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1. Introduction
Diffusion magnetic resonance imaging (diffusion MRI) is an imaging technique that is
sensitive to three-dimensional diffusion of water molecules in the brain. The presence of
microstructural barriers leads to an anisotropic diffusion pattern. This diffusion pattern is
frequently represented by a tensor, from which white matter microstructural properties may
be inferred and the underlying white matter orientation visualized (Basser PJ et al, 1994;
Conturo TE et al, 1999; Mori S et al, 2002; Westin CF et al, 2002). Tractography algorithms
have been proposed to characterize the connectivity of white matter fiber bundles (Basser PJ
et al, 2000; Catani M et al, 2002; Conturo TE et al, 1999; Westin CF et al, 2002). Diffusion
imaging and tractography is subject to certain artifacts and pitfalls that must be taken into
consideration with respect to diffusion imaging (Le Bihan D et al, 2006). Partial volume
mixing and proximity of a pathway to other pathways containing many more tracts
propagating in a different direction are some of the factors that introduce errors, or even
cause certain pathways to be missed completely. Nevertheless, these techniques are
increasingly used for their capability to characterize white matter microstructure and
connectivity, for which conventional MR is not sufficiently sensitive (Pagani E et al, 2005;
Parker GJ and Alexander DC, 2003; Reich DS et al, 2006; Tuch DS 2004; Tuch DS et al,
2002).

Many important clinical applications of diffusion tractography involve delineation of
specific WM fiber bundles. For example, presurgical applications generally conduct risk
assessment exclusively on the fiber bundles located within or in the vicinity of a planned
surgical site (Qiu TM et al, 2010; Spena G et al, 2010; Yogarajah M et al, 2009). Evaluation
of disease progression in neurodegenerative disorders similarly involve regional assessment
of axonal integrity, often focused on the fiber bundle impacted by disease progression
(Goldberg-Zimring D et al, 2005; Pagani E et al, 2005; Reich DS et al, 2006; Sage CA et al,
2007). Consequently, separating the streamlines identified by whole brain tractography into
distinct bundles is a fundamental step in many relevant clinical applications. However,
classification of thousands of WM streamlines into specific fiber bundles remains a
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challenging task. The most frequently used technique applies prior knowledge regarding the
fiber bundle’s path through the anatomy in order to manually define tractography seeding,
selection, and/or exclusion regions—a strategy commonly referred to as multiple regions-of-
interest (MROI) (Catani M et al 2002 and 2008; Mori S et al, 2002; Wakana S et al, 2007;
Zhang W et al, 2008; Zhang Y et al, 2010). Other less widely used approaches include
clustering methods (Maddah M et al, 2008; Niethammer M et al, 2006; O’Donnell LJ et al,
2006), and fiber bundle segmentation approaches (Eckstein I et al, 2009; Jonasson L et al,
2005). In the present study, we implemented the MROI approach because it is a well-
accepted technique with some favorable characteristics: MROI is independent of arbitrary
feature space divisions or segmentation thresholds and unlike bundle template matching
approaches (Hua K et al, 2008) MROI allows tractography in the subject tensor volume, by
this means preserving individual variability in the fiber trajectories. However, the manual
drawing of MROI is time-consuming, requires extensive training, and presents opportunity
for human fatigue, error, or expert variability to negatively affect the fiber bundle outcome.
As such, automated detection of fiber bundles is a topic addressed with increasing frequency
in the literature (Li H et al, 2010; Nazem-Zadeh MR et al, 2011; Oishi K et al, 2009;
Voineskos AN et al, 2009; Zhang W et al, 2008; Zhang Y et al, 2010).

A basic step which is common to many recently proposed automated bundle detection
algorithms is inter-subject alignment of multiple image volumes. This alignment process
often involves an atlas composed of a single reference anatomy (Oishi K et al, 2009; Zhang
W et al, 2008; Zhang Y et al, 2010), or composed of multiple reference anatomies (Li H et
al, 2010; O’Donnell LJ et al., 2007; Voineskos AN et al, 2009). However, it has not been
studied whether the use of an atlas introduces avoidable errors in the bundle detection
scheme. It is not yet clear for example how atlas-to-subject alignments will ultimately
impact results when the atlas is composed of a single reference anatomy, compared to it
being composed of multiple reference anatomies. An additional avenue open for research is
in the methodologies used for inter-subject anatomical alignments. A study using MROI
recently demonstrated improved results when implementing inter-subject nonrigid
alignments, as compared to rigid or affine alignment (Zhang Y. et al, 2010). However, it has
not been shown whether inter-subject MROI alignments should be performed based on
anatomical scalar images (such as MPRAGE), or if there are benefits to alignment utilizing
the full tensor. Although, previous work by others suggests that superior results may be
obtained by utilizing the directional information derived from diffusion imaging (Park HJ et
al, 2003; Ruiz-Alzola J et al, 2002), other work has concluded structural MRI is superior for
alignment (Zöllei L et al, 2010).

In this article, we propose and evaluate a consensus template fusion approach for identifying
MROI. This overcomes the disadvantages of the manual process, by removing the need for
interactive delineation of MROI, reducing the requirement for extensive training, and
avoiding the opportunity for human fatigue, error, or expert variability to negatively affect
the fiber bundle delineation. We present a comparative study of three methodologies for the
automated detection of white matter fiber bundles. Fiber bundles obtained by the automated
methods were compared against reference standard bundles delineated by manually drawn
MROI in the same subjects. We evaluated the relative error in fiber bundle delineation when
using different MR contrast types for inter-subject nonrigid alignments—we evaluated
standard T1-weighted MPRAGE, scalar fractional anisotropy, and full tensor data. We then
evaluated the comparative performance of the proposed automated methods for
automatically reproducing six clinically important fiber bundles of interest in twenty healthy
volunteers.

Based on our findings, we recommend our proposed MROI consensus map algorithm for the
identification of white matter fiber bundles. It is capable of reproducing the outcomes
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obtained by the manual procedure. The innovation of this algorithm is the detection of
MROI by performing a statistical fusion of multiple templates individually aligned to the
target of interest. Through our evaluation experiments, we identified full tensor MR for
inter-subject alignment as leading to the most accurate delineation of fiber bundles.
Furthermore, the statistical fusion of multiple templates provides a consensus map of the
MROI while preserving anatomical variability of the resulting white matter fiber bundles in
the individual target.

2. Material and Methods
2.1 Subjects

We enrolled an age-matched group of 20 young volunteers (Mean: 17.8 yrs, SD: 1.1 yrs)
with no history of neurobiological disorders; 10 males and 10 females. In compliance with
Institutional Review Board guidelines, institutional study approval and signed individual
participant consent forms were obtained for each volunteer.

2.2 Acquisition and preparation of MRI images
All of the study participants underwent MRI scanning at three Tesla using a Magnetom Trio
scanner (Siemens, Erlangen, Germany). Anatomical T1-weighted and diffusion tensor
images of the head were acquired for each participant.

The preparation of MR images consisted of generating for every study subject a set of
similarly sampled, skull-stripped, and anatomically aligned T1-weighted (T1w), fractional
anisotropy (FA), and diffusion tensor volumes (DT). This was done by the procedures that
follow.

2.2.1 T1-weighted images—We acquired high-resolution 3D Magnetization Prepared
Rapid Acquisition Gradient Echo (MPRAGE) T1-weighted images using a 32-channel head
coil; we used 1.0mm thick contiguous axial slices and 0.8×0.8×1.0 mm3 voxels covering the
entire head, TR/TE=1410ms/2.27ms, TI=800 ms, and flip angle=9°.

A segmentation of the intracranial cavity was created from this T1-weighted image using a
previously described algorithm (Grau V et al, 2004; Weisenfeld NI and Warfield SK, 2009).
The resulting intracranial segmentation was used as a mask to skull-strip all images volumes
prior to anatomical alignments.

2.2.2 Diffusion images and tensor estimation—We acquired high spatial resolution
diffusion weighted images using 30 directions and 5 baselines, B value=1000s/mm2; we
used 2mm thick contiguous slices and isotropic 2×2×2 mm3 voxels covering the entire brain.
In order to minimize eddy current distortion, a double balanced gradient scheme was applied
(Reese TG et al, 2003). To achieve the smallest possible TE in order to minimize geometric
distortion and signal loss, a parallel acquisition with an acceleration factor of 2 was used
with a 32-channel head coil.

Compensation for residual distortions and patient motion was achieved by affine registration
of all diffusion images to the b=0s/mm2 image using maximization of mutual information.
The gradient directions were appropriately reoriented using previously described methods
(Ruiz-Alzola J et al, 2002). We rigidly aligned the T1w image in order to match the
corresponding diffusion images.

Least squares estimation was used at each diffusion image voxel to estimate a single tensor
model derived from the 30 diffusion weighted images. The resulting DT volumes were used
for fiber tracking and for producing the following scalar images:
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• FA – a standard fractional anisotropy image computed based on the relative
prominence of the primary eigenvalue of the diffusion tensors.

• color-coded FA – a red, green, and blue color-coded image derived from the
diffusion tensor volume by projection of the primary eigenvector onto the
orthogonal anatomical axes, with intensity modulated by FA (Douek P et al, 1991).
This color-coded FA image serves as the reference frame for manual drawing of
MROI.

2.3 Fiber tracking
We implemented a stochastic streamline tractography algorithm that combines the speed and
efficacy of deterministic decision making at each voxel, with probabilistic sampling from
the space of all streamlines. Streamlines were initialized at stochastically sampled locations
inside the seeding MROI, and were constructed by stepping with sub-voxel resolution
through the DT volume. For each potential trajectory we avoided loss of connectivity due to
local aberrations by incorporating a low pass filter along the estimated pathway. The
propagation of each streamline was terminated if the FA fell below 0.20, or if the tract
trajectory angle exceeded 30 degrees (Van Hecke W et al, 2008). Only streamlines meeting
the MROI select and/or exclude criteria were kept (MROI regions are described in Section
2.4).

Each streamline was determined in the following way: Ten trajectories per DT voxel inside
the seed MROI are initiated in both directions parallel to the primary eigenvector. Direction
of propagation, trajectory FA and trajectory angle are computed at every step as a linear
combination of the current direction, FA, and angle, and the previous values of these
quantities accumulated along the trajectory. Specifically, from each point pk, a new point
along the trajectory is identified by stepping, with a fixed step size (s), in the direction
indicated by the local tract orientation estimate (vk), such that: pk+1 = pk + vk s Each new
point of the streamline, pk+1, is tested to ensure it resides inside the boundary defined by the
intracranial cavity mask, a log-Euclidean estimate of the tensor at that point is then
computed based on the tensors from the surrounding voxel neighborhood. The stepping
direction is determined by a linear combination of tensor deflection (Lazar M et al, 2003)
and primary eigenvector orientation, while the stopping criteria are based on minimum FA
and step angle. To ensure trajectories meet the requirements of the known bundle anatomy,
all streamlines must pass through selection MROI and were rejected if they passed through
exclusion MROI.

2.4 Reference standard fiber bundles
For the purposes of this study, we have selected six white matter fiber bundles based on
common clinical applications and their relevance to neurologic disorders. However, we
expect that other fiber bundles not included in this list can be automatically detected in a
similar fashion to those studied here.

Representative bundles of interest are denoted as follows:

1. CC – corpus callosum

2. SLF – superior longitudinal fasciculus

3. TR – anterior and superior thalamic radiation

4. CST – corticospinal tract

5. Cg – cingulum

6. OR – optic radiation
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Initially, these bundles were delineated by expert manual drawing of MROI (referred to as
templates), based on color-coded FA anatomical landmarks as previously described by
others; fiber bundles derived by the manual procedure later serve as the reference standards
for evaluating the experimental automated methodologies. The MROI strategies used for
each bundle are illustrated in Figures 1 and 2, and are outlined as follows:

1. CC fiber bundle, based on the MROI strategy described by Catani M and Mesulam
M., 2008.

• Seeding: approximately the 5 central sagittal slices outlining the red-
colored lateral radiations of the corpus callosum

• Exclusion: approximately the 5 central sagittal slices outlining the
brainstem

2. SLF fiber bundle, based on the MROI strategy described by Catani M and Thiebaut
de Schotten M., 2008; Catani M and Mesulam M., 2008; and Wakana S et al, 2007.

• Seeding: two seeding regions in each cerebral hemisphere were used
found in the vicinity of the temporoparietal junction, approximately 4
contiguous sagittal slices outlining the green, anterior-posterior radiation
of the superior fasciculus, and 4 contiguous sagittal slices outlining the
blue, inferior-superior radiations

• Exclusion: in order to exclude fibers not belonging to the SLF, we used
the CC seeding region, defined above, as an exclusion region for SLF

3. TR fiber bundle, based on the MROI strategy described by Catani M et al, 2008;
Zhang Y et al, 2010; and Wakana S et al, 2007.

• Seeding: approximately 4 contiguous axial slices outlining the purple-
green colored radiations that define the anterior limbs of the internal
capsule

• Exclusion: in order to exclude fibers not belonging to the TR, we used the
CC seeding region, defined above, as an exclusion region for TR

4. CST fiber bundle, based on the MROI strategy described by Zhang Y et al, 2010;
and Wakana S et al, 2007.

• Seeding: two seeding regions, one is approximately 4 contiguous axial
slices outlining the blue colored radiations outlining the posterior limbs of
the internal capsule, the second is defined as approximately 3 contiguous
axial slices defining blue colored superior-inferior radiations visible in the
brain stem at approximately the level of the decussating of the superior
cerebellar peduncle

• Exclusion: in order to exclude fibers not belonging to the CST, we used
the CC seeding region as an exclusion region for CST

• Inclusion: both of the CST seeding regions of the left and right
hemispheres were also mutually used as inclusion regions—all fibers
therefore needed to traverse both of the left, or both of the right, seeding
regions in order to be selected

5. Cg fiber bundle, based on the MROI strategy described by Catani M et al, 2008;
and Zhang Y et al, 2010.

• Seeding: two seeding regions, approximately 4 contiguous axial slices
outlining the cigar-shaped green colored radiations of the cingulum bundle
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superior to the corpus callosum, and approximately 3 contiguous axial
slices outlining the narrow blue-purple inferior radiations of the cingulum,
visible adjacent to the brain stem

• Exclusion: in order to exclude fibers not belonging to the Cg, we used the
CC seeding region as an exclusion region for Cg

6. OR fiber bundle, based on the MROI strategy described by Yogarajah M et al,
2009.

• Seeding: approximately 3 contiguous coronal slices outlining the base of
Meyer’s loop; Meyer’s loop is defined in the axial slice where transition
from the external limb of the internal capsule to cerebral peduncle is
visible

• Exclusion: in order to exclude fibers not belonging to the OR, we used the
CC seeding region as an exclusion region for OR

• Inclusion: approximately 2 coronal slices outlining the green colored
occipital horn at the level of lateral ventricle including the stratum sagittal
—all of the fibers therefore needed to pass this inclusion region or else
were excluded.

2.5 Description of automated methodologies
We designed three experimental methods for the projection of manually drawn template
MROI from various reference anatomies to the target subject DT volume of interest. These
transformations consisted in every case of rigid, affine, followed by nonrigid alignment of
the corresponding images: we evaluate the T1w, FA, or DT image modalities for the
alignment across subjects. Standard rigid and affine algorithms based on mutual information
were used as initialization for the successive nonrigid alignment described below.

2.5.1 Description of nonrigid alignment algorithm—For the nonrigid alignment of
T1w, FA, or DT image modalities, we applied a robust algorithm relying on a block
matching strategy. This strategy, already used for other applications on anatomical images
(Commowick O. et al; 2006, Garcia V et al, 2010) was here further extended to register the
DT images using the full tensor information.

To find the nonrigid transformation T between a reference image R and a floating image F,
such that R≈ F○T, we utilize the following general algorithm, independent of the image
modality considered:

• For each pyramid level p = 1…M

– For each iteration l = 1…L

♦ Estimate sparse pairings C between R and F○T l−1 using a
block-matching technique

♦ Interpolate a dense correction field δTl from the sparse
pairings

♦ Reject outliers from the sparse pairings field

♦ Interpolate the outlier free transformation correction δT̃l

♦ Compose δT̃l with the current estimate of the transformation
Tl = Tl−1○δT̃l

♦ Regularize the new estimate of the transformation
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The sparse pairings were obtained at each iteration through a block-matching technique that
was previously utilized for rigid alignment (Ourselin S et al, 2000 and 2002). The obtained
sparse matches were then interpolated to obtain a dense deformation field using a
convolution with a Gaussian function weighted by the confidence in the pairings.

To remove potential outliers in the matching process, we coupled this block-matching
technique with an outlier rejection scheme: the interpolated displacements in δTl were
compared to the original pairings and if found to be too different were removed from the
interpolation scheme. We used this method for the dense nonrigid alignment as it is able to
produce smooth deformation fields and copes well with large deformations.

Although the general algorithm is virtually independent of image modality, the block-
matching technique requires defining a similarity measure to compute pairings. For the
alignment of scalar modalities such as T1w or FA, we used the local correlation coefficient
between the blocks as the similarity measure (Ourselin S et al, 2000). The procedure for
nonrigid alignment of the full tensor volumes, DT, uses a multivariate cross correlation
appropriate for full tensor matching. It was designed to compare the whole tensor structure,
as an extension of the squared correlation coefficient, but now applied to vector variables.
We define the similarity measure based on the total covariance matrix, Λ, as:

where elements Σ represent the covariance matrices between 6-dimensional vectors, X and
Y. Here X correspnds to the log-tensors in a block of the reference image R, and Y
corresponds to the log-tensors in the tested block of the resampled image, F ○ Tl−1. The

correlation matrix, Γ, can then be defined as: 

The generalized squared correlation coefficient GCC between blocks of tensors is then
defined as the average of the canonical correlations as extracted from the correlation matrix:

This expression is therefore analogous to the average of the squared singular values of
Γ(X,Y), as was previously introduced by others to evaluate multivariate association based on
canonical correlation analysis (Cramer EM and Nicewander WA, 1979).

When applying the transformation, it was also crucial to reorient the tensors according to the
local rotation of the transformation. We chose a finite strain reorientation strategy in order to
reorient tensors (Ruiz-Alzola J et al, 2002). This approach identifies the local rotation from
the local Jacobian matrix of the transform for reorientation of the tensors. Furthermore, we
ensured that the transformed tensor images remained symmetric positive definite despite the
required interpolation, and that the similarity was computed between tensors in the tensor
manifold, rather than Euclidean space. This was done by carrying out all the computations
on tensors (computation of the similarity measure and image resampling) in the Log-
Euclidean framework (Arsigny V et al, 2006).

The resulting dense deformation fields determined from this alignment process were
subsequently applied to template MROI, in effect projecting them from the reference
anatomical frame to the target anatomical frame where fiber tracking was then initiated. The
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experimental methodologies we designed to automatically perform these transformations are
described below; and are schematically outlined in Figure 3.

2.5.2 Single subject projection—This approach simply projects template MROI from a
single reference DT volume (i.e., a single reference atlas) to the target DT volume of
interest. To test the reliability of this approach we performed 19 similar trials for each of the
20 study participants (leave-one-out). We refer to the single subject projection method as
‘Ss-proj’ from this point forward.

The Ss-proj algorithm takes in a single subject DT reference volume with hand drawn
template MROI, and the target DT volume of interest, to execute the following algorithm:

• Nonrigid alignment of the reference DT to the target DT volume

– For each fiber bundle

♦ Use dense deformation fields from nonrigid alignment to
project template MROI from the reference to the target

♦ Initiate tractography algorithm using projected MROI,
delineating the fiber bundle in the target DT volume

♦ Compute a probabilistic streamline density image from
resulting bundle tractography (Peters JM et al, 2011)

2.5.3 Atlas projection—This methodology initially required the creation of a multiple
reference DT atlas. This atlas was produced by first nonrigidly aligning 19 reference DT
volumes (leave-one-out), and then computing the average using an atlas creation procedure
previously described by others (Guimond A et al, 2000). The DT atlas produced by this
method served two purposes: 1) production of a color-coded FA atlas which enabled manual
drawing of template MROI; 2) was utilized for nonrigid alignments to the target DT volume
of interest.

As such, template MROI initially manually drawn on the color-coded FA atlas were then
projected to the target DT volume by way of atlas-to-target nonrigid alignment. We refer to
this atlas projection method as ‘Atlas-proj’ from this point forward. Furthermore, we note
that this method is similar to Ss-proj with the important difference that Ss-proj uses an atlas
composed of a single reference DT volume while Atlas-proj uses an atlas composed of the
average of 19 reference DT volumes.

The Atlas-proj algorithm takes in a multiple subject average DT atlas, hand drawn template
MROI, and the target DT to perform the following algorithm:

• Nonrigid alignment of the atlas DT to the target DT volume

– For each fiber bundle

♦ Project template MROI from the atlas to the target

♦ Initiate tractography

♦ Compute streamline density image

2.5.4 MROI consensus map—This methodology automatically determines a local
consensus region from a collection of template MROI separately projected to the target DT
volume. To do this we independently project 19 template MROI to the target of interest
(leave-one-out) and then perform a consensus map analysis using the Simultaneous Truth
and Performance Level Estimation (STAPLE) algorithm (Warfield SK et al, 2004). The
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underlying consensus for all of the projected templates consequently defines target-specific
MROI which we then use for fiber tracking in the target DT. We refer to this consensus map
method as ‘Cns-mp’ from this point forward.

The Cns-mp algorithm takes in multiple single subject DT reference volumes each with
hand drawn template MROI, and a target DT volume of interest, to execute the following
algorithm:

• For each of 19 DT references in database

– Perform parallel nonrigid alignment to the target DT volume

• For each fiber bundle of interest

– Use dense deformation fields from nonrigid alignments to project 19
template MROI from the reference DT volumes to the target DT volume

♦ After all MROI templates are projected to target DT volume
perform statistical analysis to determine the underlying
consensus map

♦ Use the consensus map MROI to initiate tractography

♦ Compute streamline density image

In order to determine a target-specific MROI in the target DT volume, we first project the
full set of MROI templates (n = 19) and from these compute the consensus map and
performance parameters indicating how similar each template is to the consensus.
Computation of consensus MROI was performed using the STAPLE algorithm (Warfield
SK et al, 2004). This algorithm takes in a set of templates defined as label maps as an image
matrix and performs the statistical analysis described in Appendix A. This approach
computes the underlying target-specific MROI which most closely estimates the manually
drawn MROI.

2.6 The evaluation procedure
Evaluation of the automated methods was based on how similar the resulting fiber bundles
were to reference standard bundles derived by the manual procedure. As both approaches
construct a collection of stochastically generated fiber trajectories and therefore a
probabilistic streamline density image, bundle error was quantified by the root-mean-
squared (RMS) difference between the resulting streamline density images. A number of
approaches have been used to characterize the amount or certainty of connectivity indicated
by tractography, including a probabilistic index of connectivity (Parker GJ et al., 2003), an
area adjusted measure (Roberts TP et al., 2005), and ratios of streamline counts (Peters JM
et al., 2011; Yeatman JD et al., 2011). We computed streamline density images by counting
the number of streamlines traversing each voxel, and dividing by the total number of
streamlines in the entire volume (Peters JM et al. 2011). As such, these images
simultaneously quantify both the spatial extent and also the density of the three dimensional
fiber bundle produced by tractography (see Figure 4). It follows that fiber bundle
delineations demonstrating perfect correspondence to the reference standard will yield an
RMS error equal to zero. This overlap measure is analogous to a Jaccard’s Similarity Index
or Dice Coefficient, but in this application offers the added advantage of accounting for
continuous intensity mismatch in addition to simply the binary overlap.

We statistically evaluated the streamline density images generated by each automated MROI
methodology in comparison to the reference standard streamline density images created by
manual MROI placement. Voxels not associated with the white matter fiber bundle have a
streamline density of 0; the location of each white matter fiber bundle is indicated by the
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streamline density, with the most dense regions corresponding to the most central part of the
fiber bundle, and the least dense region corresponding to the voxels that may include
spurious streamlines. In comparing different MROI strategies, our focus of interest was on
the intermediate range of streamline densities, between the extremes of the most dense
regions and the least dense regions, as these reflect the regions in which different MROI
estimation approaches may have the largest effect. For each MROI automated methodology,
for each subject, for each fiber bundle, we computed the number of voxels that had a density
(d) in the range: 0.2 <= d/dmax < 0.5. We used Cramer’s Test, a nonparametric permutation
test for univariate or multivariate two-sample problems (Baringhaus L and Franz C, 2004),
to test for statistically significant differences between the reference standard and each
automated methodology.

2.6.1 Comparisons across image modality used in nonrigid alignments—As a
preliminary study, we observed RMS error as a function of the MR image modality that was
implemented for nonrigid anatomical alignments. We tested the T1w, FA, and DT
modalities and randomly chose the CC and the CST fiber bundles for this evaluation.

Using the Ss-proj method, we automatically delineated CC and CST fiber bundles in all of
the study participants by implementing nonrigid alignments based on the T1w, FA, and DT,
and then compared the resulting RMS errors. Having determined which of these alignment
strategies yielded the lowest RMS error, we then implement that modality in the subsequent
comparative evaluation of the automated methodologies.

2.6.2 Comparisons across automated methodologies—We automatically
delineated the CC, SLF, TR, CST, Cg and OR fiber bundles in all of the study participants
using Ss-proj, Atlas-proj, and Cns-mp then compared the mean RMS errors observed. All of
the nonrigid anatomical alignments implemented in this part of our study were done based
on the best performing strategy as determined by the previous preliminary study across the
image modalities. Finally, having identified the best performing automated methodology, we
then performed an optimization procedure in order infer the minimum number (n) of
templates required for consistent bundle delineation outcomes.

2.7 Optimizing the number of templates
The optimization of the best performing automated methodology consisted of identifying the
minimum n needed to achieve consistent fiber bundle outcomes, thus minimizing total
computation time required by the algorithm. To do this, we plotted the mean RMS error
variance as a function of the number of templates used—n was varied from n = 2, to n = 19
and was at each iteration composed of a randomly selected set of templates chosen from the
pool of 19 possible templates (leave-one-out). This approach was used in order to identify
plateau regions in these plots which would suggest the point at which additional templates
no longer affected the RMS error variance. This optimization step was similarly performed
for the CC, SLF, TR, CST, Cg, and OR fiber bundles, in each case using the identical set of
n randomly chosen templates.

3. Results
3.1 Comparisons across modality used in nonrigid alignments

Using Ss-proj for the analysis, we observed the mean RMS error in CC and CST delineation
as a function of the image modality used: T1w, FA, and DT. We noted an approximately
two-fold reduction in the RMS error for CC delineations (mean errors: FA = 0.00063, T1w
= 0.00049, DT = 0.00047) as compared to CST delineations (FA = 0.0011, T1w = 0.00091,
DT = 0.00082). Importantly, for both fiber bundles tested the DT modality generally yielded
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lower error than either the T1w or FA modalities—with the FA modality generally yielding
the highest error of the three. These results are summarized in Figure 5. Based in these
trends, we used the DT modality for all subsequent nonrigid alignments in the study.

3.2 Automated bundle delineation results
Of the 360 automated bundle delineations we performed in this part of the study—6 bundles
in 20 subjects using 3 different automated methods—the highest RMS error we observed
was for the delineation of CST in subject No. 18 using Atlas-proj, RMS error of 0.0021
(binary overlap analysis resulted in Jaccard Similarity Index of 0.37), while the lowest RMS
error observed was for the delineation of CC in subject No. 14 using Cns-mp (RMS =
0.00033, Jaccard Index = 0.79). These worst and best delineation results are noteworthy as
they outline the full range of outcomes observed in our study; see Figure 6 for a comparison
of automated results overlaid against the reference standard.

3.2.1 Comparisons across fiber bundles—Of the 6 fiber bundles we tested, CC
generally demonstrated the most reliable results, i.e., the lowest RMS errors of any of the
bundles tested. Conversely, OR and CST generally demonstrated the highest errors. These
trends are illustrated in Figure 7; CC demonstrated the lowest error of any fiber bundle
regardless of the automated method used, while OR and CST generally demonstrated higher
errors across the various methods.

3.2.2 Comparisons across automated methodologies—All three automated
methodologies tested were able to delineate 6 out of 6 fiber bundles of interest in 20 out of
20 participants studied. However, the bundle delineations differed depending on the
automated method used. Out of the three automated methods we tested, the Cns-mp
methodology consistently yielded the lowest errors for delineation of 6 out of 6 fiber
bundles of interest. Conversely, the highest errors were observed for the Atlas-proj method,
a trend seen in 4 of 6 fiber bundles we tested, with the exceptions that CC and OR
delineation using Ss-proj demonstrated higher RMS error than Atlas-proj. Figure 7
summarizes these findings.

Univariate and multivariate Cramer’s Tests were used to compare the streamline density
images from each automated methodology to the streamline density images from the manual
reference standard. We carried out a multivariate Cramer’s Test to test the null hypothesis of
no difference between each automated methodology and the manual reference standard for
all six white matter fiber bundles (CC, TR, Cg, CST, SLF, and OR). This identified two
automated strategies as statistically significantly different from the reference standard
(SS_proj and Atlas_proj), and one not statistically significantly different (Cns_mp). We then
carried out a univariate Cramer’s Test to test the null hypothesis of no difference between
each automated methodology and the manual reference standard, independently for each
white matter fiber bundle. The p-value of each of these tests is reported in Table 1. The
automated strategies that are not statistically significantly different from the reference
standard are highlighted in Table 1 by color coding (gray-colored).

3.3 Optimizing the number of templates
The plots of mean RMS error variance as a function of the number of templates used with
Cns-mp demonstrated a distinct plateau after a minimum of n = 4 templates were used for
CC; n = 13 templates for TR, SLF and OR; and n = 17 templates for CST and Cg
delineations. Figure 8 illustrates these findings.
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4. Discussion and Conclusions
In this study we designed and tested three methodologies (Ss-proj, Atlas-proj, and Cn-map)
for automated detection of the brain’s white matter fiber bundles—using the MROI strategy
previously described by others (Catani M et al 2002; Mori S et al, 2002; Wakana S et al,
2007; Zhang W et al, 2008; Catani M et al, 2008; Zhang Y et al, 2010). We demonstrated
that our proposed multiple template consensus label fusion algorithm (Cns-mp) derived from
the Simultaneous Truth and Performance Level Estimation framework (Warfield SK et al,
2004) reproduced fiber bundles most consistent with manually generated reference
standards. Given that an integral feature of all the automated methodologies we tested is
inter-subject alignment, we conducted a preliminary study evaluating the T1-weighted,
fractional anisotropy, and diffusion tensor MR modalities as the basis for these alignments.
We found that implementation of the full tensors yielded superior fiber bundle delineation
outcomes. We therefore outlined an algorithm for performing nonrigid alignments based on
a similarity measure able to compare the whole tensor structure. An efficient, stochastic
tractography algorithm based on the log-Euclidean framework was also outlined in this
study, appropriate for efficient tractography analysis in this application. The goal of our
study was to evaluate the feasibility of automatically reproducing reference standard fiber
bundles derived from carefully hand drawn MROI in 20 healthy volunteers. The proposed
automated methodologies were evaluated based on detection of 6 clinically relevant fiber
bundles of the brain, denoted: CC, SLF, TR, CST, Cg, and OR.

We found that of the three image modalities tested for nonrigid anatomical alignments, the
full tensor modality (DT) resulted in lower errors than the T1w or FA scalar modalities.
Using the DT modality we subsequently demonstrated that our Cns-mp approach could
reproduce 6 out of the 6 fiber bundles of interest, in 20 out of 20 subjects—yielding lower
RMS error than was possible by the Ss-proj or Atlas-proj methodologies. Lastly, we
determined that a minimum of approximately 17 MROI templates were sufficient for
consistently delineating all 6 bundles of interest using the Cns-mp methodology.

An important finding of this study suggests the proposed Cns-mp method is an improvement
over other commonly used approaches. We demonstrated improved results by Cns-mp over
methods utilizing a single subject reference atlas (Ss-proj), which is similar to that presently
implemented in the field (Zhang W et al, 2008; Oishi K et al, 2009; Zhang Y et al, 2010).
We also demonstrated improved bundle delineations by Cns-mp over Atlas-proj, which is
similar to commonly used methods utilizing a multiple reference atlas (Voineskos A et al,
2009; Li H et al, 2010). These findings suggest that individual variability, between a single
reference atlas and a subject of interest, can account for a high degree of fiber bundle error
—in agreement with similar findings by other groups which suggest that fiber bundle
delineation is highly sensitive to variability in MROI placement (Catani M et al, 2008; Mori
S et al, 2002; Wakana S et al, 2007; Zhang W et al, 2008; Zhang Y et al, 2010).
Furthermore, we showed that reducing the individual variability in the atlas by creating an
unbiased atlas derived from an average of multiple references does not afford an advantage
with respect to reduction of fiber bundle errors—in the case of CST, Cg and CC this
approach instead increased the resulting error (see Figure 7). This suggests that an averaged
atlas lacks the fine details necessary for effective alignment to the target DT. Conversely,
the proposed Cns-mp methodology is able to preserve the sharp detail of single subject
references thereby maintaining robustness in the alignment. Furthermore, by computing a
consensus region from numerous, independently projected templates this methodology
achieves a target-specific combination of the templates without suffering the blurring effects
of multiple reference atlas averaging.
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Our findings in the assessment of nonrigid alignment strategies demonstrate that scalar FA
images while derived directly from the diffusion tensors, yields higher fiber bundle
delineation error than the full tensor modality. A similar effect was noticed for the T1w
modality, which although being of relatively high spatial resolution and offering superior
resolution of gray and white matter tissues, similarly resulted in higher errors than the full
tensor modality (Figure 5). Given that hand drawn MROI are anchored to anatomical
features visible in the color-coded FA images and that fiber tracking is carried out in the DT
volume directly, it is reasonable to anticipate superior results from inter-subject alignments
based on the full tensor modality. This may have been expected given previous studies by
others (Park HJ et al, 2003); however, to our knowledge our study is the first to
quantitatively demonstrate this effect in automated fiber bundle outcomes.

The fiber bundles of interest in this study were chosen based on common clinical
applications and relevance to neurologic disorders, we expect that other fiber bundles not
studied here can be similarly delineated using our proposed method. However, it must be
noted that of the 6 fiber bundles of interest, the CC and TR were the most reproducible,
while the CST and OR were the least (Figure 7). This may be due to increased anatomical
variability in the color-coded FA landmarks used to define the MROI, which then
propagated errors to the fiber bundles produced.

We emphasize that the Cns-mp automated methodology introduced here is independent of
the specific fiber tracking or nonrigid tensor alignment algorithms that are utilized. Here we
have implemented state-of-the-art single tensor stochastic tractography and nonrigid block-
matching alignment algorithms; however, other algorithms for tractography and/or nonrigid
alignment may be implemented with the Cns-mp approach. We note that the key advantage
will be derived from the statistical consensus map analysis outlined here.

The main limitation of our study derives from the lack of a true validation method. Our
results are based exclusively on the ability to reproduce fiber bundles derived from manually
drawn MROI. It is not clear how accurate this reference standard should be considered. The
goal of the study therefore was limited to reproducing manually derived fiber bundles as
closely as possible, even if the accuracy of this reference standard remains under
development in the field (Catani M et al 2002 and 2008; Mori S et al, 2002; Wakana S et al,
2007; Zhang W et al, 2008; Zhang Y et al, 2010). A careful quantitative evaluation of how
the changes in MROI placement may impact the fiber bundle outcomes was left outside the
scope of our study—this is because the primary outcome of interest was the fiber bundle
delineation and not necessarily the MROI placement. An additional limitation to the results
presented here derives from the use of healthy volunteers. It is not yet clear how the
proposed methods will perform in patients suffering from neurobiological disorders causing
large deforming structural lesions or infiltration of white matter fiber bundles. Additional
study on diverse patient populations may be warranted in future work. As such, it is
important that formation of template MROI be done on suitable reference populations. As
the intended target population at our institution is pediatric clinical cases of both cases, we
chose a population of young references of both sexes. Generally, we recommend selection of
a reference population that appropriately suits the typical targets of interest.

In conclusion, we have demonstrated that the Cns-mp methodology proposed here is an
effective equivalent to the more tedious and error prone procedure of manually defining
MROI in every subject of interest. This method is fully automatic and therefore can produce
consistent results not affected by rater error or variability. Figure 9 illustrates the fiber
bundle delineation outcomes achievable by Cns-mp in a representative subject.
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6. Appendix A
The STAPLE algorithm as implemented here takes in a set of MROI templates defined as
label maps as an image matrix, labeling of each voxel in an image of I voxels can then be
referred to as the decision (dij) indicating the label given by each template (j) for voxel i ∈
[1,…I]. The performance parameters, θ = {θ1,…,θj,…θJ} describe the agreement over the
whole image between the templates and the estimate of the consensus. Each θj is represented
by an L × L matrix, where L is the number of labels (including background), and θjs′s is the
probability that template j gave the label s′ to a voxel i when the consensus MROI label is s,
θ js′s = P(dij = s′| Ti = s)

Given that the consensus MROI, T, is unknown an Expectation-Maximization (EM)
approach (Dempster P et al, 1977) is used to estimate T and θ by way of the maximization of
the expected value of the complete data log-likelihood Q(θ|θ(k)), such that:

where Wsi denotes the posterior probability of T for label s: P(Ti = s |D, θ(k)). The EM
algorithm proceeds to identify the optimal estimate of θ ̂ by iterating the following steps:

• E-Step: compute Q(θ|θ(k)), the expected value of the complete data log-likelihood
given the estimates of the performance parameter at the preceding iteration: θ(k).
Evaluating this expression requires the posterior probability of T: P(T | D, θ(k)),
which is of course known

• M-Step: estimate new performance parameters at iteration k+1, θ(k+1), by
maximizing Q(θ |θ(k))

This approach therefore establishes the underlying target-specific MROI which most closely
estimates manually drawn MROI, without the need for user interaction.
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Highlights

• The brain’s white matter fiber bundles using diffusion weighted imaging and
tractography

• Propose an automated methodology using a commonly applied tractography
seeding strategy

• Demonstrate lower error by our label map fusion method than other
conventionally used methods

• Test and recommend a reliable method for automated delineation of fiber
bundles
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Fig. 1.
The 2D outline of hand drawn template MROI (seeding regions in white, exclusion regions
in red, and inclusion regions in yellow) shown overlaid on a representative color-coded FA
images. The MROI strategy depicted was used to delineate six fiber bundles of interest (as
labeled in each panel).
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Fig. 2.
Six reference standard fiber bundles (labeled in each panel) generated from hand drawn
template MROI. These representative fibers bundles (in white) are visualized as projections
from the three dimensional pathways together with two dimensional color-coded FA images
which illustrate the other nearby white matter structures.
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Fig. 3.
Flow chart depiction of Ss-proj, Atlas-proj, and Cns-mp automated fiber bundle delineation
methodologies; notice each method takes in a specific MROI reference to project onto the
target tensor volume of interest. Included in the schematic are the common steps of fiber
tracking from projected MROI and production of probabilistic track density images.
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Fig. 4.
Representative probabilistic streamline density scalar images derived from six reference
standard fiber bundles of interest (labeled in each panel).
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Fig. 5.
Mean RMS error in Ss-proj delineation of CC and CST fiber bundles in 20 study
participants using various image modalities (FA, T1w, and DT), error bars represent the
standard deviation from the mean. Note the DT modality generally demonstrated the lowest
RMS errors.
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Fig. 6.
Illustration of the worst and best bundle delineation outcomes observed in our comparisons
of automated methodologies. Left panel: CST delineation in subject No. 18, using Atlas-proj
(RMS = 0.0021, Jaccard Similarity Index = 0.37). Right panel: CC delineation in subject
No. 14 using Cns-mp (RMS error = 0.00033, Jaccard Index = 0.79). Reference standard
fiber bundles from manual delineation are shown in green, the automatically generated fiber
bundles are shown in white.
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Fig. 7.
Group mean RMS error in the automatic delineation of six fiber bundles using various
automated methodologies. Error bars represent the standard deviation from the mean. Notice
the Cns-mp method consistently yielded lower RMS error for all fiber bundles than was
observed for Ss-proj or Atlas-proj.
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Fig. 8.
Group mean RMS error variance as a function of the number of MROI templates used by
Cns-mp for the delineation of six fiber bundles of interests. Notice plateau regions in these
plots.
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Fig. 9.
Automatically generated fiber bundles using Cns-mp in a representative participant. The six
fiber bundles of interest are color-coded for illustrative purpose as follows: corpus callosum
CC (black), superior longitudinal fasciculus SLF (blue), anterior and superior thalamic
radiation TR (gray), corticospinal tract CST (green), cingulum Cg (red) and optic radiation
OR (yellow).
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