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Abstract
We propose a set of algorithms for sequentially removing artifacts related to MRI gradient
switching and cardiac pulsations from electroencephalography (EEG) data recorded during
functional magnetic resonance imaging (fMRI). Special emphases are directed upon the use of
statistical metrics and methods for the extraction and selection of features that characterize
gradient and pulse artifacts. To remove gradient artifacts, we use a channel-wise filtering based on
singular value decomposition (SVD). To remove pulse artifacts, we first decompose data into
temporally independent components and then select a compact cluster of components that possess
sustained high mutual information with the electrocardiogram (ECG). After the removal of these
components, the time courses of remaining components are filtered by SVD to remove the
temporal patterns phase-locked to the cardiac markers derived from the ECG. The filtered
component time courses are then inversely transformed into multi-channel EEG time series free of
pulse artifacts. Evaluation based on a large set of simultaneous EEG-fMRI data obtained during a
variety of behavioral tasks, sensory stimulations and resting conditions showed excellent data
quality and robust performance attainable by the proposed methods. These algorithms have been
implemented as a Matlab-based toolbox made freely available for public access and research use.
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INTRODUCTION
In parallel with the growing interest in combining electrophysiological and hemodynamic
measurements in functional neuroimaging, steady progress has been made in techniques for
simultaneous recording of EEG and fMRI signals (He and Liu, 2008; Ritter and Villringer,
2006). During a concurrent fMRI-EEG experiment, EEG recordings are severely
contaminated by artifacts caused by the electromotive force (EMF) induced in the
conductive loops formed by the scalp electrodes and the finite inter-electrode impedance of
the head (Goldman et al., 2000). Since the EMF is proportional to the changing rate of the
magnetic flux, artifactual electrical voltages can be induced by rapid switching of magnetic
field gradients and/or subtle motion of electrodes within the static magnetic field. The

*Correspondence Zhongming Liu, PhD, Advanced MRI Section, LFMI, NINDS, NIH, Building 10, Room B1D-723, 9000 Rockville
Pike – MSC 1065, Bethesda, Maryland 20982-1065, Phone: +1 301 451 9915, Fax: +1 301 480 1981, liuz5@mail.nih.gov.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2013 February 1.

Published in final edited form as:
Neuroimage. 2012 February 1; 59(3): 2073–2087. doi:10.1016/j.neuroimage.2011.10.042.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



former is referred to as the gradient artifact (GA); the latter is often called the
ballistocardiographic (BCG) or pulse artifact (PA) because the pulsatile blood flow
originating from the heart is the dominant source of electrode motion on the scalp surface
(Debener et al., 2008; Huang-Hellinger et al., 1995; Yan et al., 2010). These artifacts can
dominate and obscure neurogenic EEG signals and remain difficult to eliminate in real-time.
Therefore, retrospective processing algorithms are being actively explored to remove these
artifacts off-line in order to uncover brain signals from contaminated recordings (Laufs et
al., 2008).

In a typical fMRI study using the blood oxygen level dependent (BOLD) contrast, a selected
brain volume is scanned repeatedly and each volume consists of a number of separate slice
acquisitions using a 2-D gradient-echo or spin-echo echo planar imaging (EPI) sequence.
Since the same gradient waveform is applied every time when a new slice is acquired, the
induced gradient artifacts in concurrent EEG recordings are highly repetitive and phase-
locked to the onset time of each slice acquisition. For this reason most existing methods for
removing gradient artifacts share a common strategy of subtracting (or regressing out) from
the raw data a temporal template or a group of templates that collectively characterizes the
reoccurring patterns at every acquisition, leaving out brain signals that are expected to be
independent of the timing of fMRI scanning (Allen et al., 2000; Freyer et al., 2009;
Mandelkow et al., 2010; Negishi et al., 2004; Niazy et al., 2005; Ryali et al., 2009; Sijbers et
al., 1999; Wan et al., 2006). However, different ways to derive such artifact templates from
recorded data can arrive at varying degrees of residual artifacts and a potential loss of
neuroelectrical signals. The ideal GA removal approach needs to account for the variability
of gradient artifact due to the misalignment of fMRI and EEG sampling clocks (Anami et
al., 2003; Mandelkow et al., 2006), slow drift of magnetic field gradients (Grouiller et al.,
2007; Laufs et al., 2008) and head motion (Moosmann et al., 2009), and to minimize the
inclusion of other non-GA signals to avoid undesired removal of brain signals.

Similar to the gradient artifact, the pulse artifact also exhibits periodicity: a similar pulse
artifact reoccurs following each heart beat. Depending on the field strength (Debener et al.,
2008) and the electrode setting (Goldman et al., 2000), the pulse artifact has an amplitude
typically 1~4 times as large as neurogenic EEG signals. Such reoccurring artifacts are
thought to be driven by pulsatile blood flow and are time-locked to cardiac activity (Huang-
Hellinger et al., 1995). As cardiac cycles can be monitored through ECG recorded
simultaneously with the EEG, PA removal strategies have been based on template
subtraction methods similar to those used for gradient artifact removal (Allen et al., 1998;
Ellingson et al., 2004; Goldman et al., 2000; Niazy et al., 2005; Sijbers et al., 2000; Vincent
et al., 2007). However, due to the much larger temporal variability of the pulse artifact
relative to the gradient artifact, PA removal is often less complete. Cardiac activity consists
of a chain of coupled electrical and mechanical processes, which may vary from beat to beat
even in normal conditions. Furthermore, each bolus of blood pumped out of the heart needs
to circulate through a complex path before reaching the head and affecting the EEG. A
number of sources of temporal variability may exist along this path, causing the ensuing
pulse artifacts to appear as spatially complex, temporally non-stationary and spectrally non-
specific signals. These characteristics limit the efficacy of existing template subtraction
methods and make pulse artifacts much more difficult to remove than gradient artifacts.

Alternative to template subtraction methods are blind source separation techniques such as
independent component analysis (ICA), which has been proposed to separate pulse artifacts
and brain signals in a data-driven manner. Application of ICA after gradient artifact removal
generates a mixture of components with mutually independent temporal behaviors (Benar et
al., 2003; Debener et al., 2007; Leclercq et al., 2009; Mantini et al., 2007; Nakamura et al.,
2006; Srivastava et al., 2005; Vanderperren et al., 2010). Brain signals and pulse artifacts
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arise from independent processes and thus are thought to comprise different independent
components (IC). If one could attribute each IC to either a brain or PA-related source, a
straight-forward data reconstruction (i.e. a reverse transformation of linear ICA) from only
the non-PA components would produce artifact-free brain signals. Despite the conceptual
simplicity of ICA, its usefulness for PA correction is to some extent compromised by the
following theoretical and practical issues. The effectiveness of ICA-based signal-artifact
separation depends on several factors such as which of the several available computational
algorithms is used, on the statistical definitions of independence, on the number of
components and the number of time points. Note that the underlying blood flow that causes
the wide-spread electrode motion is such a complex and dynamic process that not only the
amplitude but also the shape of the pulse artifact can vary substantially from electrode to
electrode. It is rather difficult, if not impossible, to fully characterize the pulse artifact with
just a few ICs. For this reason the pulse artifacts contribute to all components to different
degrees. This is true especially when only a few electrodes or an insufficient number of
temporal samples are available. Moreover, the number of artifactual components to remove
is not a-priori known, and quantitative criteria for component selection are either lacking
(Benar et al., 2003; Mantini et al., 2007; Nakamura et al., 2006) or problematic (Debener et
al., 2007; Srivastava et al., 2005; Vanderperren et al., 2010). For instance, some groups have
proposed to calculate the correlation between each component time-course and the recorded
ECG and identify artifactual components by comparing their correlation coefficients to a
rather low threshold (e.g. 0.2 or 0.15) (Debener et al., 2007; Srivastava et al., 2005;
Vanderperren et al., 2010). However, because the time-courses of the pulse artifact and the
ECG are highly dissimilar and have a complex and nonlinear relationship, this criterion
cannot provide sufficient confidence or statistical power for component selection.

To effectively remove gradient and pulse artifacts, we ought to identify their characterizing
features and accordingly define effective statistical metrics that allow for automatic and
optimal signal-artifact separation. In contrast to previously published methods, we propose a
set of algorithms, which extend from existing methods for statistical pattern recognition and
classification (Jain et al., 2000), for the extraction and selection of artifactual features while
MRI triggers and ECG serve as feature-defining variables. Once defined, these artifactual
features can be subsequently removed from recorded data through regression analysis. The
proposed algorithms have been used to process simultaneously acquired EEG-fMRI data
with excellent performance for a large group of subjects with various experimental
paradigms. As the scientific findings and group-level data analysis will be reported
elsewhere, some examples from individual subject’s data are provided here to demonstrate
the usefulness of the proposed method in EEG artifact removal. In parallel with the
publication of this article, a Matlab-based implementation of the algorithms described herein
will be released for research use under the GNU general public license as open source code,
accessible through http://www.amri.ninds.nih.gov/software.html.

METHODS AND MATERIALS
Simultaneous EEG-fMRI Acquisition

Twenty-five healthy human subjects (age 28±10, 13 female) participated in the study after
giving informed written consent in accordance with a protocol approved by the Institutional
Review Board at the National Institute of Neurological Disorders and Stroke. We acquired
concurrent EEG/ECG (31-channel EEG, international 10–20 montage, one unipolar ECG,
16-bit BrainAmp MR, BrainProducts GmbH, Germany) and BOLD fMRI (GE-EPI, rate-2
SENSE, flip angle=90°, TE=30 ms, TR=1.5 or 2.1s, thirty 4 mm axial slices, FOV=220×165
mm2, matrix size=64×48) using a GE 3-T Signa scanner equipped with a 16-channel
receive-only coil array (Nova Medical, Wakefield, MA, USA). Continuous EEG and ECG
data were referenced to the FCz electrode and sampled at 5 kHz with a resolution of 0.5μV/
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bit and an analog bandwidth from 0.1 to 250Hz. The EEG sampling clock was synchronized
with an external reference signal obtained from the 10MHz master clock of the MRI
scanner. A slice-trigger signal that marked the onset time of every fMRI slice acquisition
was also recorded based on a 5V TTL signal from the scanner. The fMRI acquisition was
evenly spaced with equal delay between each excitation.

Experimental Paradigms
All subjects were instructed to lie inside the scanner in a dark environment. Each subject
underwent multiple recording sessions with resting, behavioral, motor and sensory
stimulation paradigms. As detailed experimental design and protocol will be described
elsewhere, the data presented here were obtained from the paradigms briefly described as
follows. In a resting experiment, the subject was instructed to relax for 10 minutes with eyes
closed; in an eyes-closed-eyes-open task, the subject rested for 4 minutes with multiple
cycles of self-paced alternating eyes-closed or eyes-open periods of about 30s each
(volunteers marked changes between states by a button press); in a visual stimulation
paradigm, the subject performed a fixation task while a full-field checkerboard was reversed
at 2, 6 or 10Hz using a block design with three 30s stimulus-on periods interleaving four 30s
fixation-only control periods.

From one subject, we also collected two 10-min datasets in the absence of gradient
switching. One set was acquired when the subject sat quietly with eyes closed in the control
room and the second set when the volunteer laid inside the MRI scanner without EPI
acquisition. These two recording environments provided “clean” data to which the
simultaneous EEG-fMRI data after the proposed artifact correction were compared.

From another subject, we recorded visual evoked potentials (VEP) and task-induced alpha
modulation in a patient preparation room without magnetic interference, as well as inside the
MRI scanner during concurrent fMRI scanning. The former provided reference signals for
the assessment of artifact correction methods applied to the latter. The environment for
recording outside the scanner was made as similar as possible to that inside the scanner. This
entailed the volunteer being in the supine position inside the head coil, the front-projection
mirror mounted on the coil, the projection screen as well as the use of a similar DLP
projector and closely matched field of view. For VEP, 2-Hz full-field visual stimuli were
presented with a block design; for the alpha modulation, the subject voluntarily opened and
closed her eyes about every 30 seconds.

Gradient Artifact Removal
We developed an algorithm to remove the gradient artifact channel by channel. The raw data
recorded from each channel were divided into epochs according to the fMRI slice trigger
timing: one epoch was defined as the data acquired during the interval between one slice
trigger and the next. After removing the mean of each epoch, all the epochs were arranged
into a data matrix Dp×q such that each column corresponded to an epoch, where p and q
denote the number of time points within each epoch and the overall number of slice
acquisitions (i.e. all slices for all acquired volumes), respectively. After applying SVD to the
data matrix, we further expressed D as the sum of a set of orthogonal components, {Ci, i =
1, …, min(p, q)}, each of which was the product of a unitary column vector ui (i.e. the left
singular vector) and a unitary row vector  (i.e. the right singular vector), scaled by a
weighting factor si (i.e. the singular value). For each component Ci, the left singular vector
ui represented a temporal pattern (or basis function) that spanned the duration of a single
slice acquisition, and the right singular vector vi reflected the varying amplitude of such a
pattern for different acquisitions. Both the left and right singular vectors were orthogonal for
different components (  for i ≠ j).
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(1)

Following the SVD, we classified one or multiple components as gradient artifacts based on
the following rationale and quantitative criterion. Gradient artifacts consisted of temporal
patterns that were either relatively stable or slowly variable across slice acquisitions,
whereas the temporal patterns of brain signals were independent of the fMRI slice timing
and their amplitudes ought to fluctuate around zero across acquisitions. Such distinctions
gave important clues to the SVD component classification based on a one-sample t-test
applied to the right singular vector vi of each component. The t-test used to test whether the
mean of the elements in vi differed significantly from zero with p≤0.05 corrected for
multiple comparisons. This test evaluated whether the temporal pattern described by the left
singular vector ui was relatively consistent across slices. A component was classified as
artifactual if the t-test attained significance. Fig. 1 illustrates the above procedures with
example data recorded during an eyes-closed resting experiment.

From all the artifactual components identified as above, their left singular vectors formed a
set of orthogonal basis functions. A linear combination of these functions was expected to fit
the gradient artifact induced by the acquisition of any individual slice for the given EEG
channel. Therefore, regressing out such a set of basis functions from every epoch of the raw
data left behind a continuous time-series of residuals with gradient artifacts being effectively
removed or minimized. The data were then low-pass filtered with a cutoff frequency at
125Hz and then down-sampled at 250Hz for the efficiency of data storage and memory
usage.

Pulse Artifact Correction
After the gradient artifact removal, we removed the pulse artifact using the following steps:
(1) we applied temporal ICA to the data recorded from all EEG channels; (2) we identified
the ICs attributable to pulse artifacts based on the normalized mutual information computed
between the component time-course and the ECG signal; (3) we identified the R peaks (i.e.
the center peak of the QRS complex) based on the ECG signal; (4) we applied a SVD-based
filter to the time-course of each IC to remove the reoccurring patterns phase-locked to the R
peak; (5) we projected the remaining signals from the component space to the channel space
using the inverse transformation of the ICA performed in step (1) after excluding the
artifactual ICs identified in step (2). Fig. 2 illustrates these procedures with an example from
our recorded data. In what follows, we will describe each of the above steps in detail.

ICA and Component Selection
The time-series data from all the EEG channels (except the ECG and EOG channels) were
decomposed into temporally independent components using an extended infomax algorithm
implemented in EEGLAB (Delorme and Makeig, 2004). This algorithm minimized the
average mutual information shared by every pair of output components (Bell and Sejnowski,
1995). As expressed by Eq. (2), the resulting components comprised a linearly transformed
representation of original N-dimensional data, where N was the number of EEG channels.

(2)
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where Z is the N-by-T channel-space data matrix (T denotes the number of time points), W
is the linear ICA transformation matrix and X is the resulting N-by-T component-space
matrix.

Since W is invertible, both forward and inverse transformations exist to relate the channel-
space representation to the component-space representation and vice versa. However, the
component space is much more effective than the channel space for classifying patterns into
distinct classes (i.e. pulse artifacts vs. brain signals). This is because the features represented
by individual components are readily disjoint in information, whereas the features
represented in the channel space are mixed with large redundancy among channels.

An ensuing problem was how to select the ICs that represented the spatiotemporal features
of pulse artifacts as opposed to brain signals. Since pulse artifacts were driven by cardiac
activity, we sought a subset of m components (m was unknown) which jointly had the
maximal statistical dependency on the ECG. This was equivalent to selecting the m
components with the largest mutual information with the ECG, considering that all the
output components of ICA were mutually exclusive (Peng et al., 2005). Here both the
dependency and redundancy were defined in terms of mutual information, instead of linear
cross correlation, in order to reflect the complex and nonlinear relationship between pulse
artifacts and ECG. Using an example from our recorded data, Fig. 3 demonstrates the
difference in artifactual feature extraction between the channel space and the component
space with respect to their mutual information and cross correlation with ECG.

More specifically, given a set of random variables xi denoting the individual ICs and another
random variable y denoting the ECG, the mutual information between xi and y was defined
in terms of their individual probabilistic density functions p(xi), p(y), and p(xi, y).

(3)

Note that log[·] in Eqs. (3) and (4) computes the natural logarithm. The mutual information
I(xi; y) measured the reduced uncertainty in the time-course of each component due to the
known ECG. We further normalized I(xi; y) by the entropy of xi (i.e. the total uncertainty
associated with xi) to allow for the comparison across components.

(4)

Note that the probability density and integral operation in Eq. (3) and Eq. (4) were time-
consuming to compute since the variables xi and y were continuous. In practice, the values
of each variable were grouped into discrete bins, each of which had a range of 1/5 the
standard deviation of the variable. This discretization served to approximate the continuous
signals by discrete counterparts such that the probability density function and the integral
operation could be simplified as histogram and summation, respectively.

To select the m artifactual components with maximal joint dependency with the ECG, we
sought the top m components in the descent ordering of J(xi; y) However, m was unknown a
priori. To resolve this issue we used an incremental selection scheme modified from the
feature selection method proposed in (Peng et al., 2005). This method aimed to determine
the number of artifactual components, m, that resulted in the smallest error in leave-one-out
cross-validation. For this cross-validation purpose, we divided the time series of all the
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components into 20-s segments with 10-s overlap. Starting from m = 1, we randomly
selected a single segment as the testing data and use the remaining segments as the training
data. For both training and testing data the mutual information with the ECG was computed.
The m components with the highest mutual information in training and testing data were
then compared to see if they were identical. We repeated this procedure for every segment to
serve once as the testing data. Finally, we computed the overall cross-validation error as the
percentage of cases in which the component groups derived for the training and testing sets
were inconsistent. Subsequently, m was incrementally increased until the cross validation
error was greater than 50%. This gave rise to n sequentially expanding component sets S1 ⊂
S2 ⊂ · · · ⊂ Sn, from which we sought the best set Sm (m ≤ n) that gave the smallest error in
cross validation. If the smallest error was greater than 10%, no component was excluded as
artifactual. If more than one component set had the equally smallest classification error, we
chose the one that contained relatively more components. This incremental selection scheme
ensured the identification of a compact cluster of components that was strongly and
constantly dependent on the ECG with high mutual information clearly distinctive from
those of other components. In other words, the difference in mutual information was
relatively smaller within the selected artifact component set than between the artifact and
non-artifact sets.

R-peak detection
We identified a time marker for every heart beat by detecting the R peaks in the ECG trace
recorded inside the scanner. In order to facilitate the R-peak detection, we first amplified the
R-wave while suppressing other ECG components, especially the T-wave, whose amplitude
was greatly elevated by the magnetic field (Laudon et al., 1998). Specifically, we band-pass
filtered the ECG signal from 8 to 40 Hz, and then applied the Teager energy operator (TEO)
(Kim et al., 2004; Maragos et al., 1993; Niazy et al., 2005) to the filtered ECG. The above
cutoff frequencies were chosen to separate the R wave from other ECG components since
the former had a relatively shorter duration and higher frequency. The TEO operator served
to further amplify all the spikes relative to the baseline signal. Fig. 4 illustrates the effects of
the band-pass filtering and TEO with an example from our recorded data.

Let y(t) denote the input signal (e.g. the filtered ECG signal), the TEO operator ψ(·) is
expressed as Eq. (5). The output signal is roughly proportional to the instantaneous power
and frequency content of the input signal (Maragos et al., 1993; Mukhopadhyay and Ray,
1998).

(5)

After the above filtering and transformation, identifying the R peaks in the resulting TEO
signal was equivalent to, yet much easier than, identifying the R peaks in the original ECG
signal. To do so, we developed an algorithm combining both amplitude-based peak
detection and correlation-based template matching. We first estimated the R-R interval
(RRI) based on the autocorrelation function of the TEO signal. Assuming that the heart rate
ranged from 40 to 120 beats per minute, the RRI should accordingly range from 0.5 to 1.5 s.
Within this initial range, the average RRI was estimated to be the positive time lag with the
maximal autocorrelation coefficient. To further estimate the R-peak height, we evenly
divided the TEO signal into non-overlapping segments, each of which was 2×RRI long so as
to contain at least one R-peak. We collected a set of samples for the R-peak height by taking
the maximum amplitude from every segment, and then excluded the outliers from this
sample set by removing the elements either greater than the third quartile or less than the
first quartile by three times the inter-quartile range. The minimum and maximum of the
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remaining samples provided an expected range for the amplitude of any R-peak. We then
identified all the positive peaks within this amplitude range as the candidates for the R
peaks.

In addition, we used correlation-based template matching to further confirm or reject the R-
peak candidates found with the above amplitude-based peak detection, which likely led to
misidentification of some spurious spikes due to high-frequency noise interference (e.g.
from residual gradient artifacts). A template was automatically chosen from the TEO signal
during a single cardiac cycle: the template was centered at the time point with the maximal
amplitude (presumably an R peak) during the first 5s TEO signal while the template length
was set equal to the average RRI. We derived a time-series of correlation coefficients
computed between the template and the signal within a sliding window of the same length,
running from the beginning to the end of the TEO signal by one time point per step. We
detected all the positive peaks on the cross-correlation time-series above a threshold of 0.7.
An R-peak marker was placed if both the amplitude and correlation-based criteria were
satisfied.

SVD-based filter
Similar to the gradient artifact removal, we used a SVD-based filter to remove from the
component time series those temporal patterns that were phase-locked to the R peaks.
Briefly, we segmented the time-course of each component into epochs according to the R-
peak positions. Each epoch had a fixed length equal to the average RRI and was centered
around each R-peak plus a time delay. This time delay was made to account for the time for
blood flow to travel from the heart to the head, and it was determined by maximizing the
average signal energy at the epoch center. We performed SVD to the matrix composed by
all the segmented epochs, and identified the SVD components that characterized the
reoccurring pulse artifact by using the same statistic test as that used in the gradient artifact
removal. The left singular vectors of the artifactual SVD components were then regressed
out from the component time-series. Such a SVD-based filtering was repeated for every
component obtained by the ICA.

PA-Component Removal
After the component time-course was filtered using the SVD-based filter, we transformed
the data from the component space back to the original channel space after excluding those
PA-related components selected based on their mutual information with the ECG. This
inverse transformation was achieved through a linear matrix R = W−1. The corrected EEG
signals (denoted as Z′) were obtained using the following equation.

(6)

where  is a 1-by-T row vector denoting the time-course of the i-th component after the
SVD-based filtering, ri is an N-by-1 column vector denoting the i-th column of R and Sm is
the PA-related component set.

Both the PA-related IC removal and the SVD-based filter were needed for a complete
removal of pulse artifacts. The SVD filter was effective for removing the temporal patterns
that remained stable or slowly variable across heart beats, whereas the irregularity of pulse
artifacts and the ECG itself likely led to residual artifacts that were not phase-locked to the
R peaks. In contrast, the artifactual components obtained by ICA had constantly high mutual
information with the ECG. The cross validation criterion used in the component selection
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ensured that the selected artifactual components were independent of the time period based
on which the mutual information was calculated. In other words, the artifactual components
possessed a stable temporal dependency with the ECG, despite the fact that both the ECG
and the component time course could be highly irregular. Therefore, the PA-related IC
removal and the SVD-based filter were used to remove the irregular and regular patterns of
pulse artifacts, respectively.

Comparison with alternative methods
We also used two other commonly used methods to remove gradient and pulse artifacts. The
first method was based on AAS (Allen et al., 2000) implemented in BrainVision Analyzer
(version 1.05, BrainVision LLC); the second method was based on the so-called optimal
basis sets (OBS) (Niazy et al., 2005) implemented in an EEGLAB plug-in toolbox (FMRIB,
Oxford University). We compared these two methods with the method proposed in this
paper. All three methods were applied using the default settings as described in the original
two papers (Allen et al., 2000; Niazy et al., 2005) and the settings mentioned in this
manuscript for the method described here. The strategy for the method comparison is
described below.

We measured the level of pulse artifact reduction by using the Improvement in terms of
Normalized Power Spectrum (INPS), which is the normalized power spectrum ratio before
and after applying correction, as was previously proposed in (Tong et al., 2001). This
method was also adopted in several other studies dealing with simultaneous EEG-fMRI
recordings (Briselli et al., 2006; Leclercq et al., 2009; Nakamura et al., 2006; Rasheed et al.,
2009; Srivastava et al., 2005). Specifically, we summed the spectral powers at the multiples
of heart rate (up to the 5th harmonic) for the EEG before and after pulse artifact correction
and then computed the ratio between them. A higher INPS indicates a greater degree of
pulse artifact reduction. The INPS was computed separately for each method under
comparison.

For one subject (arbitrarily selected from our subject pool) from which the same visual
stimulation paradigm was repeated inside and outside of the scanner, we computed the
residual errors as the difference between the VEP signals recorded inside and outside of the
scanner. The variance of the residual errors was computed for every channel and the mean
variance averaged across channels was calculated for each method under comparison.

In addition to the above experiment or analysis specifically for the method comparison, we
also selected a few representative examples of the data processed with different artifact
correction algorithms for a qualitative comparison of these methods on a case by case basis.

RESULTS
Fig. 5 demonstrates the efficacy of the proposed gradient artifact and pulse artifact removal
with example time-series data acquired from a single subject performing a behavior task
with alternating eyes-closed and eyes-open periods. The raw data contained reoccurring
artifactual patterns with amplitudes significantly greater than the true EEG signals (Fig. 5.a).
The SVD-based filter removed the gradient artifacts nearly entirely, resulting in much
clearer signals yet still contaminated by pulse artifacts with amplitudes and shapes varying
across channels (Fig. 5.b). After the pulse artifact was also removed, the corrected EEG
traces showed alpha oscillations predominantly at occipital and parietal channels (Fig. 5.c).
Such alpha oscillations sustained during the eyes-closed period and were suppressed during
the eyes-open period with a clear transition observable around 5.6s when the subject opened
the eyes.
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Fig. 6 shows the power spectral density function of the time-series data partly displayed in
Fig. 5. The gradient artifacts manifested themselves as spectral peaks at multiples of the
slice repetition frequency (i.e. the number of slices per volume divided by TR) (Fig. 6.a).
When the fMRI scans were continuous in time, these spectral peaks had very narrow
bandwidths and minimal interference with brain signals at other frequencies. As a time-
domain filter, the SVD-based filter effectively eliminated the spectral peaks at the primary
slice repetition frequency (dashed lines) and its harmonics (not shown) without any
noticeable effect on other spectral components (Fig. 6.b). However, the power spectra after
gradient artifact removal appeared highly similar with that of the ECG (Fig. 6.d), suggesting
the presence of strong artifacts related to cardiac pulsation. The spectral signature of pulse
artifacts included multiple spectral components at the cardiac frequency (dotted lines) and
its harmonics. These components have relatively broader bandwidths and largely interfered
with and obscured the major frequency components of brain signals. The proposed pulse
artifact removal algorithm unveiled the true EEG spectra (Fig. 6.c), clearly revealing two
spectral components peaked at the low alpha band (8–10Hz) and high alpha band (10–
13Hz).

Fig. 7 displays the spectrogram representing the power as a function of time and frequency
at the middle occipital channel Oz for the data acquired (on a different subject) during an
eyes-closed-eyes-open task (Fig. 7.a). Such a task was expected to generate a spectral
contrast in the alpha-band power between the eyes-closed and eyes-open periods (i.e. higher
alpha power when eyes were closed vs. lower alpha power when eyes were open). The
expected alpha alteration was not seen in the spectrogram with the presence of pulse
artifacts (Fig. 7.b). After the pulse artifacts were corrected by applying the SVD filter to the
time-series data represented in the original channel space (Fig. 7.c) or in the ICA-
transformed component space (Fig. 7.d), the expected alpha contrast became visible but
noisy. The SVD filtering in the component space was slightly superior to the same filtering
applied to the channel space. In this example, simply removing the artifactual ICs identified
according to their mutual information with the ECG provided improved alpha contrast (Fig.
7.e), whereas residual pulse artifacts were still observable at multiple harmonics of the
cardiac frequency. In contrast, these residuals were not seen in the corrected spectrogram
after we both applied the SVD filter to the component time series and removed the PA-
related components (Fig. 7.f). Such a combined method for pulse artifact correction led to
the highest spectral contrast in the alpha band as well as its second harmonic.

We also tested the proposed algorithm with an event-related paradigm. Fig. 8 shows the
visual evoked potential (VEP) induced by 2Hz full-field visual stimuli for a (different)
single subject. The VEP response was strongest at occipital electrodes (Fig. 8.a) with three
components following the stimulus onset: a negative peak at 83ms, a positive peak at 107ms
and another negative peak at 142ms (Fig. 8.b). These components were respectively
consistent with the N75, P100 and N145 components of pattern-reversal VEP in terms of
both polarity and latency (Di Russo et al., 2005). Moreover, these three components were
observable not only in the average VEP response but also in the single-trial responses (Fig.
8.b), suggesting a high SNR attained by the proposed algorithm.

We further evaluated the spectral specificity achieved by the proposed methods by using a
visual paradigm designed to induce steady state visual evoked potentials (SSVEP). Since
visual stimulation at a fixed temporal frequency is known to evoke occipital electrical
responses with the same frequency, we used such stimulation to generate spatially and
spectrally specific contrast against the stimulus-free control condition. Fig. 9 shows the
spectral topographies and time courses of the SSVEP obtained from two subjects presented
with visual stimulation at 6 or 10Hz (Fig. 9.a and Fig. 9.b respectively). The spectral
difference between the periods with and without visual stimulation showed sharp peaks at
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the stimulus frequency for the three occipital channels (O1, Oz and O2). From these
channels, the electrical potentials averaged with respect to the stimulus onset showed
reoccurring responses evoked by repetitive visual stimuli. Consistent results were found for
both 6 and 10Hz stimuli.

For the above example data sets, we also applied two other published methods (AAS and
OBS) for artifact correction and compared the results with those obtained with our proposed
method. For the alpha power response induced by the eyes-open-eyes-closed task, the time-
frequency spectrograms obtained with AAS and OBS are shown in Fig. 7.g) and 7.h),
respectively. The alpha-band spectral contrast between the eyes-closed and eyes-open
periods (computed with two-sample t-test) was lower for AAS (t=13.19) and OBS (t=11.47)
than for the proposed method (t=16.45). For the 2-Hz visual stimulation experiment, the
VEP responses obtained with AAS and OBS are shown in Fig. 8.c) and 8.d), respectively.
We quantified the signal-to-noise ratio for N75, P100 and N145 components in the average
VEP responses. This was done by dividing the absolute peak amplitude of each component
by the noise level estimated from the standard deviation of the signal amplitudes from
−100ms to 50ms relative to stimulus onset. The estimated noise level was 0.40 for the
proposed method, 0.86 for AAS and 1.00 for OBS. The average component SNR was 8.90
for the proposed method, 5.66 for AAS and 3.64 for OBS. In addition, it is readily
observable that the proposed method gave rise to less variation in single-trial VEP responses
to individual stimuli relative to AAS and OBS. Quantitatively, the average trial-to-trial
variation was 0.35 for the proposed method, 0.96 for AAS and 0.93 for OBS. For the visual
evoked response to 6Hz visual stimulation (Fig. 10), the proposed method gave rise to a
steady SSVEP time course, whereas the SSVEP time courses for AAS and OBS seemed
more variable. The SSVEP spectra obtained with the proposed method and OBS were
comparable, while AAS was less satisfactory. In short, for these cases the proposed method
performed better than or equivalent to the two alternative methods in terms of preserving the
spatial, temporal and spectral features of EEG and event-related potentials (ERP).

For a different single subject, we also compared the resting EEG spectrum and time series
among three recording conditions: 1) with fMRI, 2) inside the scanner without fMRI, 3)
outside the scanner. As shown in Fig. 11.a), all three methods performed reasonably well in
the removal of gradient artifacts, except that the OBS method seemed to overcorrect the
gradient artifact by removing additional EEG signals at multiples of a half of the slice
repetition frequency. For the PA removal in this example, the difference between these three
methods was obvious (Fig. 11.b). Temporally, our proposed method removed more signals
than the other two methods while preserving the alpha oscillation that was expected to
dominate the posterior EEG at rest. Spectrally, a peak around 10.5 Hz was clearly visible in
the data obtained with our proposed method. This spectrum was similar to the EEG
spectrum obtained outside the MRI scanner but with smaller alpha peak amplitude. While
the AAS and OBS methods also preserved the alpha components, their resulting spectra
showed spurious low-frequency (3–8Hz) components that were absent in the clean EEG
spectrum.

For another different subject, we compared the task-induced alpha modulation and VEP
signals recorded inside and outside the MRI scanner. As shown in Fig. 12, the proposed
method revealed a clear alpha-power modulation as a result of opening and closing the eyes.
Such a modulation recorded inside the scanner appeared very strong and specific to the
alpha band, similar to that recorded outside the scanner. Note that as the task was self-paced
by the subject, the subject opened and closed the eyes at different times for the experiments
performed inside and outside the MR scanner. However, the alpha modulation obtained with
AAS or OBS was either less specific to the alpha band or much weaker, respectively. The
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quantified alpha contrast obtained with the proposed method and AAS were comparable to
that recorded outside the scanner, whereas OBS resulted in a much lower alpha contrast.

The comparison between the VEP recorded inside the scanner with different artifact
correction methods and the VEP recorded outside the scanner is shown in Fig. 13. From the
VEP channel plots (Fig. 13.A through D), we can see that the VEP obtained with the
proposed method and using AAS were comparable to the VEP recorded outside the scanner,
whereas OBS was much less satisfactory. This can be confirmed by the VEP comparison at
a single channel Pz (Fig. 13.E). We calculated the residual errors as the difference between
the VEP recorded inside and outside the scanner. For each channel, the residual error was
quantified by its variance. The mean variance of residual errors was further computed by
averaging the variance across all channels. The quantified residual error was lower for the
proposed method relative to the two alternative methods.

For each of the three methods under comparison (i.e. the proposed method, AAS and OBS),
we computed INPS for all of our datasets (n=204 combined for all subjects), regardless of
the experimental paradigm used. The proposed method resulted in the highest INPS for
79.4% of the datasets, in contrast to 3.6% for AAS and 17% for OBS. Overall the proposed
method (INPS=29.2±2.1) gave rise to a significantly greater degree of pulse artifact
suppression than both AAS (INPS=11.1±0.7) and OBS (13.3±0.8).

DISCUSSION
We presented a method for improved artifact removal from EEG data collected within the
MRI scanner. The sample results of this method presented above demonstrate the
effectiveness of the method in removing artifacts resulting from MRI gradient switching and
cardiac pulsation. We have applied these algorithms to about 200 sessions of simultaneous
EEG-fMRI recordings collected from a group of healthy human subjects using a 32-channel
EEG system within a 3T MRI scanner across a variety of experimental paradigms. High
quality data were reliably obtained for all of these sessions. Our implementation of the
proposed algorithm is fully automatic and has no requirement for user-specific parameter
setting. Below specific aspects of our method are contrasted with those in previously
published methods, and potential directions of future development are suggested.

Gradient Artifact Removal
Perhaps the most widely used method for gradient artifact removal is the average artifact
subtraction (AAS) method (Allen et al., 2000). In AAS, a local artifact template is computed
for each EEG channel as the signal average with respect to the onset times of the fMRI
slices acquired within a sliding time window. Depending on an empirical choice, the length
of the sliding window is critical in balancing brain signal loss and gradient artifact
variability. On one hand, it is desirable to use a long sliding window to cover a sufficient
number of slice acquisitions so that brain signals can be averaged out of the computed
template and thus not removed; on the other hand, a short sliding window is desirable to
obtain a more local artifact template that is better suited to filter out a variable gradient
artifact but risks some loss of brain signals. The examples shown in Fig. 14 demonstrate the
effect of the window length on the spectrum of EEG after the AAS-based GA removal: a
short moving window resulted in over-correction whereas a long window resulted in under-
correction. Therefore the choice of window length is a compromise between optimally
removing stationary and variable gradient artifacts. This limitation often leads to
unsatisfactory artifact removal by using AAS or its variations (Goldman et al., 2000;
Goncalves et al., 2007; Sijbers et al., 1999).
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The proposed SVD-based filter overcomes this limitation. The SVD filter uses data for all
slice acquisitions to maximize the statistical power desired in order to avoid the removal of
brain signals, whereas more than one SVD component can be selected to account for the
temporal variability of gradient artifacts. Similar ideas have been adopted by other groups
for the removal of gradient artifacts (Mandelkow et al., 2010; Negishi et al., 2004; Niazy et
al., 2005). However, two distinctions from these methods should be noted. In previous
methods, SVD (or equivalently PCA) is applied to the channel-wise signals that remain after
AAS. Although these methods may help reduce the residual artifacts uncorrected by AAS,
there is obviously no way to undo the possible removal of brain signals resulting from AAS.
Second, quantitative criteria for artifactual component selection are either lacking or loosely
defined (Mandelkow et al., 2010; Negishi et al., 2004; Niazy et al., 2005). For example,
Niazy et al. propose to remove the first SVD component (or the first few) that explains the
highest variance of the residual signal after AAS. This likely leads to over-correction (see
Fig. 11.a for an example) because the first few SVD components always explain more
variance than other components regardless of whether there are uncorrected artifacts in the
signal or not.

In some previous studies, signal processing solutions are developed to deal with the
difficulty of gradient artifact removal resulting from the misalignment of EEG and MRI data
samples due to slightly differing sampling frequencies (Mandelkow et al., 2010; Niazy et al.,
2005; Ryali et al., 2009; Wan et al., 2006). These solutions are commonly based on slightly
shifting the MRI trigger positions to improve the phase-locking of gradient artifacts with
respect to the triggers. In our study, we did not do such processing; instead a device was
used to physically synchronize EEG and MRI sampling clocks. Since such a hardware
solution is increasingly available, it eliminates the source of non-synchronization and thus is
obviously more desirable than any retrospective correction. Nevertheless, the proposed SVD
filter is capable of removing gradient artifacts even with imperfect synchronization.

In the present study, the gradient artifact is removed channel by channel. This ignores the
strong dependency of the artifacts experienced by different channels. We anticipate that such
spatial dependency would be helpful to further improve the artifact removal. Recall again
that the artifactual voltage is proportional to the changing rate of the magnetic flux, which
depends on the area enclosed by the conductive loops and the magnetic field inside it. As the
change of the looped area is much slower than the change of magnetic field gradients, the
gradient artifact depends almost entirely on the changing rate of magnetic field gradients.
Note that there are only three gradients in place along three orthogonal directions. The
gradient artifacts induced by any single slice acquisition at tens of electrodes should reflect
at most three template patterns, each of which corresponds to one gradient direction.
Although we did not utilize this spatial dependency in our study because the proposed SVD
filter seems sufficient for retrospective removal of gradient artifacts, it may be very helpful
for real-time removal of gradient artifacts. We would like to explore this in future studies.

Pulse Artifact Correction
To facilitate pulse artifact correction, TEO is helpful for detecting the R peaks. In two
previous papers (Kim et al., 2004; Niazy et al., 2005), a modified TEO (called k-TEO) is
suggested to outperform TEO based on the argument that an appropriately selected k enables
the frequency selectivity desirable for the R-peak amplification. We argue here that such a
modification is unnecessary if the ECG signal is first band-pass filtered from 8 to 40 Hz,
whereas an improperly selected k value would likely confound the R peak detection by
amplifying the high-frequency noise. In addition, we chose not to use the algorithm reported
in (Christov, 2004; Niazy et al., 2005), which allows for real-time QRS detection but
requires the setting of many parameters and is computationally demanding given a long
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recording period. In contrast, our proposed R-peak detection takes only several seconds on
average on a typical Linux workstation.

We used ICA for the extraction of the features characterizing pulse artifacts or brain signals.
Although ICA has been used in the correction of pulse artifacts (Benar et al., 2003; Debener
et al., 2007; Leclercq et al., 2009; Mantini et al., 2007; Nakamura et al., 2006; Srivastava et
al., 2005; Vanderperren et al., 2010), previous studies face the uncertainty as to which
components are artifactual and thereby need to be removed. This uncertainty puts ICA at
risk for undesired removal of brain signals (Vanderperren et al., 2010). To overcome this
problem, we introduced mutual information based criteria to select a compact cluster of
components with maximal joint dependency on ECG while such dependency remained high
over time. Our results demonstrate that mutual information is preferable to cross correlation
for measuring the complex relationship between pulse artifacts and ECG. However,
component selection based on mutual information is very conservative and cannot
completely account for all pulse artifacts. This is partly due to the large spatial variation in
the amplitude, arrival time and shape of the pulse artifacts experienced at different channels.
As a result, other components that are not selected for removal also contain some portions of
pulse artifacts, albeit to relatively lesser extent. These remaining artifacts are removed by
applying the proposed SVD filter to the time course of every component. Complementary to
ICA, the SVD filter makes it less critical for the uncertain classification of some
components, which are partly artifacts and partly brain signals, as components of brain
signals instead of pulse artifacts. In short, ICA removes the patterns that change over time,
and SVD removes remaining coherent patterns.

Note that we applied the SVD filter to the time-series data represented in the component
space, in contrast to some previous studies in which the SVD filtering is performed in a
channel-wise basis (Debener et al., 2008; Niazy et al., 2005). We prefer to apply the SVD
filter to the component space rather than the channel space mainly for two reasons. First, the
ICA redistributes pulse artifacts in the component space so some components end up with
more artifacts than others. This is in contrast to the channel space in which pulse artifacts are
relatively evenly distributed across channels. Therefore, the application of ICA before the
SVD filtering provides differing artifact-to-signal ratio for individual components. For the
components that contain more pulse artifacts than others, its higher artifact-to-signal ratio
results in the higher statistical power that is needed to confidently separate more artifacts
from signals in the SVD. Second, ICA generates mutually independent time courses. In
every component time course, the SVD components determined as artifactual are
independent as well. Regressing out these artifactual SVD components from an individual
ICA component leads to regressing them out from all channel-wise time courses, as the
inverse ICA is a linear transformation. After this SVD filtering is applied to all the ICA
components, one has effectively filtered the time course of every channel with a large group
of independent basis functions, which collectively give a better fit to the temporally variable
pulse artifact than the basis functions that are directly derived from the channel-wise time
course.

Quantitative Comparison with Alternative Methods
In the present study, the evaluation of the proposed method in contrast to other alternative
methods remains mostly qualitative. Considering this limitation we tend to be cautious and
avoid concluding that the proposed method performs significantly better than other existing
methods,. A more comprehensive and quantitative evaluation is certainly desirable yet very
difficult to perform. The difficulty is largely due to the lack of absolute gold standard, or
‘truth’ measurement, to which the data processed with different methods can be
quantitatively compared to and thus assessed. A few comparative studies have focused on
quantifying and comparing the performance of a couple of existing methods for removing
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gradient artifacts. For example, Ritter and colleagues used an interleaved fMRI acquisition
and compared the EEG signal spectra during the alternating periods with and without
gradient switching (Ritter et al., 2007). We did not use the interleaved acquisition because it
would introduce some dispersion of the artifact spectrum (Mandelkow et al., 2010) and limit
our ability in investigating the low-frequency signals. Moreover, the gradient artifact
removal is less of concern especially when hardware for the MRI-EEG clock
synchronization is in use. In our opinion the hardware solution is more preferable than any
retrospective signal processing solution for dealing with the clock asynchrony, which would
otherwise be avoided.

The performance quantification for pulse artifact correction is more important and obviously
more challenging. One may argue that EEG signals recorded outside the MRI scanner would
serve as the reference signals to which EEG signals recorded inside the scanner can be
quantitatively compared. One such experiment was included in this work and some other
groups have also done such comparisons. For example, Im and colleagues have
quantitatively compared the visual evoked potentials recorded inside and outside of the MRI
scanner, as well as the cortical activity reconstructed from these signals (Im et al., 2006).
While major temporal and spatial features were overall similar, discrepancies in details (e.g.
absolute signal amplitude and duration, spatial extent and location) were obvious. Some may
quantify such discrepancies to measure the error of the artifact correction algorithm used.
However, we always need to keep in mind the confounding difference in the experimental
condition (e.g. stimulus setting and subject position) and the subject’s mental state (e.g.
attention and vigilance) may also account for the difference between the signals inside and
outside of the scanner. In addition, other quantitative measures (e.g. INPS used in this study)
can only measure one aspect of artifact correction and are as such not completely indicative
of the performance of correction methods in general.

Another practical issue is concerned with the fairness of comparison between individual
algorithms. A fair comparison cannot be reached until individual methods are optimized,
which would be ideally done by their developers. A fair comparison would need a variety of
data sets so as to avoid the use of selected data that are favorable for some algorithms yet
against the others. A fair comparison would also need the efforts to make individual
algorithms publically accessible in order for other independent users to test for
reproducibility. A multi-laboratory collaborative effort would ideally be the basis of such a
quantitative comparison, putting this outside of the scope of the current work. It is perhaps
all of the aforementioned concerns that amount to a still unresolved question as to which
algorithm should be used for simultaneous EEG-fMRI studies, despite the previous efforts
along this direction.

CONCLUSION
A set of refined algorithms has been developed to remove gradient and pulse artifacts from
EEG recordings simultaneously acquired with continuous fMRI scans. The developed
algorithms rest on advanced statistical methods for the automatic extraction and selection of
artifactual features, and have been demonstrated to provide excellent quality for data
collected with a variety of paradigms including resting-state, behavioral tasks, sensory
stimulation, etc. The algorithms described herein have also been implemented in a Matlab-
based toolbox available for public access and research use. We believe that this toolbox will
further advance our existing ability in multimodal neuroimaging combining EEG and fMRI,
which are often desirable in both neuroscience and clinical applications.
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Figure 1.
a) Artifactual SVD component selection for gradient artifact removal is based on raw data
recorded from a single channel and triggers sent from the MRI scanner on every slice
acquisition. b) Segmented raw data arranged into a matrix and then decomposed into
orthogonal components by SVD. The first, second and third SVD components for this
example dataset are shown in c), d) and e). In the insets of c), d) and e), the left singular
vector is shown in top-left; the right singular vector is shown in bottom-right; the histogram
of the right singular vector is shown in bottom-left.
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Figure 2.
Pulse artifact correction by ICA and SVD filtering. a) Multi-channel EEG signals before (in
black) and after (in red) pulse artifact correction. b) Multi-component time series obtained
by applying ICA to the signals recorded from all EEG channels. c) Mutual information
between every component time course and the ECG. PA-related components are selected
from the cluster with high mutual information. d) Multi-component time series after
applying SVD filtering to the time course of each component. The filtered time series of all
non-PA components (in red) are inversely transformed to the original channel space,
resulting in the corrected (red) traces in a).
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Figure 3.
Mutual information (a, c) or cross correlation (b, d) between channel-wise (a, b) or
component-wise (c, d) time-series signals and ECG for an example EEG dataset.
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Figure 4.
TEO signal generation. a) ECG signal. b) band-pass filtered ECG signal from 0.5 to 7 Hz. c)
band-pass filtered ECG signal from 8 to 40 Hz. d) TEO signal obtained by applying TEO to
the band-pass filtered ECG displayed in c).
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Figure 5.
a) Raw time-series data recorded from 30 EEG channels and one ECG channel. b) Signals
after removing gradient artifacts. c) Signals after removing both gradient and pulse artifacts.
Note the substantially larger scale used in (a).
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Figure 6.
Power spectral density function profiles for raw data (a), the signals after gradient artifact
removal (b), the signals after the removal of both gradient and pulse artifacts (c), and the
ECG after gradient artifact removal (d).
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Figure 7.
EEG responses for a self-paced eyes-closed-eyes-open task, illustrated in (a). Single-channel
(Oz) spectrograms are shown for the signal contaminated by pulse artifacts (b), the signal
corrected by applying the SVD filtering to the channel-wise (c) or component-wise (d) time
series, the signal corrected by removing PA-related ICs (e), the signal corrected by both
applying the SVD filtering to component time courses and removing PA-related ICs (f, and).
The signals corrected using the AAS (g) and OBS (h) methods are also shown.
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Figure 8.
a) VEP signals from −100 to 400ms with respect to the stimulus onset. b) Mean and single-
trial VEP signals after using the proposed method. On the top is the mean VEP signal at Oz
(black) with standard errors computed across trials (grey); on the bottom are the electrical
responses to individual stimuli. Panes c) and d) show the VEP signals after using the AAS
and OBS methods, respectively.
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Figure 9.
Power spectral density functions (left) and time courses (right) of the SSVEP signals
generated by 6Hz (a) and 10Hz (b) visual stimulation. Spectra are displayed for all EEG
channels. Time courses are shown only for three occipital channels (O1, Oz and O2).
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Figure 10.
Steady-state visual evoked potentials for the Oz electrode for one of the 6 Hz visual
stimulation experiment, represented in time (left) and frequency (right) domain, obtained
with three different methods: our method (red), AAS (blue) and OBS (green). Note that the
data from the method presented here are identical to the Oz-data shown in Fig. 9a.
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Figure 11.
Comparison between the proposed method and two other existing methods (AAS and OBS)
for resting-state EEG. a) Spectra (left) and time courses (right) of the EEG signal at Pz
corrected for gradient artifacts with the propose method (red), AAS (blue) and OBS (green)
in comparison with the signal recorded without fMRI (black) or with fMRI but without any
artifact correction (gray). b) Spectra (left) and time courses (right) of the EEG signal at Pz
further corrected for pulse artifact with the proposed method (red), AAS (blue) and OBS
(green) in comparison with the signal recorded outside the MRI scanner (black) and the
signal before any pulse artifact correction (gray).
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Figure 12.
Performance of the proposed method and two other existing methods (AAS and OBS) for
the alpha power modulation induced by opening and closing eyes, in comparison with the
data recorded outside the scanner. The first four rows (from top to bottom) are the alpha
power modulation at the Oz channel recorded outside, recorded inside and processed with
the proposed method, AAS and OBS. The bottom row is the alpha contrast between eyes-
closed and eyes-open periods quantified with two-sample t-test.
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Figure 13.
Assessment of the proposed method and two other existing methods (AAS and OBS) for
quality of VEP signals recorded in the scanner in comparison with those recorded outside
the scanner. A) VEP recorded outside the scanner, B) VEP recorded inside the scanner on
the same volunteer on the same day, obtained with the proposed method, C) the same data as
B) processed with AAS, D) the VEP recorded inside the scanner after processing with OBS,
E) VEP at a single channel obtained with different methods, compared to that recorded
outside the scanner for the same subject, F) residual errors (difference between the VEP
recorded outside and inside the scanner) quantified by the mean variance averaged across
channels, resulting from the use of different methods.
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Figure 14.
Comparison of the EEG spectra for experiments without (black) and with concurrent fMRI
acquisition. The latter data were processed using the proposed method (red) and the AAS
method with two different moving windows containing 51 (cyan) or all (blue) slice
acquisitions.
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