterization of amplitude estimation as homoscedastic or
heteroscedastic. Because there is a natural scaling ambiguity in ICA (i.e., scale and sign
information can be captured in SMs and TCs), we use this simple experiment to help us
identify and assess metrics proposed to estimate subject-specific component amplitudes. The
experiment is repeated ten times with randomized noise and TCs.

2.6. Experiment 5: Amplitude and Spatial Variation
Experiment 5 builds on Experiment 4 and simulates the more realistic case of inter-subject
differences in component amplitude in the presence of spatial variability. Component
amplitudes are varied as in Experiment 4 and S25 is translated over subjects following a
bivariate normal distribution with σx,y = 2 voxels. In addition, the size of S25 is slightly

varied across subjects. For a normalized SM Sic, we compute , where ρ is a scalar

describing the expansion (ρ > 1) or contraction (ρ < 1) of the component and  is the
modified SM for subject i. For S25, ρ is varied linearly from 0.7 and 1.6 and randomized to
subjects. The experiment is performed with M = 30 subjects repeated ten times with
randomized noise, TCs, and component translations.

2.7. Experiment 6: Functional Network Connectivity
Experiment 6 evaluates how well the FNC between components can be estimated for
individual subjects (Jafri et al., 2008). Temporal similarity between components S24 and
S25 (Figure 7A, blue and red boxes) is varied across M = 30 subjects by modifying relative
amplitudes of unique and shared events. For all subjects, the TCs of S24 and S25 are
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simulated with the same set of shared events (probability of occurrence is 0.5 at each TR)
along with additional unique events (probability of occurrence is 0.5). The amplitude of
unique events (Au) relative to shared events is increased linearly over subjects from 0.25 to
1. Thus subjects with greater Au values will have decreased temporal correlation between
S24 and S25 TCs. The experiment is repeated ten times with randomized noise and TCs.

2.8. Experiment 7: Component Separation
Experiment 7 continues the study of temporal correlation between components, focusing on
factors that cause sources to separate into distinct components. As in Experiment 6, S24 and
S25 TCs are composed of shared events as well as unique events. In a set of thirty
simulations we parametrically increase Au from 0 to 3, where higher Au values indicate
more distinct component TCs. Here the sampling of Au is uneven (very fine steps at low
values and coarser steps at larger values) to focus on the range of Au that causes the largest
changes in decomposition. Note that in this experiment all M = 5 subjects have the same
spatial and temporal parameters. To study the inuence of additional factors on component
separation, we also repeat the set of simulations (Steps 1 to 30) while varying other
parameters of interest around their base values. Factors of interest include the number of
time points (nT = [75, 300], base value = 150), contrast-to-noise ratio (CNR = [0.5, 2.0],
base value = 1.0), spatial extent of S24 and S25 (ρ = [0.5, 2.0], base value = 1.0), and the
spatial overlap of S24 and S25 (high overlap versus no overlap in the base simulation). Note
that each parameter is varied in turn (i.e., not a factorial approach), which corresponds to
exploring the primary axes of the parameter space where the base simulation is the origin.
All simulations are repeated ten times with randomized noise and TCs.

2.9. Experiment 8: Detecting Group Differences
Experiment 8 simulates a typical study where the objective is to compare component
features between groups. We model two groups, A and B, that differ in four ways as
described in detail below. Each group has 30 subjects, for M = 60 subjects total. Additional
sources are included to fill the “head” (see Figure 10A) and all sources undergo mild spatial
variation across subjects. SMs are translated according to a bivariate normal distribution
with mean zero and standard deviation σx,y = 0.75 voxels, and are rotated by normally
distributed angles with mean zero and a standard deviation of 1°. Note that each cluster of
activation is rotated separately. SM size is also randomized, with ρ uniformly distributed
between 0.85 and 1.15. Unless otherwise noted, component amplitudes are distributed
normally with a mean of 3 and standard deviation of 0.3.

Group differences are as follows. (1) Group A has larger component amplitude for S7 than
Group B. This is modeled by distributing gi7 as normal with mean 3.3 and standard
deviation 0.3 for Group A, and mean 2.7, standard deviation 0.3 for Group B. (2) Groups A
and B have different shapes for a network composed of S5 and S10. The network is modeled
by assigning shared events between S5 and S10 and setting Au = 0, creating identical TCs.
For Group A, the amplitude of S5 is gi5 = 0.75 × gi10, whereas for Group B gi5 = 1 × gi10.
Thus, Group B has a network where the anterior node (S5) is weaker than the posterior node
(S10) and Group A has two nodes of equivalent strength. (3) Groups A and B have different
shapes and different amplitudes for a network composed of S22 and S23. For Group A, gi23
= 0.8 × gi22, where gi22 is distributed normally with mean 5 and standard deviation 0.3. For
Group B, gi23 = 1 × gi22, where gi22 is distributed normally with mean 3 and standard
deviation 0.3. Thus, Group A has a lateralized network where the left node is stronger than
the right and Group B has a bilaterally symmetric network. Furthermore, the amplitude of
the network for Group A is much larger than the amplitude for Group B. (4) Group B has
stronger FNC between sources S3 and S4 than Group A. This is modeled by first
designating shared events between S3 and S4, then distributing Au as uniform between
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[0.5,1.0] for Group A and between [0.65, 1.15] for Group B. The experiment is performed
ten times with randomized component amplitudes, spatial parameters, event amplitudes and
TCs. Note that although we use 29 sources in the simulation, two pairs of sources are joined
together as networks, S5+S10 and S22+S23, thus the true dimensionality is C = 27.

2.10. Group ICA
GICA is performed with the GIFT toolbox (http://icatb.sourceforge.net/) which uses a
temporal concatenation approach to combine data across subjects (Calhoun et al., 2001b,
2002). A formal treatment of the procedure can be found in Appendix A. Prior to the ICA
decomposition, subject datasets are orthogonalized and whitened using principal
components analysis (PCA) such that the T1 retained eigenvectors have a norm of 1. We
retain T1 = T − 1 principal components since a relatively large number of subject-specific
principal components (PCs) has been shown to improve reconstruction of subject
components (Erhardt et al., 2011b). Whitened subject datasets are temporally concatenated
to form the aggregate data matrix and a group-level PCA reduces the dimension of the
aggregate data to T2, the number of components to be estimated with ICA. In most
experiments we set T2 = C, where C is the known true number of sources. In some cases, we
explicitly use T2 = C − 1 or T2 = C +5 to explore the effects of under- and over-fitting,
respectively. Spatial ICA (McKeown et al., 1998) is performed using the Infomax algorithm
with 20 repetitions in ICASSO to estimate Â and Ŝ, the T2 × T2 group mixing matrix and the T2
× V aggregate SMs, respectively (Hyvärinen et al., 2001; Bell and Sejnowski, 1995;
Himberg et al., 2004). Individual subject maps, Ŝi, and TCs, R ̂i, are then estimated by back-
projecting the aggregate mixing matrix Â to the subject space based on the PCA reducing
matrices (Calhoun et al., 2001b, 2002). As noted in Erhardt et al. (2011b) and detailed in
Appendix A, this back-projection method is very closely related to dual regression which
defines subject SMs and TCs by least-squares regression onto the original data (Calhoun et
al., 2004; Filippini et al., 2009). For the analyses here we expect and have verified no
difference between direct back-projection and dual regression estimation, thus our results
are applicable to a broad range of GICA implementations.

2.11. Statistical Analysis
In all experiments we calculate the R2 statistic (coefficient of determination) between true
and estimated component features. For the aggregate SM, subject SMs, and subject TCs, we

compute R2(Ŝc, S̄c), R2(Ŝic, Sic), and R2(R̂ic, Ric), respectively, where  is
defined as the true group SM for component c.

Where appropriate, we use simple models to describe the relationship between a parameter
of interest and R2 statistics of a component feature. For example, in Experiment 1 we fit the
linear model z = β0+β1 cos(θ)+β2 sin(θ), where θ is a vector of component rotation angles
and z is the vector of TC or SM R2 statistics for all subjects and repetitions. Similarly, for
Experiments 2 and 3 involving component translation, we fit the Boltzmann sigmoid model,

where d is the vector of component distances from the group mean. Sigmoid parameters
zmax and zmin define the maximum and minimum R2 values, respectively, η defines the
sigmoid slope, and d50 is the distance at which R2 values fall to half their maximum. The
four sigmoid parameters are estimated by minimizing the residual sum of squares using the
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LSQNONLIN function in MATLAB with the Levenberg-Marquardt algorithm. Model fits are
considered statistically significant at an α = 0.05 level.

For Experiments 4 and 5, where we are interested in capturing the amplitude variability
across subjects, we compute the Pearson correlation coefficient between the vector of true
subject amplitudes for a given component, gc, and the vector of estimated amplitudes, ĝc.
We compare three proposed metrics for estimating amplitude: (1) the standard deviation of
component TCs, σ̂Ric, (2) the maximum intensity of component SMs, m̂ic, and (3) their
product, σ̂Ric × m̂ic, which combines scaling information from TCs and SMs. Note that in
computing m̂ic, we average intensity values over the top twenty voxels (roughly 0.1%) to
reduce the influence of noise.

For evaluations of FNC (Experiment 6), we compute correlations between the estimated TCs
of each subject and compare these values with the true correlations. In Experiment 7 we are
interested in factors that contribute to differences in source decomposition and limit our
analyses to the aggregate SMs. Because estimated SMs can represent S24 and S25 joined
together in a single component or split apart into distinct components, we compute R2

statistics for both possible ground truths, R2(Ŝc, S̄24 +S̄25), and R2(Ŝc, S̄24) and R2(Ŝc, S̄ 25),
respectively.

For Experiment 8, we investigate how analysis choices may affect sensitivity to detect group
differences. For components of interest, we perform voxelwise two-sample t-tests for the
group difference (Group A - Group B). Voxelwise tests are corrected for multiple
comparisons at an α = 0.05 significance level using false discovery rate (FDR) (Genovese et
al., 2002). Prior to computing t-statistics, component SMs are scaled using one of four
different approaches: (1) no scaling, Ŝic, where estimated subject SMs are left in their
original units, (2) scale normalization, notated z-score(Ŝic), where SMs are transformed to
have mean zero and standard deviation 1, (3) removal of scale, Ŝic/m̂ic, where SMs are
divided by their maximum value, and (4) joint scaling, σ̂RicŜic, which incorporates scale
information from component TCs into SMs. Note that methods (2) and (3) reflect attempts
to remove scaling information and capture only shape. Estimated group differences are
compared to the true differences in component maps, Sic, and scaled maps, gicSic.

3. Results
3.1. Experiment 1: Spatial Rotation

Figure 2 displays the results from Experiment 1 at an ICA model order of 25. Qualitatively,
subject SMs are captured very well for all ranges of rotation angles (Figure 2B, Steps 1–5).
Examples of subject SMs for Step 4 (Δθ = 135°) demonstrate remarkable estimation of
highly variable component shapes (Figure 2C). Quantitative assessment is provided in
Figure 2D, which displays the R2 statistics for subject SMs (top) and TCs (bottom) averaged
over repetitions. As the range of rotation increases from Δθ = 0° to Δθ = 180°, estimation
quality decreases on average, with particular detriment to subjects at the edges of the group.
The angle of rotation accounts for a significant portion of variance in the R2 values for all
steps except 5 (α = 0.05), which is expected given the circular symmetry of the SMs in this
simulation (see Figure 2B).

Figure 3 displays the results from the same experiment when the model order is increased to
30. For Step 1, where there is no spatial variability between subjects, the five “extra”
estimated aggregate SMs are essentially noise and lack any spatial structure (Figure 3D, first
column). However for Steps 2–5, where there is inter-subject spatial variability, S25 can be
estimated as two or three different sources (Figure 3D, columns 2–5). This type of
decomposition has a substantial effect on the subject SMs, examples of which are shown in
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Figure 3E for Step 4. In contrast to the results at a model order of 25 (Figure 3B), at higher
model order no single estimated component captures the SMs of all subjects, and some
subjects may have their component represented by a combination of several sources (e.g.,
Subject 15, Figure 3E, center column). Such a GICA decomposition makes comparisons
difficult and may obfuscate between-subject differences. We note that the kurtosis of subject
SMs reliably indicates whether individual components contain spatial structure (Figure
3C,F), suggesting a heuristic to identify sources that are not consistently estimated across
subjects (see Discussion).

3.2. Experiments 2 and 3: Spatial Translation
Results from Experiment 2 at a model order of 25 are displayed in Figure 4. Contour maps
of estimated SMs (Figure 4B, bottom) suggest that subject components are captured well
when spatial translations are small or moderate but not when translations are more extreme.
As seen in Steps 4 and 5, subjects with SMs far from the group mean have greatly distorted
or absent contours. Examples of subject SMs for Step 4 (Figure 4C) also show that
estimation deteriorates as subject SMs move further from the group mean (top to bottom)
and ultimately fails when the translation distance becomes too large (e.g., Subject 30, Figure
4C, bottom).

In Figure 4D we plot the R2 statistics for subject SMs (top) and TCs (bottom) as a function
of component distance from the group mean. For Steps 1–4, estimation quality of subjects
with small translations is relatively constant and seems largely unaffected by increasing σx,y.
In Step 5, where the spatial overlap between subjects is reduced and some subject SMs are
translated into neighboring components (see Figure 4B, rightmost panel), estimation quality
becomes more variable for all subjects. The drop-off in estimation quality with distance in
Steps 3–5 suggests consistent sigmoidal behavior that is reasonably well-captured with the
Boltzmann sigmoid model. The sigmoidal fits provide estimates for d50, the distance at
which estimation quality drops to 50% of the maximal value. Parameter estimates, listed for
each [Step] in units of voxels, are [3] d50 = 13.6, [4] d50 = 14.1, and [5] d50 = 15.5 for SMs,
and [3] d50 = 12.5, [4] d50 = 13.7, [5] d50 = 15.3 for TCs. Notably, these values are similar
to the full-width at half-maximum (FWHM) of S25 (12.3 voxels) suggesting a rule of thumb
regarding sufficient overlap of subject SMs (see Discussion).

We also decomposed the data from this experiment at an ICA model order of 30. Parallel to
the findings from Experiment 1, S25 can be estimated as multiple components at higher
model order and no single component captures the SMs or TCs of all subjects (data not
shown). Together, these results suggest that model order can profoundly affect GICA
decomposition in the presence of inter-subject spatial variability, and that using a
dimensionality that exceeds the true number sources (i.e., over-fitting) can produce an
undesirable splitting of components.

In Experiment 3, we further investigate the effects of spatial translation when several
components are translated together and may be poorly aligned across subjects. Figure 5A–B
displays the spatial configuration of components of interest, S25 (left) and S24 (right). Both
S25 and S24 are translated vertically according to σy, however S25 is in relative isolation
whereas S24 is translated together with S12 and S1 (top and bottom, respectively). As seen
in the contour maps of Steps 4 and 5 (Figure 5B, top row), S24 SMs for some subjects
overlap with S1 (filled blue contours) or S12 (filled green contours). This misalignment
leads to distortions in the estimated SMs of S24, which contain erroneous activations related
to S1 and S12 (Figure 5B, bottom row, right panels). This can also be seen in examples of
subject SMs for Step 4 (Figure 5C). For subjects with positive vertical displacements (Δy >
0, Figure 5C, top), the position and shape of S24 is reasonably well captured, but estimated
SMs have additional prominent deactivation in locations consistent with S12 and more
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subtle extraneous positive activation in the region of S1. For subjects with negative
displacements (Δy < 0, Figure 5C, bottom), the same pattern is present but with
deactivations over S1 and positive activation related to S12. These distortions are more
apparent as translations increase in magnitude. Note that S25, which undergoes translations
of the same extent, is quite well estimated for all subjects in all steps (Figure 5B, bottom
row, left panels and Figure 5C, middle column).

Quantitative comparison of estimation quality for S24 and S25 is provided in Figure 5D,
which displays the R2 statistics for subject SMs (top) and TCs (bottom) as a function of SM
distance from the group mean. For all steps, estimation quality for subjects with small
translations is roughly equivalent between S24 (gray circles) and S25 (black squares),
however as translation distances increase in Steps 3–5, R2 statistics for S24 deviate from
S25 and drop much faster as a function of distance. We again use sigmoidal fits to describe
the behavior of the R2 statistics and estimate the distance at which estimation quality drops
to 50% of the maximal value. For S25, d50 estimates are similar to the values observed in
Experiment 2: [5] d50 = 13.0 for SMs and [5] d50 = 12.7 for TCs. Parameter estimates for
S24 are considerably smaller, [4] d50 = 8.1 and [5] d50 = 8.0 for SMs, and [4] d50 = 8.0 and
[5] d50 = 8.0 for TCs, demonstrating the vulnerability of single-subject estimation to
misalignment of functional regions.

3.3. Experiments 4 and 5: Amplitude Variation
Results from Experiments 4 and 5 at an ICA model order of 25 are provided in Figure 6.
SMs for all subjects are well captured both when spatial properties of S25 are identical
(Figure 6B) and vary slightly (Figure 6B′) across subjects. The sizes of components are
estimated quite accurately despite the considerable variability in component amplitude.
Figures 6C and 6C′ display examples of estimated subject SMs and show increasing signal
intensity relative to background noise with increasing amplitude. As would be expected,
greater amplitude confers greater estimation quality which is easily seen by plotting SM and
TC R2 statistics as a function of component amplitude (Figure 6D, D′). The relationship
between amplitude and estimation quality is notably tighter in Experiment 4 (Figure 6D) due
the additional factors of displacement and component size that also affect estimation in
Experiment 5 (Figure 6D′).

The primary objective in performing 4 and 5 was to determine an appropriate estimator for
single-subject component amplitudes. In Figure 6E and Figure 6E′ we display the accuracy
of amplitude estimation for three proposed metrics (see Section 2.11). In the absence of
spatial variability, scaling information is captured primarily in TCs. The standard deviation
of each TC, σ̂Ric, provides an excellent estimate of amplitude that is highly correlated with
the true amplitude (r = 0.995, Figure 6E, left). Maximum SM intensity, m̂ic, is weakly
negatively correlated with the truth (r = −0.243, Figure 6E, middle), however the product
σ̂Ric × m̂ic also provides a very good estimate of component amplitude (r = 0.995, Figure
6E, right). In the presence of spatial variability, both TCs and SMs contain scaling
information. The TC standard deviation σ̂Ric is moderately well correlated with the true
amplitude (r = 0.815, Figure 6E′, left) and SM maximum m̂ic is poorly correlated (r = 0.049,
Figure 6E′, middle), however their product estimates component amplitude very well (r =
0.993, Figure 6E′, right). The plots in Figure 6E,E′, suggest that amplitude estimation is
homoscedastic, that is, the variability in estimation is roughly equivalent across the range of
true amplitudes. From these experiments we conclude that single-subject component
amplitudes can be well captured, provided that amplitude metrics combine scaling
information from both TCs and SMs, and that inferences regarding amplitude will be best
made when considering component features jointly.
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3.4. Experiment 6: Functional Network Connectivity
Results from Experiment 6 at a model order of 25 are displayed in Figure 7. In this
experiment, component amplitude and spatial characteristics are constant while the temporal
similarity between S24 and S25 TCs is varied across subjects (see Section 2.7). Figure 7B–C
shows examples of subject TCs and SMs for components S25 (red) and S24 (blue).
Inspection of the subject SMs suggests that estimation suffers when S24 and S25 TCs are
highly similar (Figure 7B–C, subject 1) as compared to when TCs are more distinct (Figure
7B–C, subject 30). This effect is seen clearly in Figure 7D, where we plot R2 statistics for
S25 as a function of the true FNC (temporal correlation) between S24 and S25. Degradation
of SM estimation results from the difficulty and ambiguity in decomposing sources with
highly similar TCs. Conversely, TCs estimation improves slightly with temporal correlation
(Figure 7D, bottom, r = 0.29, p < 10−6) since there is converging evidence of the TC shape.

The accuracy of FNC estimation is addressed in Figure 7E–F. Overall, FNC values are well
estimated, both for strong positive correlations between S24 and 25 that are modeled
explicitly (Figure 7E, dark gray dots) and for weaker correlations between S12 and S18 (and
other non-linked component pairs) that follow a null distribution (Figure 7E, light gray
dots). While inter-subject differences in FNC are captured quite well, we noticed small but
consistent biases in the estimated values. For example, the average true temporal correlation
between S12 and S18 is −0.007 ± 0.007 (mean ± SE), but the estimated mean is 0.023 ±
0.007, a small but highly significant difference (t = −18.6, p < 10−50). In exploring possible
causes for this difference, we noted that the largest positive bias, FNCest −FNCtrue = 0.25, is
between neighboring components S2 and S10, whereas the largest negative bias, −0.13, is
between S19 and S20 which are large “lateralized” components with no overlap (see Figure
1). As shown in Figure 7F, this pattern extends to FNC estimates for all component pairs:
estimation bias in temporal correlation is highly associated (r = 0.94, p < 10−140) with the
true spatial correlation between components. The link between spatial correlation and FNC
bias results from an incongruence between simulated datasets and assumptions of the ICA
model. ICA decomposes data based on maximal independence between sources, however
the sources in our simulations are not statistically independent. As shown in Figure 7F,
many sources are weakly spatially correlated. However ICA maximally decorrelates the
components spatially, forcing erroneous correlations into the temporal domain. Note that
there is no association between the spatial correlation of estimated components and FNC
bias (r = −0.09, p = 0.13) because the spatial correlations have largely been removed in the
decomposition (range of true spatial correlations: 0.33; range of estimated spatial
correlations: 0.10). In summary, while estimated FNC values are quite precise and capture
differences across subjects, the estimates values may be slightly biased by the extent that the
true SMs are spatially correlated.

3.5. Experiment 7: Component Separation
Experiment 7 focuses on source decomposition at the group level and investigates
parameters that affect component separation. In a set of thirty simulations, we steadily
decrease the similarity between S24 and S25 TCs by increasing the amplitude of unique
events (see Section 2.8). As seen in Figure 8B, the true temporal correlation between S24
and S25 decreases from exactly 1 when Au = 0 to just above 0 when Au = 3. The effect of
increasing Au on estimated aggregate maps is displayed in Figure 8C. At a model order of
24 (Figure 8C, top), sources S24 and S25 are estimated as a single component for a large
range of Au values. Based on R2 statistics between the aggregate SMs and a “joint” ground
truth (Figure 8D, white triangles), as well as with a “separate” ground truth (Figure 8E,
white triangles), sources S24 and S25 are not fully estimated as distinct components until Au
≈ 0.8. Note that when S24 and S25 are estimated as two components, a model order of 24 is
too low for the decomposition. One of the sources (S14, refer to Figure 1) is no longer
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estimated as its own component and instead appears very weakly as negative activation in
most other components (e.g., Figure 8C, top, Step 30). Component mixing can also be seen
in earlier steps (e.g., Figure 8C, top, Step 17) where erroneous activation from S24 is weakly
present in the estimated S14 SM.

When the ICA model increases to 25 or 30 (Figure 8C, middle and bottom, respectively),
sources S24 and S25 are estimated as distinct components at much lower values of Au. In
both cases, splitting begins at Au ≈ 0.2 and the two sources are recognizable at Au ≈ 0.4,
though they continue to separate through Au = 3 (Figure 8C–E). Thus, for a given level of
similarity between S24 and S25, a lower model order estimates the sources as joined while a
higher model order decomposes the sources as separate components. We note the great
improvement in estimation quality of separated components when the ICA model order is
sufficiently large (T2 ≥ C; Figure 8C,E). Also, there is no decrement in estimation quality
when the model order is greater than the true dimensionality (T2 > C). In fact the R2

statistics for T2 = 25 and T2 = 30 are nearly identical (Figure 8D–E) and we have observed
the same result for model orders as high as T2 = 50.

In Figure 9 we further investigate component separation by examining the impact of various
dataset parameters. For each set of simulations, we vary a single simulation parameter
around its base value (see Table 1) and compare the estimated aggregate SMs as a function
of Au. Here, ICA model order is fixed at T2 = 25. All investigated parameters, including the
number of time points (Figure 9A), dataset CNR (Figure 9B), spatial size of S24 and S25
(Figure 9C) and spatial overlap between S24 and S25 (Figure 9D) affect the likelihood of
component separation. As one would expect, when parameters increase the amount of
information or quality of information related to S24 and S25, the sources are estimated as
distinct components at lower values of Au (i.e., leftward shift of curves in Figure 9).
Conversely, when fewer instances (time points) or samples (voxels related to S24 and S25)
are available for the GICA decomposition, the sources must have more distinct activations
to be estimated as separate components (i.e., rightward shift of curves in Figure 9). Thus, it
is not just model order that affects the likelihood of component separation, but also a large
number of factors that effect the quantity and quality of information pertaining to the
sources. The separation or joining of sources may be related more to their sizes and spatial
proximity than to the similarity between their TCs.

3.6. Experiment 8: Detecting Group Differences
In Experiment 8 we examine how analysis choices affect to the ability to detect group
differences. Figure 10B displays the estimated components of interest for a single repetition
of the experiment. Group differences are apparent in the mean maps for Group A (top) and
Group B (bottom), which are computed by averaging over the scaled SMs (σ̂RicŜic) for
subjects in each group. Specifically, S7 has greater amplitude for Group A than Group B.
Component S5+S10 has a shape difference between groups: Group B has weaker anterior
activation relative to the posterior node, whereas both nodes are equally active in Group A.
Component S22+S23 has subtle shape difference, where the network is lateralized for Group
A (left > right) but symmetric for Group B. In addition, S22+S23 has a strong amplitude
difference, with Group A greater than Group B. Estimated SMs for S3 and S4 appear similar
across groups, which is expected given that these sources were modeled with only temporal
differences (see Section 2.9).

Figure 10C–F addresses the detection of group differences using several approaches to
component scaling. Component scaling is often performed before making voxelwise
comparisons between groups or subjects in an effort to maximize sensitivity to differences in
component shape and minimize inuences of scale. We consider four scaling methods that
may be sensitive to differences in component shape and/or amplitude. These include (1) no
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scaling, Ŝic, which leaves subject SMs in their original units, (2) scale standardization, z-
score(Ŝic), which transforms SMs to have mean zero and unit standard deviation, (3)
removal of scale, Ŝic/m̂ic, which divides SMs by their maximum value, and (4) joint scaling,
σ̂RicŜic. Methods 2 and 3 reflect explicit attempts to remove scaling information and capture
only shape. Method 4 shows the effect of incorporating all amplitude information into the
SMs. Estimated group differences are compared to the differences in true component maps,
Sic, as well as the true scaled maps, gicSic.

True (left) and estimated (right) group differences for S7 are displayed in Figure 10C.
Scaling methods 1, 2, and 3 show no significant difference between groups at FDR corrected
α = 0.05 while Method 4, which is sensitive to component amplitude, shows significant
differences at regions with large activations. For the S5+S10 network (Figure 10D) all four
scaling methods detect the shape difference between the groups, though with varying
sensitivity. Over ten repetitions, the absolute maximum significant t-statistic is 10.6±1.2
(mean ± SD), 9.2 ± 1.0, 12.3 ± 1.4, and 10.2 ± 1.3 for methods 1 through 4, respectively.
Using the non-parametric Wilcoxon signed-rank statistic (W+) to test for differences
between scaling methods, we find that peak t-statistics obtained with method (3) are
significantly larger than those obtained with the other methods (W+ ≤ 5, p < 0.05 for all
comparisons). In terms of spatial extent, Method 4 identifies the most significant voxels (nV
= 540 ± 80), which is consistently larger than the number identified by method 1 (nV = 241
± 55), 2 (nV = 308 ± 67), or 3 (nV = 481 ± 67). We note that the number of voxels detected
with Method 3 is also consistently greater than Method 1 or 2 (W+ = 0, p = 0.002 for both
comparisons). For component S22+S23 (Figure 10D) Methods 1–3 reflect the group
difference in component shape (again with varying sensitivity), while Method 4 is
dominated by the difference in component amplitude. Focusing on Methods 1–3, all scaling
approaches identify roughly the same number of significant voxels (nV = 294±59; nV =
307±58; nV = 293±45; W+ ≥ 13.5, p > 0.15 for all comparisons), though method 3 again
yields larger peak t-statistics (tM = 9.2 ± 1.2; tM = 11.2 ± 1.1; tM = 12.7 ± 1.6; W+ ≤ 6, p <
0.05 for both comparisons.) As a control analysis, we also examined group differences
between components S3 and S4 which are modeled with temporal but no spatial differences.
None of the scaling methods identified significant group differences in any repetition (e.g.,
Figure 10F), implying that temporal differences are not erroneously captured in the spatial
domain.

Summarizing the above results, scaling methods 1, 2 and 3 capture differences in component
shape and are relatively insensitive to component amplitude. Method 4 can also detect
differences in shape though these may be weakened or confounded by co-occurring
differences in scale (e.g., Figure 10D–E) thus it is not the preferred approach for identifying
distinctions in network structure. Comparing methods 1–3, dividing SMs by their maximum
intensity, Ŝic/m̂ic, provides the most sensitive approach both in terms of the maximum t-
statistic (Figure 10E–F) and the number of significant voxels identified (e.g., Figure 10E).
Leaving subject SMs in their original units or z-scoring tends to distribute localized
differences over several regions, reducing statistical power in a voxelwise, univariate
approach.

4. Discussion
By manipulating specific parameters in a controlled simulation environment, we evaluated
the performance of GICA under conditions of spatial, amplitude, and temporal variability.
Additionally, we determined analysis choices that can maximize sensitivity to inter-subject
differences. As with any simulation study, the relevance of our findings depends on the
extent to which simulations capture the properties in real data. Our data generation model
(see Section 2.1) attempts to mimic the general structure of fMRI data while providing for a
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level of simplification and abstraction that makes in-depth investigation possible. Thus
while we have certainly not replicated all the complexities inherent to multi-subject datasets,
we believe we have captured a number of fundamental properties that permit conceptual
extension of our findings. We discuss these results in the context of ICA studies typically
performed on real multi-subject datasets.

4.1. Spatial Variability
In the current construction of GICA we temporally concatenate individual subject datasets to
form an aggregate data matrix on which ICA is performed (see Appendix A). With temporal
concatenation, we implicitly assume that spatial sources are consistent across subjects
despite known variability in anatomical and functional localization. In Experiments 1–3, we
evaluated how robust the GICA approach is to violations of spatial stationarity. Generally,
experiments indicated that (1) given a sufficient degree of overlap across the group,
individual subject activations can be estimated extremely well, (2) on average, estimation
quality decreases as inter-subject spatial variability increases, and (3) subjects with
activations most similar to the group mean will always be the best estimated. Specifically,
when subject components share the same peak but have different shapes (Experiment 1),
activations are well captured for all individuals at all investigated levels of spatial variability
(Steps 1 to 5). This is true even when fewer subjects are used (M = 5 and M = 15), which
reduces the absolute degree of overlap between subjects (data not shown for brevity). When
subject activations vary in location (Experiments 2 and 3), estimation quality decreases
sigmoidally as a function of the Euclidean distance from the group peak. We estimate that
subject components will be adequately well captured if they are displaced from the group
mean by less than the FWHM of the component, but that estimation may be poor or fail
completely when displacement is more than this value (e.g., see subject 30 in Figure 4C). In
Experiment 3, we found that component estimation is further deteriorated when spatial
variability induces misalignment between homologous regions, that is, Source A in subject i
is more spatially coincident with Source B than Source A in subject j. Though such
misalignments cause considerable distortions in estimated sources at relatively mild
displacements (see Figure 5C), it is worth nothing that the peak location is still correctly
determined, thus such decompositions may still prove useful in situations where localization
of a functional domain is the primary concern.

An important step in this work is relating our simulation-based findings to the inter-subject
spatial variability observed in real data. In Table 2, we summarize the results of several
recent studies on variability in functional localization. Despite large differences in
methodology and regions of interest, the studies consistently suggest that on average,
locations of subject activations are between 8 and 15 mm from the group peak. Given this
degree of spatial variability, we can estimate how large activations should be in order to
allow detection for most subjects. Assuming that displacements in activation are normally
and isotropically distributed (supported by Xiong et al. (2000)), Euclidean distances from
the group peak will follow a generalized χ distribution with three degrees of freedom. For
an average distance of d̄ = 8 mm (SD = 3.4 mm), there is a 90% probability that subject
activations will be within 12.5 mm of the group peak. If spatial variability is greater (d̄ = 15
mm, SD = 6.3mm), there is a 90% chance that individual peaks will be within 23.5 mm.
Based on our findings that the distance from the group peak should be less than the FWHM
of the component, activations in real data should have a FWHM of between 12.5 and 23.5
mm in order for most subjects (90%) to be adequately estimated. This corresponds to a
volume of between 1 cm3 and 6.8 cm3, assuming spherical activations. Note that for real
data, image smoothing is almost always used to increase the extent of activation for each
subject and improve correspondence across individuals. While blurring undoubtedly
increases activation overlap and enhances signal detection on the whole (White et al., 2001;
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Mikl et al., 2008), typical smoothing may be ineffective when activations are small and
spatial variability is high. Consider that smoothing a signal of size FWHMs with a Gaussian

kernel of size FWHMk will yield an activation with . Thus
if the necessary activation size FWHMa is between 12.5 and 23.5 mm, a conventional
smoothing kernel of FWHMk = 8 mm would only slightly decrease the necessary extent of
the true signal FWHMs to between 9.6 and 22.1 mm (0.46 cm3 and 5.6 cm3).

From the calculations above, we estimate that the current GICA framework and those with
similar constructions, e.g. (Beckmann and Smith, 2004; Filippini et al., 2009), will perform
extremely well on large-scale components, such as motor and visual networks which tend to
have volumes greatly exceeding 20 cm3 (Allen et al., 2011), but will be less effective (i.e.,
may fail to estimate components for some subjects) when activations are smaller than a few
cm3 in volume. Other approaches to multi-subject ICA, such as tensorial ICA (Beckmann
and Smith, 2005; Guo and Pagnoni, 2008) or CanICA (canonical correlation analysis
coupled with ICA) (Varoquaux et al., 2010), are also predicated on spatial consistency
across subjects and will have similar limitations. Of course, conventional group analyses
such as the general linear model (GLM) are subject to the same constraints. As reviewed by
Brett et al. (2002), if functional areas do not align well between individuals, there will be no
significant activation at the group level even if all subjects have significant activations in
homologous regions.

To avoid the assumption of spatial correspondence, one could perform a multi-subject ICA
by concatenating subject datasets along the spatial domain, as suggested by Svensén et al.
(2002). However, because this approach assumes temporal consistency it will suffer from
variability in response latency and shape, similar to group temporal ICA on event related
EEG responses (Moosmann et al., 2008), and in general is not suitable for resting-state
investigations. These limitations may be overcome by performing ICA in the frequency
domain on amplitude spectra, e.g., (Calhoun et al., 2003; Damoiseaux et al., 2006), though it
has been shown that for fMRI data, spatial concatenation is inferior to temporal
concatenation in terms of source estimation (Schmithorst and Holland, 2004).

Another approach is to perform ICA on each subject separately (Calhoun et al., 2001a),
allowing subjects to have unique temporal and spatial features. This method can potentially
identify activations that would be poorly estimated in a group analysis and might be the
preferred technique in situations where one expects a very high degree of spatial variability.
However, if the ultimate goal is to make comparisons between subjects, one faces the
difficulty of matching and combining components from different decompositions.
Component matching may be sensitive to manual inspection (Calhoun et al., 2001a) or
spatial congruence with a predefined template (Greicius et al., 2004). To avoid these
problems, algorithms have recently been developed to automate the identification of
common components without templates using self-organized clustering (Esposito et al.,
2005) and cross-correlation (Schöpf et al., 2010). Unfortunately, these algorithms ultimately
rely on spatial correlation between subject maps to determine functionally homologous
networks, thus they are also vulnerable to spatial variability and may mismatch or fail to
identify components that are disparate from the group mean. Furthermore, single-subject
ICA may generally be limited by the low signal-to-noise ratio (SNR) in individual datasets.
The increased SNR in GICA greatly facilitates the estimation of sources that would
otherwise be difficult or impossible to resolve in single-subject analyses without additional
constraints or prior information (Lin et al., 2010).

We can conclude that all current approaches to group analysis are somewhat limited by
inter-subject spatial variability despite smoothing, particularly when areas of activation are
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small and the degree of variability is high. Improvements in spatial normalization methods
may ameliorate correspondence, but variability in functional localization relative to
anatomical landmarks (Rademacher et al., 1993; Crivello et al., 2002; Derrfuss et al., 2009)
suggests that novel approaches to normalization must take function into consideration
(Thirion et al., 2006). As noted by Kriegeskorte and Bandettini (2007), solutions to the
challenge of inter-subject functional correspondency will become increasingly important as
the spatial resolution of fMRI increases.

4.2. Model Order
As demonstrated in several experiments, the choice of model order can have a large effect
on ICA decompositions. Using a model order that is too low may cause distortions in
estimated sources, such as erroneous background activation (e.g., Figure 8C, top). In the
case of under-fitting, we found that sources with low amplitude or those that are spatially
diffuse (lower kurtosis) were the most likely to be subsumed into other components. This is
consistent with observations from Abou-Elseoud et al. (2010) and our own experiments with
real data that white matter components, which are weaker and larger than localized cortical
sources, begin to emerge as model order increases.

Increasing model order to and beyond the true dimensionality permits sources that lack
strong temporal coherence or spatial consistency across subjects to split into multiple
components. Note that variability of spatial patterns across time points and across subjects
are viewed equivalently from the perspective of the ICA algorithm, however have very
different interpretations on the part of the researcher. As discussed below in Section 4.3,
component splitting due to temporal differences may be viewed as resolving “subnetworks”
or determining a finer level of functional segmentation (Kiviniemi et al., 2009; Smith et al.,
2009; Abou-Elseoud et al., 2010). In contrast, component splitting due to spatial variability
across subjects (see Figure 3) is highly undesirable as is precludes meaningful inter-subject
and between-group comparisons. It is not known how often this type of splitting occurs in
real data where the true sources are unknown. Occurrence may be quite rare since temporal
differences should be more prevalent and cause splitting at lower model orders, however
based on the discussion of spatial variability above (Section 4.1), researchers should be
cautious when using higher model orders that yield relatively small components.

Though the estimation of dimension for fMRI data is still an open and challenging problem
(Yourganov et al., 2010), we found that both analytic approaches based on information-
theoretic criteria (ITC) and empirical methods provided quite reasonable results. We briefly
comment on their performance and applicability to real data. For the simulated datasets used
here, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and
Minimum Description Length (MDL) all provided excellent estimates of dimensionality.
Variability across subject datasets was low (range between 1 to 3) and median estimates
were consistently equal to the true dimension. Application of ITC to real fMRI data has not
been as successful due to structured noise that is both temporally and spatially correlated
(Cordes and Nandy, 2006; Li et al., 2007). To overcome this limitation, Li et al. (2007)
proposed a sub-sampling scheme to obtain a set of effectively independent data samples on
which the ITC formulae may be applied. Using these modified ITC on smoothed simulated
data (FWHMk = 2.5 times the voxel width), we again found excellent correspondence
between estimated and true dimensionality. Note, however, that the modified algorithms
performed poorly on unsmoothed data (variable estimates were too low in the case of MDL
and too high for AIC and KIC), and the original algorithms performing poorly on smoothed
data (estimates were two to three times the true dimensionality), reflecting the lack of
robustness of these methods under non-ideal conditions.
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The variable performance of theoretic measures has led to development of empirical
approaches aimed to optimize stability and reproducibility (Yourganov et al., 2010). For
ICA, stability can be assessed by iterating decompositions over bootstrap resamplings or
randomized initial parameters and performing a clustering analysis on the full set of
components (Himberg et al., 2004). This process, implemented in the ICASSO toolbox, provides
a quality index (Iq) for each component cluster which ranges from 0 to 1 and reflects the
difference between intra-cluster and extra-cluster similarity. Previous studies (Li et al.,
2007; Ystad et al., 2010) suggest that an appropriate model order can be determined from
the “knee” in the Iq curve, i.e., the point at which components transition from relatively
stable (e.g., Iq > 0.8) to less reliable. Applying this method to the simulated datasets, we
found that it worked perfectly for group datasets with no spatial variability, but tended to
over-estimate the optimal model order when inter-subject spatial variability was
pronounced. Note that we make a distinction here between desired model order and true
dataset dimension. When spatial variability is present, the true dimensionality in the group
dataset will be larger than that of any subject dataset, and Iq correctly reflects the stable
estimation of additional (though undesirable) components (e.g., eS26 and eS27 in Steps 4–5
of Figure 3D). To mitigate over-estimation, our results suggest that subject SM kurtosis may
be used in conjunction with Iq to identify components that are consistently estimated at the
subject level. Using the “knee” in the Iq curve as a starting point, researchers might
iteratively reduce model order until component SMs exhibit relatively high kurtosis for the
majority of subjects. While this heuristic requires validation in real data, we are hopeful that
the SimTB toolbox will encourage further development and improvement of dimensionality
estimation methods for fMRI.

4.3. Component Separation
Experiment 7 extensively investigated the separation of sources into distinct components as
a result of temporal dissimilarity. Our results replicate findings from resting-state data
showing that higher model order encourages the separation of functionally distinct regions
(Smith et al., 2009; Abou-Elseoud et al., 2010). Additionally, we found that a number of
other factors also contribute to the likelihood of component splitting. For a given model
order and level of temporal similarity between components, separation was affected by the
number of time points, CNR, component size, and degree of component overlap (see Figure
9). These findings suggest that researchers should very cautiously interpret decompositions
at different model orders as representing different levels of “functional hierarchy” (Smith et
al., 2009). Though we can infer that a component separates because of distinct temporal
activation in individual sub-components, we cannot conclude that a component remains
stable because of homogeneous activation. A lack of splitting may signify a stable network,
or may simply indicate that sub-networks are small with high spatial overlap. While ICA
undoubtedly provides useful information about functional networks, their sub-divisions, and
the relationships between networks, formal investigations of hierarchical organization and
modularity may be best pursued with alternative methods, e.g., Meunier et al. (2009). As a
final comment on component separation, we note that the most appropriate model order for
any analysis will be a function of data quantity and quality. Because dataset dimensions (M,
T, and V) and CNR will affect the ability to decompose components, we recommend that
researchers estimate and optimize model order for their own datasets (using the approaches
discussed in Section 4.2) rather than use a value that is frequently reported in the literature.

4.4. Feature Analysis
One major aim of the GICA framework is to facilitate between-subject comparisons.
Numerous investigations have used this approach to describe alterations in intrinsic
networks related to basic demographic factors, e.g., (Biswal et al., 2010; Allen et al., 2011)
or neurodegenerative and psychiatric disorders, e.g., (Calhoun et al., 2008; Jafri et al., 2008;
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Filippini et al., 2009), with an eye towards diagnostic classification. Typical analyses
compare component TC spectra, SM intensity, and FNC to make inferences regarding
network activation, network shape, and the temporal similarity between networks,
respectively. In Experiments 4/5 and 8, we compared the performance of various analytic
approaches to detect inter-subject differences in these features. Our results, presented in
Figures 6 and 10, draw attention to the scaling ambiguity inherent in ICA, that is, for a
generic decomposition X = ÂŜ, a scalar αc multiplied with one of the sources Ŝc can be
canceled by dividing the corresponding column of Â by the same scalar:

Though arbitrary scaling has long been discussed in the context of ICA (Hyvärinen et al.,
2001), the implications for GICA have not been appreciated. In the presence of spatial
variability, even slight differences in SMs will cause scaling information to be captured
differently across subjects. Subjects with SMs closest to the mean will have larger amplitude
in component maps (Ŝi), whereas subjects with more disparate SMs will have lower
intensities in component maps and larger amplitude in component TCs (R̂i). While
inconsistencies in scaling could hinder comparisons across subjects, we found that the true
scaling information can be easily recovered by considering a joint amplitude metric (see
Figure 6E,E’). Thus, we propose to consider subject components as a product of three

features, , where ĝi is the vector of estimated component amplitudes, and 
are the amplitude normalized TCs and SMs, respectively. In this study, we have constructed
a joint metric using the TC standard deviation, which is a well-characterized estimator of the
spread or dispersion based on all the time points, and the SM maximum value, which
indicates the amplitude of the voxel most strongly associated with the corresponding TC and
more importantly is not be sensitive to differences in component shape. While other
constructions are certainly possible, we found that this joint estimator performed extremely

well in multiple scenarios and thus suggest ĝic = σ̂Ric × m̂ic, .

In comparing component features, researchers must determine where and how to consider
amplitude information. For example, if the question pertains to the level of network
activation, one might compare amplitude, ĝic, as its own feature (as in Experiments 4 and 5),

or might combine amplitude with TCs, , and use Fourier analysis to evaluate power as
a function of frequency. If the question relates to differences in network shape, one might

perform analysis on amplitude normalized SMs, . As addressed in Experiment 8, leaving
SMs in their original units or z-scoring components tends to distribute localized differences

and reduce statistical power in a voxelwise, univariate approach. Utilizing  (or a
similar construction) may maximize sensitivity to regional differences. Alternatively,

researchers might also be interested in the scaled SMs, , which provides information
regarding network activity and shape. As detailed in Appendix B, this is exactly the quantity
that is estimated in dual regression when TCs are variance normalized prior to the second
regression, see e.g., Zuo et al. (2010). While scaled SMs may be the most relevant feature in
some cases, we note that considering shape and amplitude together can obfuscate or
confound differences in these domains (see Figure 10E) and we recommend conducting
analysis of each feature separately.

In contrast to TCs and SMs, estimates of FNC (which are based on the similarity between
component TCs) are unaffected by amplitude and will be identical whether considering R̂i
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and . We note, however, that FNC estimates may be influenced by the interplay between
temporal and spatial features. For example, the TCs of spatially correlated components are
estimated to be more similar than the true TCs due to the optimization of independence (and
hence de-correlation) in the spatial domain (Figure 7F). As a second example, increased
temporal similarity between components can deteriorate estimation of corresponding SMs
due to the ambiguity in decomposition (see Figure 7D). It is possible that such interplay
could “contaminate” temporal and spatial differences, though our results from Experiment 8
provide an example where differences in FNC are not erroneously captured in the spatial
domain (Figure 10F). We conclude that estimates of FNC are generally quite precise and
accurately reflect inter-subject differences (e.g., Figure 7E), though researchers should be
aware of possible biases associated with the assumptions of spatial independence.
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Appendix A. Back-projection and Dual Regression
Let Yi be the T × V data matrix for subject i, where T time points over V voxels are
simulated for M subjects. The whitened subject dataset is , where  is the T1 × T
eigenvector matrix and T1 is the number of principal components retained for each subject.
Note that  is standardized, meaning that the eigenvectors are scaled by the inverse square
root of their eigenvalues. Whitened subject datasets are concatenated to form the MT1 × V
aggregate data matrix:

(A.1)

The PCA-reduced aggregate data is

(A.2)

where G− is the T2 × MT1 standardized reducing matrix. Following noise-free ICA, we
write

(A.3)

and estimate Â and Ŝ, the T2 × T2 mixing matrix and the T2 × V aggregate SMs,
respectively.

To estimate subject SMs and TCs, we follow Calhoun et al. (2001b, 2002) and back-project
the aggregate mixing matrix Â to the subject space based on the PCA reducing matrices.
Subject-specific TCs are defined as R̂i ≡ FiGiÂ, and subject-specific SMs are Ŝi ≡
Â−1(FiGi)−Yi, where Gi is the partition of G corresponding to subject i.

We note that the recently developed dual regression method (Calhoun et al., 2004; Filippini
et al., 2009), which defines subject TCs and SMs by least-squares regression onto the
original data, is closely related to the back-projection formulations above. In dual regression,

subject TCs and SMs are estimated as Ṙi ≡ YiŜ− and , respectively. The
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correspondence between back-projection and dual regression can be seen by expressing Ṙi
in terms of the subject and aggregate PCA matrices. For subject i, we first multiply R̂i by the
subject reducing matrix to obtain:

(A.4)

Concatenating the subject matrices we have

(A.5)

Note from equation A.1 that the right-hand side of A.5 becomes Y*Ŝ−. Substituting in
equation A.3 we can write Y*(Â−1X)− which simplifies to Y*(X)−Â because XΤ is
orthogonal. Using the definition of X from equation A.2, we write Y*(G−Y*)−Â. Because
both Y* and G− are orthogonal over rows, the pseudoinverse simplifies to Y*(Y*)−GÂ =
GÂ. Substituting this expression into equation A.5, we have

(A.6)

The expression for subject i is then . Note that if  is full rank, we can pre-
multiply by Fi and arrive at Ṙi = FiGiÂ = Ṙi. Thus, when the subject data is not reduced,
TCs estimated with dual regression and back-projection are identical. Because Ŝi can be

expressed as , subject SMs will also be identical under this condition. When 
reduces the information retained from subject datasets, R ̂i and Ṙi will not be identical and
their similarity will decrease as  diverges from the identity matrix.

For the results presented in the current study,  has full rank (rotates and whitens subject
data but does not reduce information), therefore differences between back-projection and
dual regression are within computational precision.

Appendix B. Joint Scaling in Dual Regression
In dual regression, subject TCs and SMs are defined as Ṙi ≡ YiŜ− and ,
respectively. In practice, sometimes SMs are estimated in the second regression step using
TCs that have been normalized to have unit variance (see e.g., Zuo et al. (2010)). Let

 be the matrix of variance normalized TCs, where Di is the T2×T2 diagonal matrix
whose entries are the standard deviations of each component TC. The modified SMs are
then

(B.1)

Thus, variance normalizing TCs before performing the second regression is equivalent to
multiplying the original SMs by the standard deviations of the TCs.
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Figure 1.
Component map, showing the spatial configuration of the C = 25 components in the base
simulation. SM boundaries in this and subsequent figures are drawn at 30% of the maximum
value. Sources S25 and S24, which are manipulated in Experiments 1–7, are labeled.
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Figure 2. Experiment 1: effects of spatial rotation
A) Component map highlighting S25 (red box) which is rotated across subjects. B) Contour
maps showing the configuration of true (top) and estimated (bottom) S25 for subjects 1 to 30
(black to gray). Δθ indicates the range of rotation angles across subjects at each step. C)
Examples of subject SMs for a single repetition of Step 4 with ICA model order 25. D) R2

statistics between true and estimated subject SMs (top) and TCs (bottom) plotted over
subjects. Black data points indicate the mean over 10 repetitions and error bars denote ±1
standard error (SE) of the mean. Gray curves show the model fit (see Section 2.11). For Step
1, where θ is constant, the gray line simply denotes the mean across subjects. Red dots in
Step 4 correspond to the subjects displayed in panel C.
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Figure 3. Experiment 1: effects of increasing model order from 25 (A–C) to 30 (D–F)
A,D) Estimated aggregate SMs for Steps 1–5. For Step 1 of model order 30 (D, left column),
all “extra” estimated sources (eS) are essentially noise and lack any spatial structure. At
steps with spatial variability between subjects, S25 is split into two or three estimated
sources. Note that we do not display eS29 or eS30 since these additional estimated sources
were simply noise for all steps. B,E) Examples of subject SMs for Step 4. At higher model
order no single component captures the SM for all subjects. C,F) Kurtosis of the subject
SMs. Red dots in C, F correspond to the subjects displayed in B, E, respectively.
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Figure 4. Experiment 2: effects of spatial translation
A) Component map. Red box highlights S25 and corresponds to the bounding box in B. B)
Contour maps showing the configuration of true (top) and estimated (bottom) S25 for
subjects 1 to 30 (black to gray) in a single repetition. Translations in x and y are normally
distributed with mean zero and standard deviation σx,y. Note that for Steps 4 and 5, contours
of estimated SMs for some subjects are greatly distorted or completely absent. C) Examples
of subject SMs for a single repetition of Step 4 with ICA model order 25. Subjects are
displayed in order of increasing distance (d) from the group mean, which is indicated by the
white cross. D) R2 statistics between true and estimated subject SMs (top) and TCs (bottom)
for all subjects and repetitions, plotted as a function of d. Gray curves show the fit of the
Boltzmann sigmoid model (see Section 2.11). We do not fit the model for Steps 1 or 2 where
d varies little between subjects. Red dots in Step 4 correspond to the subjects displayed in C.
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Figure 5. Experiment 3: effects of spatial translation of multiple components
A) Component map. Red box highlights S25. Blue box highlights S24 and neighboring
sources S12 and S1 (top and bottom, respectively). B) Composite contour maps showing the
configuration of true (top) and estimated (bottom) S25 (left) and S24 (right) for subjects 1 to
30. Bounding boxes correspond to the red (left) and blue (right) boxes in A. Components are
vertically translated according to σy, with S12, S24 and S1 translated together in each
subject. S25 undergoes the same translations, permuted over subjects. For reference, the true
contours of S12 (green) and S1 (blue) are shown for the subjects with the largest positive
(dark circle) and negative (light circle) displacements. Their influence can be seen in the
distorted estimated contours of S24 (bottom). C) Examples of subject SMs for a single
repetition of Step 4, in order of positive to negative vertical displacements (Δy). Left column
shows a composite of the true S25 and S24 SMs for subjects with matching translations;
middle and right columns show the corresponding estimated SMs (eS). The group mean is
indicated by the white cross. D) R2 statistics between true and estimated subject SMs (top)
and TCs (bottom) as a function of distance from the group mean. Black squares denote S25,
gray circles indicate S24, and curves show the sigmoidal fits. Red symbols in Step 4
correspond to the subjects displayed in C.
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Figure 6. Experiments 4 and 5: effects of amplitude variation
A) Component map, highlighting S25 (red box). B, B′) Contour maps of true (top) and
estimated (bottom) S25 for subjects 1 to 30 in Experiment 4 (B) and Experiment 5 (B′). In
Experiment 4 (B) the spatial properties of S25 are identical across subjects; in Experiment 5
(B′) component position and size are varied slightly. In both experiments component
amplitude of S25 is increased linearly from g1 = 2 to g30 = 4. C, C′) Examples of true (left)
and estimated (right) SMs for subjects 1, 15, and 30 in order of increasing amplitude. D, D′)
R2 statistics between true and estimated subject SMs (top) and TCs (bottom) for all subjects
and repetitions as a function of component amplitude. E, E′) Scatter plot of true versus
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estimated subject-specific amplitudes using TCs standard deviation, σ̂Ric (left), SM
maximum, m̂ic (middle), and their product σ̂Ric × m ̂ic (right) as the amplitude metrics. Red
dots in D, E and D′, E′ correspond to the subjects displayed in C and C′, respectively. Note
that the true and estimated SMs in C, C′ are displayed with scaling information, i.e., gicSic
and σ̂RicŜic, respectively.
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Figure 7. Experiment 6: effects of variable functional network connectivity
A) Component map, highlighting S25 (red box) and S24 (blue box). B) Examples of true
(solid lines) and estimated (dotted lines) component TCs for subjects 1, 16, and 30. S25
(red) and S24 (blue) TCs become more distinct as amplitude of unique events (Au) is
increased (see Section 2.7). C) Examples of true and estimated SMs for the subjects shown
in B. Left column shows a composite of the true S25 and S24, middle and right columns
show estimated SMs for S25 and S24, respectively. D) R2 statistics between true and
estimated subject SMs (top) and TCs (bottom) for S25 as a function of the true FNC value
(temporal correlation) between S24 and S25. E) Scatter plot of true versus estimated FNC
values for all repetitions and subjects between S24 and S25 (dark gray dots) and between
S12 and S18 (light gray dots). Correlations between S24 and S25 are designed, thus FNCs
values are strong and positive; correlations between S12 and S18 arise by chance and follow
a null distribution. Blue crosses denote the true and estimated mean FNCs values for each
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component pair. F) Estimation bias (FNCest − FNCtrue) for all  component pairs
plotted as a function of their true spatial correlation. Red dots in D,E correspond to the
subjects displayed in B,C. Blue dots in F correspond to the component pairs (crosses)
displayed in E.
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Figure 8. Experiment 7: effects of model order on component separation
A) Component map, highlighting S25 (red box) and S24 (blue box). B) The true temporal
correlation between S24 and S25 as Au increases from 0 to 3 in thirty steps. C) Examples of
estimated aggregate SMs at ICA model order 24 (top), 25 (middle), and 30 (bottom). SMs
are shown for select values of Au, as denoted by the red circles in panel (A). D–E) R2

statistics between true and estimated aggregate SMs as a function of Au at model order 24
(white downward triangles), model order 25 (gray circles), and model order 30 (black
upward triangles). Note that R2 statistics for model order 30 overlay almost perfectly with
those for model order 25. In panel D, R2 statistics are computed with respect to the “joint”
ground truth, R2(Ŝc, S̄24+S̄25). In E, R2 statistics are with respect to the “separate” ground
truth, computed as the average of R2(Ŝc, S̄24) and R2(Ŝc, S̄25), (see Section 2.11). In B,D,E
symbols indicate the mean across all M = 5 subjects and 10 repetitions; error bars show ±1
SE.
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Figure 9. Experiment 7: effects of simulation parameters on component separation
A–D) R2 statistics with respect the “joint” ground truth for aggregate SMs as a function of
Au (left) and examples of estimated SMs at Au = 0.25 (right), as denoted by red symbols at
left. ICA model order is 25 for all decompositions. Symbols indicate the mean across
subjects and repetitions; error bars show ±1 SE. In each panel, component separation is
studied while varying a single simulation parameter at values below (white downward
triangles) and above (black upward triangles) the base simulation level (gray circles).
Parameters of interest are the number of time points (A), CNR (B), spatial size (C), and
spatial overlap (D). In D, we compare high spatial overlap (see component map inset, true
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spatial correlation between S24 and S25 = 0.20) with no overlap in the base simulation (see
Figure 7A, spatial correlation = −0.02). To facilitate visual comparison, data points are
shown only over the range Au = [0, 1] and R2 statistics are normalized such that R2 = 1
when Au = 0 and R2 = 0 when Au = 3.
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Figure 10. Experiment 8: detecting group differences in component shape and amplitude
A) Component map of sources used in Experiment 8. B) Estimated average SMs of groups
A (top) and B (bottom) for components of interest. These average maps are computed
relative to the scaled subject components, σ̂RicŜic. C–F, left) True group differences for S7
(C), S5+S10 (D), S22+S23 (E), and S3 (F). Differences are computed for both unscaled
(Sic, left) and scaled (gicSic, right) SMs. Top panels show average intensity profiles for
Group A (cyan) and Group B (dotted yellow) at the slice with maximal activation (indicated
by gray line). Bottom panels show the difference maps, calculated as A–B. C–F, right)
Estimated group differences as determined with four different scaling approaches, from left
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to right, Ŝic, z-score(Ŝic), Ŝic/m̂ic, and σ̂RicŜic (see Section 2.9). Differences are displayed as
two-sample t-statistics (top) that are thresholded at α = 0.05 in bottom panels, with the
number of significant voxels (nV) and maximum significant t-statistic (tM) indicated.
Estimated differences in Ŝic, z-score(Ŝic), and Ŝic/m̂ic should be compared to the true
differences in Sic (left of dashed line); differences in σ̂RicŜic should be compared to
differences in gicSic (right of dashed line). Data in B–F show the results of a single
repetition.
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Table 1

Base parameter values.

Parameter Notation Value

subjects M 30

components C 25

voxels V 148 × 148

timepoints T 150

repetition time TR 2

percent signal change g 3

contrast-to-noise ratio CNR 1
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