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Abstract
Characterizing interactions between multiple brain regions is important for understanding brain
function. Functional connectivity measures based on partial correlation provide an estimate of the
linear conditional dependence between brain regions after removing the linear influence of other
regions. Estimation of partial correlations is, however, difficult when the number of regions is
large, as is now increasingly the case with a growing number of large-scale brain connectivity
studies. To address this problem, we develop novel methods for estimating sparse partial
correlations between multiple regions in fMRI data using elastic net penalty (SPC-EN), which
combines L1- and L2-norm regularization We show that L1-norm regularization in SPC-EN
provides sparse interpretable solutions while L2-norm regularization improves the sensitivity of
the method when the number of possible connections between regions is larger than the number of
time points, and when pair-wise correlations between brain regions are high. An issue with
regularization-based methods is choosing the regularization parameters which in turn determine
the selection of connections between brain regions. To address this problem, we deploy novel
stability selection methods to infer significant connections between brain regions. We also
compare the performance of SPC-EN with existing methods which use only L1-norm
regularization (SPC-L1) on simulated and experimental datasets. Detailed simulations show that
the performance of SPC-EN, measured in terms of sensitivity and accuracy is superior to SPC-L1,
especially at higher rates of feature prevalence. Application of our methods to resting-state fMRI
data obtained from 22 healthy adults show that SPC-EN reveals a modular architecture
characterized by strong inter-hemispheric links, distinct ventral and dorsal stream pathways, and a
major hub in the posterior medial cortex- features that were missed by conventional methods.
Taken together, our findings suggest that SPC-EN provides a powerful tool for characterizing
connectivity involving a large number of correlated regions that span the entire brain.
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Introduction
Functional magnetic resonance imaging (fMRI) has emerged as a powerful technique for
investigating human brain function and dysfunction. Identification of functional networks
from fMRI data obtained during cognition or task-free “resting state” is critical for
understanding and characterizing how different brain regions communicate with each other.
In recent years, several methods have been developed to characterize functional brain
networks and connectivity (Beckmann and Smith, 2004; Calhoun et al., 2001; Calhoun et
al., 2003);(Bullmore and Sporns, 2009; Cole et al.; Deco et al.; Friston et al., 1997; Greicius
et al., 2003; McIntosh, 2000; Rubinov and Sporns; Sun et al., 2004; Supekar et al., 2008;
Tononi and Sporns, 2003).

Functional connectivity is often computed using the Pearson correlation between brain
regions taken pair wise. The resulting correlation coefficients are usually converted to z-
scores using the Fisher transformation and then thresholded to identify statistically
significant network connections (Supekar et al., 2008). Such correlation based methods are
useful for assessing context and stimulus dependent functional interactions between multiple
brain regions. However, one issue with this approach is that it estimates marginal linear
dependence or independence between a pair of regions without considering the influence of
other regions and common driving influences. Some of these limitations can be overcome by
using partial correlations which measure the linear relationship between multiple brain
regions, taken pair wise, by removing the common linear influences of all other regions
considered together. Under assumptions of normality, if the partial correlation between two
regions is zero, then two regions are conditionally independent given temporal fluctuations
in other brain regions considered (Hastie et al., 2009; Peng et al., 2009). Several previous
brain imaging studies have used partial correlations for estimating functional connectivity
(Hampson et al., 2002; Huang et al., 2010; Lee et al., 2011; Marrelec et al., 2007; Marrelec
et al., 2006; Smith et al., 2011), but they work well only when the number of brain regions is
small. Another limitation of current methods is that corrections for multiple comparisons
need to be performed while identifying the significant network connections, which could
greatly hamper their sensitivity especially, when the number of regions examined is large.

Estimating functional networks using partial correlations is further problematic when the
number of possible connections involved in the analysis is large compared to the available
observations (number of scans, in the case of fMRI). In such situations, conventional
methods for estimating partial correlations result in over-fitting of the data. Therefore,
currently used methods for computing partial correlation are not scalable for estimating
functional brain networks involving a large number of brain regions. To overcome this
problem, investigators generally restrict the number of regions involved in the analysis to a
few preselected regions of interest (ROIs). Here we take advantage of recent advances in
multivariate statistics to develop methods suitable for estimating functional connectivity in
networks with a large number of brain regions.

The problem of estimating partial correlations is equivalent to estimating the inverse of the
covariance matrix. It has been shown that partial correlations are proportional to the off-
diagonal entries of the inverse covariance matrix (Hastie et al., 2009; Koller and Friedman,
2009; Meinshausen and Buhlmann, 2006; Peng et al., 2009). Under assumptions of
normality, the off-diagonal elements of the covariance matrix indicate the linear conditional
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dependence or independence of nodes. For example, if a particular entry in the inverse
covariance matrix is zero, then one can infer that the corresponding regions are conditionally
independent, under assumptions of normality, given responses in the other brain regions.
Partial correlations can be estimated by computing the covariance matrix from the data, and
then inverting and appropriately scaling it. A reliable estimation of the inverse covariance
matrix is therefore required for identifying functional networks based on fMRI data.
However, the estimation of inverse covariance matrices is particularly challenging when the
number of regions involved in a functional network is greater than the number of
observations, namely the number of fMRI time samples acquired during an experiment. In
such cases, the rank of the covariance matrix is at most the number of observations and it is
necessary to use methods such as generalized inverse or pseudoinverse. However, such
methods are often not accurate (Hoyle, 2010) and do not provide sparse interpretable
solutions. For example, several studies have used the pseudoinverse method for estimating
partial correlations at the whole brain level (Balenzuela et al., 2010; Liang et al., 2011; Liu
et al., 2008; Yu et al., 2011; Zhang et al., 2011). These studies reveal a fully-connected
network structure that is difficult to interpret (Supplementary Figure 1A). Importantly,
network metrics which measure modular architecture of the network are likely to extract less
meaningful modules, when computed on fully connected brain networks estimated using
psuedoinverse methods. To overcome this problem, regularization procedures that provide
sparse solutions have been proposed for estimating the inverse covariance matrices
(Friedman et al., 2008, 2010; Huang et al.; Lee et al., 2011; Meinshausen and Buhlmann,
2006; Peng et al., 2009; Varoquaux et al., 2010). Based on the relationship between inverse
covariance estimation and partial correlation, and between partial correlation and linear
regression, regularization methods developed for linear regression have recently been
extended for estimating inverse covariance matrices. For example, L1-norm regularization,
also called lasso (Tibshirani, 1996), has been used previously for estimating networks or
inverse covariance matrix (Friedman et al., 2008; Lee et al., 2011; Meinshausen and
Buhlmann, 2006; Peng et al., 2009). One major advantage of using L1-norm regularization
is that it provides sparse solutions which are very helpful in interpreting the estimated
networks. Importantly, these methods do not require further statistical thresholding to infer
the significant network connections. L1-norm regularization automatically finds significant
network connections since the weights of insignificant connections are automatically driven
to zero. Although L1-norm regularization has been used successfully, it has some
limitations. One important limitation is that in the case when the number of nodes or regions
is greater than the number of observations, the number of network connections L1-norm
regularization can identify is at most equal to the number of observations (Zou and Hastie,
2005). Another limitation is that when the pair wise correlations are very high then L1-norm
regularization tends to identify only a subset of connections. To overcome this problem, a
combination of L1 and L2 norm regularization, also referred to as elastic net regularization,
was proposed in the context of linear regression (Zou and Hastie, 2005). Elastic net
regularization retains the desirable property of lasso by providing sparse solutions while
overcoming the problems associated with large number of correlated nodes. Using L2-norm
regularization in addition to L1-norm provides the necessary decorrelating step which in
turn results in grouping effect that ensures selecting all the significant connections between
regions (Zou and Hastie, 2005).

Only few studies to date have used regularization procedures for estimating functional
networks in the context of brain imaging data (Huang et al., 2010; Lee et al., 2011; Smith et
al., 2011; Varoquaux et al., 2010). Huang and colleagues and Lee and colleagues used L1-
norm regularization to estimate inverse covariance matrix from positron emission
tomography (PET) data but their methods have not been validated using simulations. In a
recent study, Varoquaux and colleagues used group lasso regularization to estimate
functional connectivity from resting state fMRI data (Varoquaux et al., 2010). Their
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procedure estimates inverse covariance for each subject while imposing the same functional
connectivity structure for all subjects. These methods also have not been validated on
simulated data. Smith and colleagues recently evaluated several network estimation methods
based on simulated data (Smith et al., 2011). One of the methods evaluated was inverse
covariance estimation with L1-norm regularization on networks with up to 50 nodes.
Critically, no studies, except (Smith et al., 2011), have used simulations to validate these
methods. Furthermore, as noted above, fMRI data has inherently high spatial correlations
and adjacent regions are likely to be highly correlated. Inferring connectivity using only L1-
norm regularization is therefore problematic when the regions are highly correlated and the
number of possible connections is greater compared to the available observations. The main
objective of our study is to address this problem by developing, testing and validating new
methods for estimating stable connectivity patterns in functional networks which contain a
large number of nodes.

Here, we develop new methods for estimating functional networks involving a large number
of brain regions from fMRI data. Given that fMRI data has high inherent spatial correlation,
we use elastic net regularization (Zou and Hastie, 2005) in contrast to lasso regularization
used in the previous studies. The proposed approach overcomes the problems associated
with lasso or L1-norm regularization while retaining its desirable property of providing
sparse solutions. More importantly, we infer significant functional connections between
brain regions using novel stability selection methods which overcomes the problems
associated with choosing the optimal regularization parameters in elastic net and lasso
penalties (Meinshausen and Bühlmann, 2010). In previous studies, the critical regularization
parameters which influence the selection of connections between brain regions were set
arbitrarily (Huang et al., 2010; Smith et al., 2011). We first test and validate the performance
of our proposed methods on data simulated from two networks with varying degrees of
small-world structure at different prevalence rates. We then test and validate our methods on
more realistic simulations using dynamic causal models (Friston et al., 2003; Smith et al.,
2011). Finally, we demonstrate the utility of our methods to uncover modules and sub-
networks using resting-state fMRI data.

Methods
Notation: In the following sections, we represent matrices by upper-case and scalars and
vectors by lower-case letters. Random matrices are represented by bold upper-case letters
while random vectors and scalars are represented by bold lower-case letters.

Estimation of sparse partial correlation
Let fMRI observations X at p brain regions follow a multivariate normal distribution with
mean μ ∈ Rp and covariance Σ ∈ Rp×p. If the m,n-th entry of the inverse covariance matrix
Θ = Σ–1 is zero then, under normal assumptions, the regions m and n are said to be
conditionally independent given the other regions. Also, Θ(m,n) is proportional to the
regression coefficient of region n in the multiple regression of variable m on the rest of the
regions (Hastie et al., 2009; Peng et al., 2009). The reverse is also true since Θ is a
symmetric matrix. It can also be shown that, Θ(m,n) is proportional to the partial correlation
between the two regions (Peng et al., 2009).

Given the relation between the entries of Θ and the multiple-regression, the conditional
distribution of the n-th region given the other regions is
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(1)

Where, N(μ, σ2), is a normal distribution with mean μ and variance σ2. βmn represents the
regression coefficient of Xm on Xn and σnn are the residual variances. βmn and σnn are related
to the entries of Θ as follows:

(2)

(3)

The partial correlation between regions m and n ρ(m, n) is then given by

(4)

The negative log-product - likelihood (or pseudo likelihood) for the conditional distributions
up to proportionality constant can be written as:

(5)

where  is a symmetric matrix with zeros on the diagonal and the off-diagonal elements are
same as in Θ. X is N × p observation matrix with N observations and p brain regions. xn and

 are n-th columns of X and  respectively. Let

 can be estimated by minimizing .
However, when the number of regions (p) is much greater than the number of observations
(N), which is the case in many fMRI studies, minimizing (5) directly results in over fitting
of the data, which results in poor generalization. Regularization on the elements of  is
therefore needed to avoid over fitting (Bishop, 2006; Hastie et al., 2009).

L2-norm or ridge regularization is one such commonly used regularization method. Under
L2-norm regularization, regions which are conditionally independent should have their
corresponding matrix values in  to be zero. However, L2-norm regularization drives these
values close to zero but not exactly to zero. Additional thresholding is required to infer the
underlying network. L1-norm regularization or lasso (Tibshirani, 1996), on the other hand,
drives these small values to exactly zero resulting in sparse interpretable solutions.
However, if the predictors in the regression are highly correlated then L1-norm
regularization tends to identify only a subset of connections. Another problem using this
penalty is that when the number of regions is greater than the number of subjects (p > N), at
most network connections can be identified (Zou and Hastie, 2005). Therefore, L1-norm
regularization cannot be used in estimating networks wherein the number of regions is
greater than the number of observations. To overcome these problems Zou and Hastie
proposed the elastic net (Zou and Hastie, 2005), which is a linear combination of L1 and L2-
norm regularization. Similar to lasso, elastic net provides sparse solutions by accounting for
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correlations in the predictors. More importantly, for our purposes here, it can be used in
scenarios where p > N. In this study, we use elastic net to estimate .

The cost function to be minimized for elastic net regularization is:

(6)

Here, the parameter determines the balance between L2-norm (α = 0) and L1-norm (α = 1)
regularization. The solution for α = 0 corresponds to L2-norm (ridge) regularization and for
α = 1 to L1-norm (lasso) regularization. Therefore, L2-norm (ridge) and L1-norm (lasso)
regularization are the special cases of elastic net. In what follows, we refer to the estimation
of sparse partial correlation with elastic net penalty as SPC-EN and estimating with lasso
penalty alone as SPC-L1.

We solve the above optimization problem using a cyclical coordinate descent method
(Tibshirani et al., 2010). This method has previously been applied for solving lasso
(Friedman et al., 2007; Krishnapuram et al., 2005; Shevade and Keerthi, 2003) and elastic
net optimization problems (Friedman et al., 2010; Ryali et al.; Tibshirani et al., 2010). In this
approach, the optimization problem is solved for an entire path of values of λ (for a given α),
using the current estimates as “warm” starts, a strategy that has been shown to be efficient,
simple and fast (Tibshirani et al., 2010). The update for each component , assuming
that the other components are fixed, is given by

(7)

where, T(., δ) is a thresholding operator defined as

(8)

and

(9)

where, , and  are the previous estimates.

Given the current estimate of , the variances are updated as (Friedman et al., 2010)

(10)

where, . The equations (7) and (10) are repeated until
convergence.

Parameter selection using stability selection method
A major challenge in sparse estimation methods such as lasso and elastic net for high
dimensional data is in determining the optimal regularization parameters such as λ in lasso
penalty and α and λ in elastic net penalty (Meinshausen and Bühlmann, 2010). These
parameters determine the amount of regularization that needs to be applied for selecting the
non-zero variables in the model. For instance in sparse covariance estimation, these
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parameters determine the non-zero partial correlations and thereby conditional dependences
between nodes in the network. Model selection criteria such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC) can be used to select regularization
parameters (Bishop, 2006). These criteria provide a tradeoff between accuracy and
complexity of the model and are asymptotically optimal. Previously, these criteria have been
used to select the optimal regularization parameter in lasso regularization (Peng et al., 2009;
Zou et al., 2007). However, for finite sample and high dimensional problems these criteria
can result in erroneous results. We found that using BIC for SPC-EN always resulted in
sparse solutions close to SPC-L1. To overcome this problem, we deploy new methods which
combine sub-sampling procedures with variable selection methods such as lasso and elastic
net. These method provides finite sample false discovery or per-comparison error rate
control for selecting variables in the model (Meinshausen and Bühlmann, 2010) and
estimate connections between nodes which have nonzero partial correlations or edges
between them. The goal here is to estimate the set S = {(m, n), 1 ≤ (m, n) ≤ M; Θ(m, n) ≠ 0}
consisting of edges between the nodes. Let the estimated set for regularization parameters

(α, λ) (note that α = 1 in lasso) is denoted as . Let

 denote the probability that the edge (m, n) is non-zero for the regularization parameters
(α, λ). Define the set of stable variables as

(11)

Where, πthr is a probability threshold such that 0 < πthr < 1. (Meinshausen and Bühlmann,
2010) have shown that for a given πthr, the expected number of falsely selected edges V is
then bounded by

(12)

Where, p is the number of variables in the model and q is the average number of selected
edges for a given parameter range of (α, λ). Here, we specify the required per-comparison

error rate ( ) control to be 0.05 and compute the probability threshold πthr.

To estimate the probabilities , we employ the subsampling method suggested in
(Meinshausen and Bühlmann, 2010). We subsample N/2 observations randomly without
replacement and estimate Sα,λ for each combination of α, λ. We repeat this 100 times as

suggested in (Meinshausen and Bühlmann, 2010) to estimate the probabilities . fMRI
time series observations are not independent and therefore are not exchangeable for random
sub sampling. We therefore, divide the fMRI time series into consecutive non-overlapping
blocks where each block consists of 10 time series samples. We can assume that the blocks
are exchangeable because the autocorrelation of time series across the blocks will be weak
and therefore we randomly sample the blocks without replacement instead of individual
observations.

Implementation details
Fast algorithms exist for efficient implementation of sparse estimation methods (Peng et al.,
2009; Tibshirani et al., 2010). In these algorithms only a set of variables, called active set,
which are most likely to be in the model are updated until convergence. At the end of
convergence, Karush-Kuhn-Tucker (KKT) conditions are then checked for each variable.
The variables which violate KKT conditions are included in the active set and are updated
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until convergence. These two steps are repeated until convergence and no variable violate
KKT conditions. If the solution set is very sparse such methods are found to be
computationally efficient and achieve faster convergence. To further improve on this
method we prescreen variables using a set of strong rules (Tibshirani et al., 2011). Only
variables which survive these strong rules are optimized. We implemented this method to
improve the computational efficiency of our proposed SPC-EN and SPC-L1 methods.

Simulated data from multivariate network model
We assess the performance of SPC-EN and SPC-L1 using computer-simulated datasets. We
simulate data from two networks with varying degrees of small-world structure. The
networks were derived using network generation procedure described in (Watts and
Strogatz, 1998). The degree of small-worldness was controlled by varying connection
probability r (Watts and Strogatz, 1998). The networks used for simulation purposes were
generated for r = 0.001, and r = 0.01. We chose the network to have a small-world structure,
because we wanted the simulated network to be similar to real-world large-scale brain
networks, which have been consistently reported to have a small-world structure (Bullmore
and Sporns, 2009). We set the number of regions to p = 150 and the number of observations
to N = 200. For each of two networks shown in Figure 1, we set the weight of each
connection (entry of adjacency matrix A) to a random number generated from a normal
distribution with mean 0.5 and standard deviation 0.1. We restrict the maximum weight to
0.6 and minimum weight to 0.4. We simulate observations at each time sample as follows:

(13)

Where, x(n),w(n) ∈ Rp, A is a p × p adjacency matrix of a given network and Ip is an identity
matrix of dimension p. For each network, we set the percentage of connections (prevalence
rate) to R where we vary R from 15% to 35% in steps of 10%. We generate 24 datasets
(subjects) from each network and for every R.

Simulated data using DCM
To further test the performance of SPC-EN and SPC-L1, we used datasets generated using
DCM (Friston et al., 2003) with network structures described by Smith and colleagues
(Smith et al., 2011). We test our methods on two networks consisting of 50 and 150 nodes.
The datasets for 50 node network were obtained from
http://www.fmrib.ox.ac.uk/analysis/netsim. This network consists of 50 nodes and 200 time
series observations. Fifty datasets were simulated from this model to represent 50 subjects.
The 50-node network, (shown in Figure 2 of (Smith et al., 2011)), consists of 10 five-node
rings and their interconnections. To examine the performance of our proposed methods on a
larger network, we scaled up the 50-node topology to a network topology consisting of 150
nodes. This 150 node network consists of 30 five-node rings which are connected in the
same fashion as in the original 50-node network. The DCM simulation script in statistical
parametric mapping (SPM5) software (http://fil.ion.ucl.ac.uk/spm) with default settings was
used to generate 200 fMRI time series points for each node (TR was set to 2 seconds). Each
node has 33 external input onsets which were uniformly and randomly drawn from the 200
fMRI time points. The number of inputs was matched to the mean number of “up” inputs in
Smith et al. (2011) with 2-second duration for the “up” state. The signal-to-noise ratio
(SNR) for the output BOLD time series was set at 1 (the default value in the DCM
simulation script). The weight of each connection was set in the same manner as in non-
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DCM datasets. In all, twenty-four different test datasets with the same network structure
were generated.

Next, we sought to examine the performance of SPC-EN and SPC-L1 on datasets generated
using DCM using more realistic small-world network structures along the lines discussed in
the previous section. Specifically, we attempted to generate Network-1 and Network-2
structures with 150 nodes at prevalence rates ranging from 15% to 35% in steps of 10%.
However, the SPM5-based DCM simulation procedures (Smith et al., 2011) did not
converge for these network structures. We therefore restricted our analysis of DCM-
generated simulations to a relatively low prevalence rate of 4.9%.

Experimental data
Resting-state fMRI (rsfMRI) data were acquired from 22 adult participants. The study
protocol was approved by the Stanford University Institutional Review Board. The subjects
(11 males, 11 females) ranged in age from 19 to 22 y (mean age 20.4 y) with an IQ range of
97 to 137 (mean IQ: 112). The subjects were recruited locally from Stanford University and
neighboring community colleges.

For the rsfMRI scan, participants were instructed to keep their eyes closed and try not to
move for the duration of the 8-min scan. Functional Images were acquired on a 3T GE Signa
scanner (General Electric) using a custom-built head coil. Head movement was minimized
during scanning by a comfortable custom-built restraint. A total of 29 axial slices (4.0 mm
thickness, 0.5 mm skip) parallel to the AC-PC line and covering the whole brain were
imaged with a temporal resolution of 2 s using a T2* weighted gradient echo spiral in-out
pulse sequence (Glover and Law, 2001) with the following parameters: TR = 2,000 msec,
TE = 30 msec, flip angle = 80 degrees, 1 interleave. The field of view was 20 cm, and the
matrix size was 64×64, providing an in-plane spatial resolution of 3.125 mm. To reduce
blurring and signal loss arising from field in homogeneities, an automated high-order
shimming method based on spiral acquisitions was used before acquiring functional MRI
scans. A high resolution T1-weighted spoiled grass gradient recalled (SPGR) inversion
recovery 3D MRI sequence was acquired to facilitate anatomical localization of functional
data. The following parameters were used: TI = 300 msec, TR = 8.4 msec; TE = 1.8 msec;
flip angle = 15 degrees; 22 cm field of view; 132 slices in coronal plane; 256×192 matrix; 2
NEX, acquired resolution = 1.5×0.9×1.1 mm. Structural and functional images were
acquired in the same scan session.

Data were preprocessed using SPM5. The first eight image acquisitions of the task-free
functional time series were discarded to allow for stabilization of the MR signal. Each of the
remaining 232 volumes underwent the following preprocessing steps: realignment,
normalization to the MNI template, and smoothing carried out using a 4-mm full-width half
maximum Gaussian kernel to decrease spatial noise. Excessive motion, defined as greater
than 3.5 mm of translation or 3.5 degrees of rotation in any plane, was not present in any of
the task-free scans.

The preprocessed task-free functional MRI datasets were parcellated into 90 cortical and
subcortical regions using anatomical templates (Tzourio-Mazoyer et al., 2002). A time series
was computed for each of the 90 regions by averaging all voxels within each region at each
time point in the time series, resulting in 232 time points for each of the 90 anatomical
regions of interest. These regional time series were filtered using a band pass filter (0.0083
Hz < f < 0.15 Hz). The filtered regional fMRI time series were then used to construct a 90
node whole-brain resting-state functional connectivity network for each subject, using SPC-
EN and SPC-L1. High-dimensional networks such as these are difficult to interpret. A
graph-theoretical framework provides a wide array of measures to quantify and thereby

Ryali et al. Page 9

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



succinctly describe structure of the large-scale brain network represented as a graph. To
examine structure of the sparse functional connectivity network, modules in the network
were determined, using the module detection algorithm described in (Newman, 2006).
Module detection has been applied to determine fine-grain structure of large-scale high-
dimensional networks such as internet, social networks, and biological networks. In addition
to determining the modules, modularity index of brain network of each subject was also
computed. Modularity index is a measure of quality of division of a network in
communities/modules. Networks with high modularity are characterized by modules
consisting of nodes that are densely connected with other nodes within the module but
sparsely connected with nodes belonging to other modules. To further characterize network
structure, degree – number of edges incident on a node/region belonging to the brain
network – was computed. Regions with high degree were classified as hubs.

Performance metrics
The performance of the proposed method in identifying connections between brain regions
was assessed using several performance metrics, including sensitivity, false positive rate and
accuracy, where:

(14)

(15)

(16)

TP is the number of true positives, TN is the number of true negatives, FN is the number of
false negatives and FP is the number of false positives. These performance metrics are
computed for each of the simulated datasets.

Results
Performance on simulated data generated using multivariate network model

We first illustrate the relative performance of SPC-EN and SPC-L1 for simulated dataset of
network -1 and network-2 with prevalence rate R = 35%. The non-zero partial correlations
or edges between nodes are selected using the stability selection method with FCER = 0.05.

Figure 2 shows the actual and selected network edges between nodes using SPC-EN and
SPC-L1. Figure 2A shows the actual network-1, and Figure 2B and 2C respectively show
the estimated networks using SPC-EN and SPC-L1. SPC-EN provides better sensitivity
(0.81) compared to SPC-L1 (0.19) in identifying network edges between nodes. SPC-L1
identifies only a subset of actual connections between nodes. Similarly, Figure 2D shows the
actual network-2, and Figures 2E and 2F respectively show the estimated networks using
SPC-EN and SPC-L1. In this case also, SPC-EN provides better sensitivity (0.80) compared
to SPC-L1 (0.18) in identifying network edges between nodes.

Figure 3 compares the relative performance of SPC-EN and SPC-L1 for networks-1 and -2
for three prevalence rates R in terms of sensitivity, false positive rate (FPR) and accuracy in
identifying the connections between brain regions. The figure shows the average values of
performance measures for 24 subjects. The sensitivity achieved by SPC-EN in identifying
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the connections between nodes is much better compared to SPC-L1. For example, the
average sensitivity achieved by SPC-EN is about 0.85 compared to 0.24 by SPC-L1 for
network 1 at prevalence rate (R) 25% as shown in the left panel of Figure 3A. Although, the
false positive rates achieved by SPC-L1 are low compared to SPC-EN its sensitivity and
accuracy is much poorer compared to SPC-EN as shown in Figures 3A and 3B.
Additionally, the performance of SPC-EN in terms of accuracy is superior to SPC-L1 for
networks 1 and 2 at three prevalence rates.

Performance on simulated data generated using DCM model
We applied SPC-EN on 24 datasets generated for 50-node (Smith et al., 2011) and 150-node
networks. SPC-EN resulted in average sensitivity of 0.95 and average accuracy of 0.9 on the
50 node network, and average sensitivity of 0.72 and an accuracy of 0.95 on a 150 node
network. SPC-L1 also showed similar performance levels. As noted in the methods section,
DCM simulations did not converge for more realistic prevalence rates (> 15%) for small-
world networks Network-1 and Network-2. Because of this crucial limitation in DCM-based
simulations, our comparison of the relative performance of SPC-EN and SPC-L1 is based on
simulations described in the previous section, where a wide range of prevalence rates could
be assessed.

Performance on experimental fMRI data
The goal of this analysis was to examine the structure of whole-brain functional connectivity
and modules in fMRI data. We applied SPC-EN to resting-state fMRI data acquired from 22
healthy adults. Network structure was first determined individually in each participant and
combined by group-averaging the individual network structures using a one-sample t-test.
The group-averaged 90-node network plot is shown in Figure 4. The nodes of the network
correspond to AAL-atlas brain regions while edges between nodes of the network
correspond to strength of partial correlation between the regional fMRI time series.

SPC-EN identified an average of 592 edges across participants. Modularity analysis
revealed 11 distinct modules with the following features: (1) strong inter-hemispheric links
between homologous areas across the entire brain, (2) a ventral stream module linking the
visual cortex with the inferior temporal cortex and parahippocampal gyrus, (3) a dorsal
stream network linking the posterior parietal cortex with the superior frontal gyrus, (4) a
major hub in the precuneus node of the posterior medial cortex, and (5) extensive local
coupling across regional nodes.

In contrast, SPC-L1 derived network consists of an average of 430 edges (supplementary
figure S2). A two-sample t-test revealed that the number of edges in SPC-EN derived
network was significantly higher compared to the SPC-L1 derived network (p < 0.01).
Modularity indices, a measure of between-module connectivity versus within-module
connectivity, was not significantly different between the SPC-EN (mean = 0.71 +-0.04) and
SPC-L1 (mean = 0.78 +-0.03) derived networks (p = 0.24). However, the SPC-L1 derived
network revealed only inter-hemispheric links and modules which were less meaningful and
were strictly restricted to anatomical nearest-neighbors and their inter-hemispheric
homologs. Unlike SPC-EN, SPC-L1 could not identify the ventral and dorsal streams not
could it identify the precuneus as a major hub.

Discussion
We developed novel methods for estimating partial correlations between brain regions and
thereby inferring functional networks in fMRI data. These partial correlations can be used to
reliably identify functional brain networks in a large (>100) interacting sets of regions. SPC-
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EN incorporates a combination of L1 and L2 norm regularization to estimate partial
correlations in the presence of highly correlated brain regions and when the number of brain
regions is high compared to the number of observations or fMRI time samples. More
importantly, SPC-EN computes sparse solutions which automatically identify the significant
partial correlations between brain regions without additional statistical testing for
significance. We develop stability selection methods which overcome the problems
associated with choosing regularization parameters (α, λ in SPC-EN and λ in SPC-L1) in
individual fMRI data. Below, we discuss the advantages of our method over other existing
methods in detail, and demonstrate their utility in identifying functional brain networks.

Performance of SPC-EN on simulated datasets
We evaluated the performance of SPC-EN on simulated datasets generated for different
small world networks and prevalence rates. L1-norm regularization employed in such
methods provides sparse solutions wherein only significant connections survive while the
other connections whose partial correlations are insignificant are driven exactly to zero. This
is desirable since the estimated functional networks can be interpreted without further
statistical testing. However, using only L1-norm has a major limitation when the number of
connections between brain regions involved is greater than the number of fMRI time
samples and when the pair-wise correlations between nearby regions is high, as is typically
the case in experimental fMRI data. It is shown in the statistical regression literature that
when the numbers of predictors (p) exceed the number of observations (N), L1-norm can
select at most N predictors (Zou and Hastie, 2005). Furthermore, even in the case when N >
p and the relevant predictors are highly correlated, L1-norm regularization selects only one
predictor (Zou and Hastie, 2005). This is a major issue for estimating partial correlations in
fMRI data, which has inherently high spatial correlation and therefore adjacent brain regions
can show high levels of similarity in their temporal fluctuations. These limitations of L1-
norm regularization for regression also carry to the problem of estimation of inverse
covariance and partial correlation, since both problems can be posed as equivalent
regression problems (Meinshausen and Buhlmann, 2006; Peng et al., 2009). These two
issues can be overcome by using elastic net penalty (Zou and Hastie, 2005) which also
retains the desirable property of providing sparse solutions like L1-norm regularization
(lasso). Our findings on simulated datasets verify this property. As illustrated in Figures 2
and 3 SPC-EN achieved better sensitivity compared to SPC-L1.

Our simulations suggest that, among these two methods, SPC-EN achieved superior
sensitivity and accuracy compared to SPC-L1 at all values of prevalence rates. Even at the
lowest prevalence rate (R = 15%), SPC-EN achieved superior sensitivity compared to SPC-
L1 (left panels in Figures 3A and 3B). This can be attributed to the second limitation of L1-
norm regularization that because of the correlated predictors (or pair wise correlations
between regions) only a subset of connections was identified. This was not the problem with
SPC-EN which achieved superior sensitivity at all the values of R's. Taken together, these
results demonstrate that SPC-EN is a more accurate method for inferring sparse partial
correlations.

Comparison of SPC-EN with other related approaches
No previous studies have tested and validated the accuracy and stability of partial correlation
methods using simulated datasets. In some of these studies where partial correlation methods
were applied (Huang et al., 2010; Smith et al., 2011), optimizing the regularization
parameter was not considered. The choice of these parameters is critical since they
determine the significance of connections between brain regions. In this work, we used
novel stability selection procedure to infer significant partial correlations between brain
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regions. This method overcomes the problems associated with selecting optimal weights for
lasso and elastic net regularization.

Huang and colleagues (Huang et al., 2010) and Lee and colleagues (Lee et al., 2011) applied
L1-norm regularization to examine functional networks estimated from PET data obtained
from clinical populations. Varoquax and colleagues (Varoquaux et al., 2010) applied group
lasso regularization on resting state fMRI data. This method imposes a similar structure of
network connectivity on all the subjects in the group while estimating network for each
subject separately. While this approach is useful for homogeneous groups where network
structure can be assumed to be similar for all the subjects in the group; such assumptions
may not be appropriate for investigations of clinical and pediatric populations. Beyond this,
our study highlights the limitations of using L1-norm regularization when there are a large
number of brain regions compared to observations. Another issue which needs to be
considered is the inherently high spatial correlations in fMRI data. This is important when
spatially adjacent brain regions are involved in the analysis because elastic net regularization
handles this situation better than lasso regularization. None of the above studies, except one
(Smith et al., 2011), has, however, tested individual methods on simulated datasets. In
contrast, we tested and validated our methods on simulated data generated from two small
world networks at different prevalence rates. Critically, we applied novel stability selection
methods for selecting optimal regularization parameters and inferring significant
connections between brain regions. Finally, Smith and colleagues compared several network
estimation methods on simulated fMRI data sets (Smith et al., 2011). They found that the
performance of inverse covariance estimation using L1-norm regularization and Bayesian
network methods (Ramsey et al., 2009) are better compared to lag based methods such as
Granger causal methods. However, the largest number of nodes used in this study was 50
and the number of observations used was about 200 with a low prevalence rate of 4.9%. Our
simulations suggest that the performance of L1-norm regularization suffers at higher
prevalence rates.

Performance of SPC-EN on experimental fMRI data
We used SPC-EN to examine the structure of whole-brain functional connectivity and
modules in fMRI data. Application of our method to resting-state fMRI data acquired from
22 healthy adults revealed that SPC-EN estimates large-scale brain networks with several
features that reflect known features of human anatomy. These include a ventral stream
network module linking the visual cortex with the inferior temporal cortex and
parahippocampal gyrus, a dorsal stream network module linking the posterior parietal cortex
with the superior frontal gyrus. Notably, SPC-EN estimated large-scale brain networks
having high modularity suggesting that our method extracts network structures that are
highly modularized consisting of tightly connected modules with sparse inter-module
connectivity and therefore is better to interpret than networks derived using traditional
functional connectivity methods such as Pearson correlations which produce non-modular
networks consisting of large-number of spurious links. Posterior medial cortex, part of to the
default mode network (Greicius et al. 2003), was found to be a major hub mediating
functional interactions between the network modules. The posterior medial cortex, and the
precuneus in particular, is thought to play an important role in self-referential processing
imagery and episodic memory (Cavanna and Trimble, 2006). This region is also densely
anatomically connected and centrally located, forming a key component of the structural
core of the human brain (Hagmann et al., 2008). One study of rsfMRI reported a highly
connected precuneus with short path length and low clustering suggesting a hub like role of
the region in large-scale brain networks (Achard et al., 2006). These findings were,
however, based on arbitrary thresholding of functional connectivity matrices and thus have
the potential for high levels of error. In contrast, our finding is independent of such
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thresholds, as the sparse regularization procedure employed in our method drives weaker
connections to exactly zero resulting in sparse interpretable connectivity matrices which do
not require further thresholding. Taken together, these findings suggest that the SPC-EN
method reveals anatomically-plausible resting-state brain architecture, and more importantly
the findings observed are not influenced by parameter selection and yet are highly consistent
with convergent findings from previous studies.

In contrast to these findings, brain networks derived using SPC-L1 lacked the features
described above and instead revealed network modules which were almost entirely restricted
to anatomical nearest-neighbors and their inter-hemispheric homologs (supplementary figure
S2). Additionally, the SPC-L1 derived brain networks were significantly sparser compared
to SPC-EN. This result mirrors findings from simulations. It is likely that a sparsity
promoting method such as SPC-L1 retains strongly coupled regions and eliminates slightly
less strong connections. Our results suggest that SPC-EN not only uncovers these SPC-L1
identified strong links but also preserves slightly weaker connections. This observation is
consistent with theoretical evidence that the L1-regularization solution used in SPC-L1 is a
lower bound to the elastic net solution used in SPC-EN.

Conclusions
We have developed a novel method for estimating functional brain networks consisting of
large numbers of regions from fMRI data by estimating partial correlations between the
regions. The proposed SPC-EN method uses a combination of L1 and L2-norm
regularization called as elastic net which provides sparse and interpretable solutions. Using
realistic simulations and experimental data, we show that using this regularization is
essential for estimating networks consisting of large number of brain regions compared to
fMRI time samples. An important issue, which is often ignored, with elastic net and lasso
penalties, is in choosing the regularization parameters which in turn determines the selection
of connections between brain regions. In this work, we have developed and used novel
stability selection methods to infer significant connections between brain regions. In sum,
our findings suggest that SPC-EN together with stability selection provides a more accurate
and powerful tool for characterizing connectivity involving a large number of correlated
brain regions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Networks with varying degree of small-world-ness used in simulations
(A) Small-world Network-1 with connection probability r = 0.001 and (B) Small-world
Network-2 with connection probability r = 0.01 at a 35% feature prevalence rate. r is the
connection probability which controls the degree of small-worldness (Watts and Strogatz,
1998).
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Figure 2. An illustrative example of network estimation using SPC-EN and SPC-L1
(A) Network-1 with 35% prevalence rate. Networks estimated by (B) SPC-EN and (C) SPC-
L1. Using Lasso regularization (SPC-L1) provide sparse estimation of network with low
sensitivity (0.19) whereas elastic net (SPC-EN) regularization improved the sensitivity
(0.81) of the estimated network. (D) Network-2 with 35% prevalence rate. Networks
estimated by (E) SPC-EN and (F) SPC-L1. Using Lasso regularization (SPC-L1) provide
sparse estimation of network with low sensitivity (0.18) whereas elastic net (SPC-EN)
regularization improved the sensitivity (0.8) of the estimated network.
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Figure 3. Sensitivity, FPR and Accuracy in identifying network connections estimated by SPC-
EN and SPC-L1
Simulated datasets based on small-world Networks 1 and 2 at prevalence rates of 15%, 25%
and 35%. For both the networks, SPC-EN achieved superior performance with respect to
sensitivity and accuracy at all values of connection probability r.
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Figure 4. Graphical representation of whole-brain functional network derived using SPC-EN
Left and right sagittal, axial and coronal views are shown, with nodes representing cortical
regions based on the AAL atlas (REF) and edges representing partial correlation between
pairs of nodes. Nodes are plotted using the x, y and z coordinates of their centroids (in mm)
in the MNI space and sized according to their connectivity profile, with larger nodes
representing highly connected “hub” nodes. Eleven modules are shown, with nodes
belonging to the same module marked in same color.
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