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Abstract
This paper describes how behavioral and imaging data can be combined with a Hidden Markov
Model (HMM) to track participants’ trajectories through a complex state space. Participants
completed a problem-solving variant of a memory game that involved 625 distinct states, 24
operators, and an astronomical number of paths through the state space. Three sources of
information were used for classification purposes. First, an Imperfect Memory Model was used to
estimate transition probabilities for the HMM. Second, behavioral data provided information about
the timing of different events. Third, multivoxel pattern analysis of the imaging data was used to
identify features of the operators. By combining the three sources of information, an HMM
algorithm was able to efficiently identify the most probable path that participants took through the
state space, achieving over 80% accuracy. These results support the approach as a general
methodology for tracking mental states that occur during individual problem-solving episodes.
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A characteristic of many complex problem-solving tasks is that no two episodes are the
same. In solving problems, each individual will take a different path to solution, with each
path reflecting a complex and unobservable train of thought. Newell and Simon (1972),
when faced with the challenge of understanding such problem solving, tackled it in the most
direct way possible by simply asking participants to tell them what they were thinking.
While verbal protocols have been subject to criticism (Nisbett & Wilson, 1977), this
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methodology has borne considerable fruit (for a review, see Ericsson & Simon, 1993).
Another method for addressing the challenge is to monitor eye movements, which offers a
less intrusive way of tracking thought that has also had some success (e.g., Salvucci &
Anderson, 2001). However, verbal protocols and eye movements have their limits and the
goal of this paper is to explore a new methodology for tracking the sequential structure of
thought in a complex state space.

This new methodology uses Hidden Markov Models (HMMs; e.g., Rabiner, 1989) to impose
a sequential structure on the results of multi-voxel pattern analysis (MVPA) of fMRI data
(e.g., Abdelnour & Huppert, 2009; Davatzikos et al., 2005; Haxby et al., 2001; Haynes et al.,
2005; Haynes & Rees, 2005; Hutchinson et al., 2009; Mitchell et al., 2008; Norman et al.,
2006). We have already reported some success in using these techniques to track the
sequence of steps taken by participants solving algebra problems (Anderson et al., 2010, in
press). However, these problems had a linear structure without much branching, whereas a
hallmark of many complex problem-solving tasks is that their state space can branch widely
and no two participants may follow the same path to solution. In this paper we show how
these previously used techniques can be scaled up to problems that involve extensive
branching.

To test our methodology we chose to study a variation of a children’s memory game most
commonly known as Concentration. In a typical version of the game there is a deck of cards
consisting of pairs of matching items (e.g., two cards depicting the same animal). The game
begins with all cards placed face down and arranged randomly. On each turn, a player flips
over two cards in sequence in an attempt to find a matching pair. If the selected cards match,
then they are removed; if they mismatch, then they are flipped back over. The player must
remember the locations and identities of previously selected cards to find matches as the
game progresses. In the single-player version of the game, the goal is to match all pairs of
cards in the fewest number of turns. The memory game has been studied in previous
research for a variety of purposes. Several researchers have used it to explore individual
differences (e.g., children versus adults, Gellatly, Jones, & Best, 1988; women versus men,
McBurney, Gaulin, Devineni, & Adams, 1997; deaf versus hearing signers, Arnold &
Murray, 1998). The memory game has also been used to investigate issues such as the
difference between egocentric and allocentric spatial representations in memory (Lavenex et
al., 2011) and the memory advantage of fitness-relevant stimuli (Wilson, Darling, & Sykes,
2011). Much of this work has used single-player versions of the game, as we will.

Our variation of the memory game is illustrated in Figure 1. Each game involves an array of
16 memory cards, eight of which contain algebra equations (math cards) and the other eight
of which contain anagrams (verbal cards). The cards are arranged randomly and the algebra
equations and anagrams are not visible until their cards are selected during a turn. Each turn
of the game involves selecting a pair of cards by clicking on each card using a mouse, with
the goal of finding a pair of matching cards. Math cards are considered to match if their
algebra equations have the same solution for X (see Figure 1) and verbal cards are
considered to match if their anagrams can be unscrambled to form words that are
semantically related (Figure 1b shows the matching pairs: CUTE–UGLY, ARMY–NAVY,
FLUFF–FUZZ, and NOISE–SOUND). Thus, participants must solve the algebra equations
and unscramble the anagrams to determine which cards match. When participants select a
pair of matching cards, the algebra equations or anagrams are replaced by the value of X or
the unscrambled words, respectively (see the blue cards in Figure 1c). When participants
select a pair of nonmatching cards, the selected cards return to their initial blank displays
with no markings indicating that they had been visited (see the red cards in Figure 1c).
Consequently, participants must remember the locations of previously visited, nonmatched
cards for subsequent turns when they eventually discover their matching counterparts.
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Participants can select cards in any order and the goal is to end up with all the cards matched
in the fewest number of turns.

There are many possible ways to characterize the state space of this game but we started
with a 625-state characterization where each state characterizes a possible game situation. At
any point in time the state of the game can be characterized by how many math cards have
been visited, how many of the visited math cards have been matched, how many verbal
cards have been visited, and how many of the visited verbal cards have been matched. Just
looking at the 8 math cards or the 8 verbal cards there are 25 possible states as given in
Table 1. Combining both math and verbal cards, we get 25 × 25 = 625 states. Figure 2
illustrates a subset (34 states) of that space. The arrows in that graph connect states to
possible successor states if the player chooses the appropriate cards. These transitions
between states are called operators and there are 24 operators characterized by whether the
first and the second cards of a pair involved first or return visits to math or verbal cards and
whether they resulted in another pair of cards being matched. These 24 operators are given
in Table 2. They can result in staying in the state or changing the state to one with more
cards visited or matched. An average of 14.9 operators are legal in the 625 states. There are
loops in the state space where two visited nonmatching cards are revisited without a
resulting change in the state (while such operators apply to many of the states in Figure 2,
only four loops are illustrated). Ignoring these loops, there are approximately 1.5 × 1018

possible sequences of operators that traverse the state space from no cards visited to all cards
matched. If one includes such loops, which occur with some frequency in practice, there
would be an infinite number of possible operator sequences. Thus, this state space provides
a good test of our ability to identify the unique mental sequences of participants performing
a problem-solving task. Indeed, we observed 246 games played by 18 participants and there
was no repetition of a complete solution path.

Given that we know the actual cards participants selected, we have a firm definition of
ground truth for this task, thereby allowing us to accurately evaluate our modeling results.
We informed our algorithm of when participants clicked cards in the display but not which
cards were clicked. Thus, the interpretation task in this application is to determine the
identities of these clicks (i.e., whether a math card or a verbal card was selected, whether it
was a first visit or a return visit, and whether the turn resulted in a match or a nonmatch).
This approach allows us to investigate merging multiple data sources – in this case, latency
data and imaging data. We chose to have math cards and verbal cards because we wanted to
investigate the ability of this methodology to distinguish periods of mathematical
engagement from periods of engagement in non-mathematical activities. Making this
discrimination is critical in the context of mathematical tutors (Anderson et al., 2010, in
press) where one wants to identify when students are on task and when they are not.

While we reserve a detailed description of our approach to tracking states in this task until
after we describe the experiment and its results, we outline briefly the approach taken here.
For modeling a participant’s trajectory through the state space in a given game, we use the
behavioral data from that participant’s other games and from the games of other participants
to parameterize a behavioral model that characterizes the probability of various operators in
various states and the timing of various events. While no game was the same, there were
definite statistical regularities that the model captures. The regularities in this behavioral
model are used to parameterize an HMM algorithm to identify the clicks. However, the
classification performance achieved using just the behavioral data is poor. We use MVPA of
the imaging data to help identify the operators and, in so doing, substantially improve
classification accuracy. We show that using either the imaging data without the benefit of
the behavioral data or the behavioral data without the imaging data results in much worse
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performance than the combination, thereby illustrating the benefit of combining the multiple
sources of information.

Methods
Participants

Eighteen individuals from the Carnegie Mellon University community (6 females, 12 males;
ages 18–29 with a mean of 23 years) participated in a single fMRI session lasting
approximately 70 minutes for monetary compensation.

Memory Game
Design—The game was played using a mouse-based interface programmed in Tscope
(Stevens, Lammertyn, Verbruggen, & Vandierendonck, 2006). During a turn, the first card
was selected by clicking the left mouse button when the mouse cursor (a white arrow) was
on the red back of the card. The card was immediately “flipped over” to reveal a problem
(an anagram or an algebra equation) printed in white 16-point Arial font on a black
background. Participants viewed the problem on the first card for as long as they desired,
then selected a second card in the same manner. Participants viewed the problem on the
second card for as long as they desired (the problem on the first card remained visible; see
Figure 1c), then clicked the right mouse button to end the turn. Thus, each turn consisted of
three mouse clicks: a left click to select the first card, a left click to select the second card,
and a right click to end the turn.

After the click to end the turn, one of two things would happen. If the participant had
selected a pair of matching cards, the algebra equations or anagrams were replaced by the
value of X or the unscrambled words, respectively, and the backgrounds of the matched
cards turned blue (see Figure 1b). If the participant had selected a pair of nonmatching cards,
the selected cards were immediately “flipped back over” to show their red backs. There were
no markings to indicate that nonmatched cards had been visited (see Figure 1c).
Consequently, participants had to remember the locations of previously visited, nonmatched
cards for subsequent turns when they eventually discovered their matching counterparts.
Participants were allowed to select cards in any order, subject to the constraints that they
could not select the same card twice during the same turn and they could not select cards
that had already been matched. Mouse clicks that either violated these constraints or were
otherwise inappropriate (e.g., making a right click when a left click was required, clicking
on the empty space between cards, etc.) were relatively rare and had no effect on the game
display.

Materials—We chose anagrams and algebra equations as problems because solving both of
them requires high-level cognitive operations involving symbol manipulation. However, the
symbols to be manipulated differ between problem types (viz., letters versus numbers).
Thus, anagrams and algebra equations likely involve similar (but not identical) cognitive
operations that are carried out by partially overlapping brain regions.

Each matching pair of anagrams involved a pair of unscrambled words that we judged to be
related based on semantics, being either synonyms (e.g., CASH and MONEY), antonyms
(e.g., DARK and LIGHT), or related in some other relatively transparent way (e.g., JUDGE
and COURT). Words were selected such that each word was four or five letters in length and
its letters could not be rearranged to form any other English word (verified using the Internet
Anagram Server at http://wordsmith.org/anagram). An anagram of each word was
constructed by doing two random transpositions of letters that did not result in a mirror
image of the word. For example, GJDUE was the anagram for JUDGE based on J–G and
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G–U transpositions. We restricted the words to four or five letters and the anagrams of them
to two transpositions on the basis of pilot studies in which separate groups of participants
solved various anagrams outside the context of the memory game. These studies revealed
that fewer than 50% of anagrams involving more than five letters or more than two
transpositions could be solved within a 30-second time limit. In contrast, participants were
able to correctly solve more than 85% of anagrams involving four or five letters and only
two transpositions, often in less than 10 seconds. Thus, the anagrams used in the memory
game were solvable by most participants.

Each matching pair of algebra equations involved two equations of the generic form AX + B
= C that had the same solution for X. Equations were constructed such that A and B were
both single-digit numbers greater than 1, C was less than 100, X values from 2–9 occurred
equally often across all equations, and every equation was unique. We restricted the algebra
equations to the form AX + B = C on the basis of pilot studies in which separate groups of
participants solved algebra equations outside the context of the memory game. These studies
revealed that participants were able to correctly solve more than 90% of algebra equations of
that form, often in less than 10 seconds and with a latency distribution that was similar to the
distribution for anagram solutions. Thus, the algebra equations used in the memory game
were solvable by most participants and similar in difficulty (in terms of latency and
accuracy) to the anagrams.

There were a total of 56 anagram pairs and 56 algebra pairs. The pairs for each problem type
were divided into 14 sets of four pairs for use in 14 separate games (no problems were
repeated). For anagram sets, the four pairs were chosen to be unrelated to each other to limit
confusion about which unscrambled words constituted a matching pair (e.g., anagrams for
the word pairs CASH–MONEY and PENNY–CENT were in different sets). For algebra sets,
the four pairs were chosen to have different values of X as their solutions. Anagram and
algebra sets were randomly assigned to the 14 games.

Procedure
Participants received instructions about how to play the memory game prior to scanning.
These instructions included an overview of the game interface and an explanation of what
constituted anagram and algebra matches. Participants were told that the goal of the game
was to match all the cards in the fewest number of turns. Two “strategy tips” were given to
help them achieve this goal. First, they were instructed to solve each anagram or algebra
equation when it was first encountered, then to remember the solution for subsequent
matching. Second, they were instructed not to use a strategy of selecting cards randomly
without solving the problems because it would lead to more turns than necessary.
Participants were also informed that they could take as much time as needed on each turn
because their performance goal concerned the number of turns, not the time per turn.

Following the instructions, participants were placed in the scanner, where they played two
demo games during structural image acquisition to become familiar with the game interface.
The demo games involved different sets of problems (with simpler three- or four-letter
anagrams involving one or two transpositions) than those used in the experimental games,
but the games were identical in all other respects. Participants played a total of 14
experimental games during functional image acquisition. The games were divided into seven
pairs, with one pair for each scanning block. Each block started with a prompt indicating the
game numbers (e.g., “Games 7 and 8”) and scanning was synchronized with the offset of the
prompt. The two games were then played, with each game preceded and followed by a 16-
second fixation period consisting of a white cross presented in the center of a black
background. The duration of each block varied with how long it took participants to finish
the games.
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The 18 participants each played 14 games, blocked into 7 pairs of games. Six games are not
in the analysis because of failures in recording scanner data. Thus, a total of 246 games were
used for classification purposes.

FMRI Data Acquisition and Initial Analysis
Functional images were acquired using gradient echo-planar imaging (EPI) on a Siemens 3T
Allegra Scanner using a standard RF head coil (quadrature birdcage), with 1.5-s repetition
time (TR), 30-ms echo time (TE), 73° flip angle, and 20-cm field of view (FOV). The EPI
sequence was single-shot, and no navigator echo correction was used. We acquired 26
oblique-axial slices on each full-volume scan using a 3.2-mm-thick, 64×64 matrix. The
anterior commissure – posterior commissure (AC-PC) line was on the 8th slice from the
bottom. EPI scanning blocks ranged in length from a minimum of 127 scans to a maximum
of 441 scans. The mean number of scans per imaging block was 246 with a standard
deviation of 66 scans. Each participant’s EPI images were motion-corrected using their first
EPI image as the reference image (AIR; Woods et al., 1998). Head-movement was
negligible among participants. Maximum correction for any translation was 1.7mm and
maximum correction for any rotation was 2.8 degrees. Neither slice-timing correction nor
temporal filtering was applied to these data.

Structural images were acquired immediately prior to functional images and were obtained
using a T2 structural imaging sequence with 5610-ms TR, 73-ms TE, flip angle of 150
degrees and FOV of 20 cm. We acquired 34 oblique-axial slices using a 3.2-mm slice
thickness and 256×256 matrix yielding 0.78125-mm × 0.78125-mm voxels in the x-y plane.
The AC-PC line was on the 12th slice from the bottom.

Acquired images were processed using the NIS system. Motion-corrected EPI images were
coregistered to our local common reference structural MRI (a participant in multiple prior
experiments) by means of a 12-parameter 3-D registration (AIR; Woods et al., 1998) and
smoothed with a 6-mm full-width-half-max 3-D Gaussian filter to accommodate individual
differences in anatomy.

Past research (see discussion in Anderson, in press) has found that we achieve best MVPA
classification in these complex tasks using activity over the whole brain. To avoid
overfitting the data it is necessary to use relatively large regions of activity. Therefore, we
continued our practice of using large regions created by evenly distributing 4×4×4 voxel
cubes over the 26 slices of the 64×64 acquisition matrix. To minimize correlation because of
smoothing, a between-region spacing of 1 voxel was used in the x- and y- directions in the
axial plane and one slice in the z-direction. The final set of regions was acquired by applying
a mask of the structural reference brain and excluding regions where less than 70% of the
region’s original 64 voxels survived. This resulted in 345 regions.1

Results
Our general approach to interpreting a given game from a participant is to combine three
sources of information from that participant’s other games and from the games of other
participants. The first two sources are behavioral: information about what actions a
participant is likely to take at different states in the game and the time they spend taking
these actions. The third source is the brain imaging patterns associated with these actions.
We discuss each of these sources separately, then how they are combined, and finally the
performance of the algorithm that uses these three sources of information.

1To confirm the validity of this practice we performed an exploratory analysis using 2×2×2 voxel regions (resulting in 2749 regions)
and confirmed overfitting. The “overfitting” problem takes the form of a better fit to the training data but a worse fit to the test data.
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Information Source 1: Transition Probabilities
While the number of turns it takes to finish a game depends in part on exactly where the
cards are (e.g., there are lucky sequences that get all 8 matches right away), it depends more
on the choice of the right operators in a state. The “246 Games” line in Figure 3 shows the
distribution of the number of turns taken by participants to finish the individual games. The
mean number of turns is 16.9 and the standard deviation is 4.8, comparable to past results
involving a 16-card version of the memory game (e.g., Lavenex et al., 2011). The “Ideal”
line in Figure 3 shows the ideal distribution of number of turns (based on one million
simulated games), assuming perfect memory, which has a mean of 12.24. Depending on the
random placement of cards, the minimum number of turns could vary from 8 to 15, although
8 was never observed in the million simulations and 9 and 15 only had a frequencies of
about 1 in 10,000. The “18 Participants” line in Figure 3 shows the distribution of mean
turns per game for participants, rounded to the nearest integer. Individual participants ranged
from a mean of 12.7 turns to 22.6 turns. It appears that at least a couple of participants
approached ideal behavior but many of them took many more turns than the minimum.
These results suggest that most participants were not always able to remember the locations
of past cards, thereby leading to more return visits and, by extension, more turns, than
necessary.

We developed a simple Imperfect Memory Model that reflects these memory failures. The
model forgets the location of a matching card with probability pf. However, even if the card
is forgotten the model remembers that there was a matching card. If the model forgets the
location of a card it tries one guess among the visited cards2. We determined the value of pf
that matched the performance of individual participants in terms of mean number of turns.
Individuals had estimated probabilities of forgetting the location that varied from .07 to .92
(reflecting the wide range of mean number of games for participants in Figure 3). The
“Imperfect Memory Model” line in Figure 3 shows the expected distribution of turns taken
in individual games for the 18 participants with their estimated probabilities of forgetting.

Figure 4 provides a revealing analysis of what is happening during the course of the game
and indicates that the simple Imperfect Memory Model is capturing some significant
features. The figure organizes the game along the x-axis according to how many pairs of
cards have been matched. Within each number of pairs matched, the x-axis distinguishes
between the first and second cards in a pair. Minimally, one pair of cards has to be turned
over before another match is achieved (and that is the only option for the 8th match) but on
average more cards are turned over for earlier matches. The figure plots the number of cards
turned over in four categories determined by whether it is the first visit or a return visit to
the card and whether the card results in a match or not. We plotted the observed data in part
(a) of the figure and the performance of the Imperfect Memory Model in part (b). The two
patterns show a striking correspondence both in absolute values and pattern (r = .986):

1. Of logical necessity there is one successful visit per card per match count. The two
cards in a match were either visited for the first time or on a return visit. Number of
first-visit successes and return-visit successes display a sawtooth pattern such that
the first card in a match is more likely to be a first visit. This reflects the common
pattern of visiting a new first card and then recalling and choosing a matching card
as the second card.

2This is only an approximation to the behavior of participants. When there is a matching card, the model always revisits some card
even if it is not a matching card. Participants revisit a card 85.4% of the time in this circumstance and 14.6% of the time they turn over
a new card. If there is not a matching card, the model never revisits a card, whereas participants revisit cards 20.5% of the time in this
circumstance.
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2. Ideally, there should be no return visits that do not result in matches, but in fact
participants and the model averaged more than 6.4 such visits over a game. These
reflect memory failures in the model, where it is making a wrong guess about the
location of a matching card.

3. As the game progresses, there is a decline in the number of failed first visits. This
reflects both exhausting the unvisited cards on the board and the increased chances
that a newly visited card will match a visited card. The total number of visits in this
category (11.5 for participants and 11.3 for model) is more than ideal behavior
(8.8). This reflects failures to remember the location of a visited card that matches a
first visit to a new card.

We conclude this analysis of choice behavior by noting two other factors, one of which turns
out not to be important and one of which is important. First, one might have expected there
to be a different pattern of choices for math versus verbal cards. For instance, a participant
might have tried to match all the verbal cards before turning to the math cards (contrary to
instructions). This would show up in return visits because a participant has no control over
the cards they turn over for first visits. However, the patterns in Figure 4a are basically
identical if plotted separately for verbal and math cards.

On the other hand, there is a consideration that expands the state space in our HMM beyond
the 625 states laid out in the introduction: The outcome of the previous turn has an impact
on the outcome of the current turn. Specifically, if the second card turned over on the
previous turn did not match the first card, participants have a strong tendency to make a
return visit to a card of the same type (math or verbal) on the current turn. For instance,
when the last card turned over was a nonmatching math card, 39% of the time the next card
visited was a return visit to a math card but only 14% of the time it was a return visit to a
verbal card. Conversely, if the last card turned over was a nonmatching verbal card, 41% of
the time the next card turned over was a return visit to a verbal card and only 12% of the
time it was a return visit to a math card. The model also shows this trend because it is trying
to find the matching card: 34% of the time it returns to a card of the same kind and 17% to a
different card. Also, participants tend to visit a new card after a successful turn that resulted
in a match: 53% of the time they visit a new card after successful turns and 28% of the time
after unsuccessful turns. The model shows this same tendency: the corresponding numbers
are 51% and 26%.

The consequence of this dependency on past action is that if we work with only a 625-state
model, we violate the Markov property that future behavior only depends on the current
state. To capture this dependency, we had to complicate the state space in the HMM to
reflect whether the last card on the previous turn was a matching card on that turn, a
nonmatching math card, or a nonmatching verbal card. This increases the size of the HMM’s
state space to 625*3 = 1875 states. We could not find any violations of the Markov property
using this larger state space, but given the complexity of that space we cannot be sure that
there is not some hidden violation.

The Imperfect Memory Model plays a critical role in predicting participant behavior and
serves as our first source of information. It generates predictions about the probabilities for
each operator in each of the 1875 states for each participant for each game, given an
estimate of pf for that participant based on his or her performance on other games.

Information Source 2: Click Timing
Every turn involves 3 clicks: a click to turn over the first card, a click to turn over the second
card, and a click to move on to the next turn. The duration between the first and the second
clicks reflects the time spent viewing the first card and we will refer to this as Card 1 Time
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(t1). The duration between the second and the third clicks will be referred to as Card 2 Time
(t2). The time between the third click and the first click of the next turn will be referred to as
the InterTurn Time (t3). Figure 5 shows the mean times as a function of whether the turn
was a failure, a success, or the last turn (logically, the last turn is a success and it is not
followed by an InterTurn Time). Within these categories, the figure indicates whether the
card was inspected for the first time or whether it was a return visit (a distinction only
meaningful for Card 1 and 2 Times). The InterTurn times and the times for the last card are
particularly short. Excluding these times, we performed an analysis of variance on the times
for the two cards, varying four within-participant factors: All 4 main effects were
significant:

1. Match: Failures (5.18 sec) were slower than successes (3.20 sec), F(1,17) = 62.59,
p < .0001. This probably reflects the fact that processing a matching card is primed
by having seen its matching counterpart earlier.

2. Position: Card 1 Time (4.66 sec) was longer than Card 2 Time (3.72 sec), F(1,17) =
4.91, p < .05, reflecting some acceleration during a turn.

3. Visit: First visits (6.33 sec) took longer than return visits (2.05 sec), F(1,17) =
107.79, p < .0001. This reflects the fact that on return visits subjects have already
solved the problem. There is an interaction between card position and visit (F(1,17)
= 7.03, p < .05) such that the advantage for a return visit is particularly strong for
the second card.

4. Type: Math cards (4.85 sec) were viewed for a longer time than verbal cards (3.53
sec), F(1,17) = 17.51, p < .001.

While there are large differences among the conditions in Figure 5 it is also the case that the
distribution of latencies is quite variable within each condition. The standard deviation of
individual latencies in each condition is approximately equal to the mean. To illustrate,
Figure 6 shows a pair of such latency distributions, for InterTurns that followed failed turns
and for those that followed successful turns. Even though the means are close (1.12 sec
versus 1.42 sec), as are the standard deviations (1.30 sec versus 1.31 sec), the distributions
are distinguishable. The figure displays fitted empirical densities (using the MATLAB
function ksdensity). The line labeled “Ratio” is the ratio of the two densities and shows the
amount of the evidence for a successful turn. As can be seen, long InterTurns provide almost
2:1 evidence for success, whereas very short InterTurns provide even stronger evidence for
failure. Relative ratios like these enable us to use the times to predict what is happening on a
turn.

Information Source 3: Imaging Data
The other source of information is the imaging data. As we have shown elsewhere
(Anderson et al., 2010), the best identification comes from using a scan that comes after the
event of interest at a delay that corresponds to the lag of the hemodynamic function. In the
case of this experiment, with a TR of 1.5 seconds, that is 3 scans later. Our fMRI measure
was the percent difference between the activity in a voxel for that scan and the average
activity of that voxel for that game.

We trained a linear discriminant classifier (McLachlan, 2004) to categorize the scans as
coming from one of six categories: (1) first visit to a math card, (2) return visit to a math
card, (3) first visit to a verbal card, (4) return visit to a verbal card, (5) InterTurn after a
failed match, and (6) InterTurn after a successful match. We excluded the data from 9 of the
345 regions (leaving 336) because they had more than 1% outliers, defined as percent
changes of 10% or more of baseline. As noted above, we used the response that occurred 3
scans (4.5 seconds) later to classify the scan. Sometimes multiple events (first card, second
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card, InterTurn) occurred within a scan and in these situations we created separate cases, one
for each event with the same set of 336 BOLD values. There were 29,892 scans from the
cases from the 246 games across the 18 participants. To classify scans from a game we used
the data from all other participants and from all other games for that participant. We
duplicated the participant’s data from the other games 17 times so that it would count as
much as the data from the other participants. This meant that there were nearly 60,000
training cases for each game. On average, a game consisted of 122 scans (which were not
included with the training cases for that game).

The linear discriminant analysis (LDA) provided estimates of the conditional probabilities
that the fMRI pattern in a scan came from each of the 6 categories. Classifying each scan as
coming from the category with the highest conditional probability, Figure 7 shows the
proportion of scans from each category assigned to the various categories. The overall
accuracy is 53.2% of scans correctly classified while chance would be 20.7%3. In every
case, scans are assigned to the correct category more often than to any incorrect category.
Thus, the classifier is able to predict the data with much better than chance accuracy even
though its ability to discriminate among categories is somewhat short of what one might
like. In the next section we achieve better performance by combining the output of the
classifier with the behavioral data.

The above 53.2% accuracy reflects what can be obtained by combining data from other
participants and other games from the current participant. Using only data from other
participants we achieve 46.3% accuracy. This reflects the degree to which activation
patterns generalize across participants. Using only other games of the current participant we
do somewhat better, achieving 49.1% accuracy. The additional benefit of the other
participants (raising accuracy to 53.2%) reflects the benefit of more training data.

We followed this classification with further analyses4 to identify the regions that were
predicting specific types of activity. In these analyses we did not use the hold-one-out
methodology, which is critical for our prediction purposes in Figure 7 and in later sections,
but rather used all the relevant scans. First, we focused on the scans where the participant
was viewing a card and we did a LDA of these into four categories: (1) first visit to a math
card, (2) return visit to a math card, (3) first visit to a verbal card, and (4) return visit to a
verbal card. Figure 8a shows the projection of the LDA onto two dimensions that account
for 98.9% of the variance in the LDA (66.9% for the first dimension and 32.0% for the
second). The x and y coordinates for points in Figure 8a are linear combinations of the
normalized activations for each of the regions (z-scores, zi):

Figure 8a shows both the average values for the 18 subjects plus the placement of most of
the scans (86.2% of scans have values in the space shown). The mean values for the subjects
are linearly separable with the first dimension (x-axis) going from math to verbal card while
the second dimension (y-axis) goes from return to first visit. Given that there is no logical
requirement that the two dimensions be so interpretable, it seems clear that these dimensions
are accounting for systematic trends in the brain-wide activation.

3If the assignments were at chance, the number of scans from category i assigned to category j would be the product of the number of
scans from category i to be classified times the proportion of all scans assigned to j.
4Using Laurens van der Maaten’s Matlab Toolbox for Dimensionality Reduction available at
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html.
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Figure 8b shows the mapping of the first dimension back onto the brain regions,
representing regions with weightings (aj in the equation for xi) having absolute values
greater than .1 (range is from −.42 to .33 for the weights for this dimension). Among the
regions that indicate a math card are left parietal, premotor, and prefrontal regions that have
been implicated in other studies of arithmetic and routine algebraic problem solving (e.g.,
Anderson, 2005; Anderson et al., 2011; Dehaene et al., 2003; Fehr et al., 2007; Kesler et al.,
2006). Among the regions that indicate a verbal card are left prefrontal regions close to
Broca’s area and left visual/temporal regions close to the “word form area” (Cohen &
Dehaene, 2004). We would expect to see these areas active as participants unscramble an
anagram. Figure 8c shows the mapping of the second dimension back onto the brain regions,
representing regions with weightings (bj in the equation for yi) having absolute values
greater than .1 (range is from −.23 to .23 for this dimension). Unlike Figure 8b, the
interpretation of regions in Figure 8c is not clear.

Figure 8d reports the results of a separate LDA of the InterTurns scans, looking at regions
that separated scans following a match versus a mismatch. It displays regions with
weightings having absolute values greater than .1 (range is from −.29 to .22). Many of the
regions identified can be interpreted. With respect to mismatch, the figure highlights regions
of the anterior cingulate, which have been associated with error and conflict (e.g., Botvinick
et al., 2001; Falkenstein et al., 1995) and anterior prefrontal regions, which have been
associated with post-task processing (e.g., Reynolds, 2006). With respect to match, there is a
range of areas highlighted in the vicinity of the left and right fusiform. This probably reflects
participants inspecting the solutions that have been revealed.

Figure 8d shows regions where the InterTurn activation predicts success of the just
completed turn. InterTurn activity also predicts properties of the next turn but it does not do
so as strongly as it predicts success of the previous turn. For instance, in a binary
discrimination one can achieve 66% accuracy in using InterTurn activity to predict whether
the next turn will be a match, but 75% accuracy in predicting whether the just completed
turn was a match.

Combining the Three Sources with a Hidden Markov Model
Figure 7 shows success at classifying a single scan in isolation. The challenge is to sew these
single-scan classifications into a coherent interpretation of an entire game. Figure 9 shows a
typical case of the data we have to work with5. This is a record of a 16-turn game that
spanned 138 scans or 207 seconds. The brown line tracks whether the participant is viewing
Card 1, Card 2, or is in an InterTurn. The other lines in the figure give the conditional
probabilities of the various interpretations, normed to sum to 1. The goal is to label the
various turns as to whether they involved verbal or math cards, first or return visits, and
matches or nonmatches. Some turns can be classified relatively easily. For example, the first
turn appears to involve selection of a verbal card for Card 1 and then a math card for Card 2,
resulting in a mismatch. This classification would be correct. However, the brief third turn is
quite hard to decipher and the fourth turn seems to involve two first visits to math cards, but
Card 1 was actually a return visit to a math card (perhaps the participant was solving it
again).

Our classification algorithm assigns an interpretation to a game, where an interpretation
implies one of the 24 possible operators (see Table 2) for each turn, where an operator
implies a category for each card and the InterTurn. For the example, there would be 2416

5Go to http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993 to see a video reproduction of the game for this example and the
classification illustrated in real time. The video is accompanied on the website by a document that describes its content.
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possible interpretations for the 16 turn game in Figure 9. There are various sorts of
constraints we can bring to bear in finding the interpretation. First, there is the logical
constraint that by the end of the game, the participant must have matched all the cards; thus,
there must be exactly 8 first visits to math cards, 8 first visits to verbal cards, and 8 matches
in the sequence. Such constraints rule out many interpretations but still leave a very large
number of possible legal interpretations (we estimate more than 1017 interpretations). The
probability of any interpretation is determined by the probability of the transitions between
states, the card and InterTurn times, and the fMRI data. If we designate an interpretation as a
sequence of r operators ok that generate a path through the state space, then the probability
of any legal interpretation can be given as:

Equation
1

The terms p(ok|sk−1) are the probabilities of particular operators, given the various states.
The terms p(tk1,tk2,tk3| ok) are the probabilities of the times associated with the two cards and
the subsequent InterTurn, given the operator. The final term p(fMRIk|ok) denotes the
probability of the fMRI patterns obtained for the scans associated with the kth operator. We
discussed the basis for each of the terms in this expression in the earlier sections describing
the three sources of information used for classification. Below we explain in more detail
how they were calculated for use in the HMM.

1. Operator probabilities, p(o|s): As we discussed under transition probabilities,
there are 1875 states when we take into account the prior action. Not all of the 24
operators are possible in particular states. For instance, if there is only one verbal
card that has been visited, it is not possible to revisit two verbal cards. Nonetheless,
there are over 25,000 legal state–operator combinations and we used the Imperfect
Memory Model to estimate their probabilities6. The behavior of the model is
determined by a probability pf of forgetting the location of a visited card. For a
given game, we estimated a value of pf to match the number of turns taken by that
participant on other games. We then simulated 100,000 games to get estimated
predictions for that game for that participant. To counter effects of overfitting, these
predictions were combined (weighted .75) with an equal representation of all legal
moves (weighted .25).

2. Operator times, p(t1,t2,t3|o): As we discussed under click timing, the time spent
viewing a card varied with whether it was the first or the second card, a first visit or
a return visit to that card, a math or a verbal card, and whether the turn was a failure
or a success. The combination of these four variables yields 16 conditions for the
two card times, t1 and t2. The InterTurn time, t3, varied with whether the turn was a
failure or a success, adding two more conditions. We estimated the empirical
distributions for these 18 conditions from the other games for a participant using
the MATLAB ksdensity function (Figure 6 shows the estimated empirical
distributions for the InterTurn times, although for illustration purposes it has all the
data from all participants). We made our estimates participant-specific because of
large individual differences. For instance, participants varied by a factor of more
than 3:1 in the length of time they spent on first visits (the range is from 3.2 to 10.4
sec) and in the relative ratio of time on math and verbal cards (the math/verbal ratio
varies from 0.8 to 2.3). The probability densities from these empirical distributions
were combined to get the probability of the 3 times associated with an operator:

6The information to run the Imperfect Memory Model is given in the files at
http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993.
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Equation
2

3. Image Probabilities, p(fMRI|o): The final term involves the conditional
probability of the fMRI images for that turn, given an interpretation of the turn as
an operator o. An interpretation involves assigning the first and the second cards to
one of four categories (math first visit, math return visit, verbal first visit, and
verbal return visit) and the InterTurn to one of two categories (match or nonmatch).
Figure 7 illustrated the calculation of the probabilities that various scans came from
these categories. This was based on the conditional probabilities p(fMRIj| category)
of the 336 region values associated with a particular scan j if the scan came from a
specific category. Denoting the interpretation of three steps (Card 1, Card 2, and
InterTurn) as s1, s2, and s3, and the number of scans in each step as n1, n2, and n3,
the probability of the image data for an operator is:

Equation
3

Note this probability is calculated as a product of a large number of conditional
probabilities. This reflects the naïve Bayes assumption that the probability of each
image depends only on the category and is independent of the other images. While
this assumption is probably inaccurate, it results in a reduction of parameters and so
minimizes the problems of overfitting.

We used the standard Viterbi algorithm for hidden Markov models to efficiently identify the
most probable interpretation (Rabiner, 1989). We were able to correctly classify 80.4% of
the 12,495 steps, which is far above chance. Chance is 25% for each of the cards and 50%
for the InterTurn, for an overall value of 33.3%. This classification accuracy reflects the
combined contributions of the three sources of information. We can explore the relative
contributions of these sources by eliminating their informativeness: making all legal
transformations equally probable, making all times equally probable for a operator, or
making the imaging data equally probable for all categories. Figure 10 shows the results for
all possible combinations, including “HMM,” which is simply letting an uninformed HMM
find a path in the state space from start to end in the observed number of turns. Its
performance is 40.9%, still better than chance. In terms of the contribution of different
information sources, fMRI provides the most, latency data next, and transition probabilities
the least. The combination of the two behavioral sources (latency data and transition
probabilities) is approximately equal to the imaging data.

Figure 11 shows how accuracy of classification for the full model (involving all three
sources of information) varies as a function of the interval type (Card 1, Card 2, or
InterTurn) and the number of pairs of cards matched. Accuracy is generally higher for the
InterTurn because there are only two possibilities (match or nonmatch). Accuracy at
classifying the InterTurn rises sharply at the end when few cards are left and most turns are
matches. In contrast, the classification of the cards tends to drop off with number of
matches. This reflects the fact that later turns tend to be return visits which offer fewer scans
for classification and for which accuracy of scan classification is lower (see Figure 7).

Discussion
This research establishes that the earlier HMM methodology (Anderson, 2010; Anderson,
Betts, Ferris, & Fincham, in press) can be scaled up to track thought in a complex state
space with a high branching factor. In part, this success reflects a general approach of
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combining a number of weak classifiers to obtain better classification (e.g., Polkar, 2007).
Figure 10 shows that combining three sources of information (fMRI data, timing data, and
transition probabilities) with an HMM yields better than 80% accuracy, whereas using less
information produces lower accuracy. The fMRI data and the timing data could have been
combined without the use of an HMM: One could simply identify the most probable
operator for each turn given these two sources of information without reference to position
in the state space. In this case the accuracy is 74.2%, while adding the HMM and its
transition probabilities increases accuracy to 80.4%. Moreover, use of an HMM does more
than just boost performance on individual turns—it provides a coherent interpretation of the
game. If we look at the classifications produced by combining the fMRI and the timing data
without an HMM, none of the 246 games was classified in a logically consistent sequence.
Some games had too many or too few math cards or verbal cards visited, or too many or too
few matches; others had cards revisited before they could have been visited, etc.

There are some features of our approach that warrant discussion. The decision to use LDA
might not seem obvious given the many other classification approaches available (Pereira et
al., 2009). Examination of our imaging data suggests that voxel activity is distributed as a
multivariate normal. If it were a perfect multivariate normal, LDA would deliver the optimal
classification. It also delivers the conditional probabilities required by the logic of an HMM
approach. We have examined a number of alternative methods sometimes associated with
improved performance in the literature, such as support vector machines (SVMs) with radial
basis functions and other kernels. However, we get the best results with LDA. Hsu et al.
(2009) noted that LDA is much more efficient and does not have accuracy disadvantages
relative to SVMs when the numbers of features and instances are large.

A critical decision in our approach was to find some abstraction of the state space that
resulted in a small number of categories for classification. It would not be possible to train
classifiers for all the states in that space. Rather than trying to recognize the 625 (or 1875)
states we focused on classifying the 24 operators. We decomposed these operators into 3
steps (Card 1, Card 2, InterTurn) and used 6 categories of steps (see Figure 7) to
characterize these operators. Note that we used the same categories for the first and second
cards. We explored using more categories (such as different categories for each card) but
this resulted in overfitting and worse performance.

Another distinctive feature of our approach was the use of large, coarse-grained regions. We
have looked at using finer-grained regions but this results in overfitting. While it is possible
that a judicious selection of a subset of smaller regions might result in better performance,
this does not seem to be what is limiting performance. Consider the six misclassifications of
cards in Figure 9:

• Four of these misclassifications (in the last row of Figure 9) are for brief visits that
take less than a scan. Thus, there is little imaging data to guide their classification.
Given just imaging data, only 72% of cards are correctly identified as to whether
they are math or verbal when they are visited for less than 2 seconds. In contrast,
accuracy is 90% for longer visits.

• The card misclassification in the first row of Figure 9 involves misclassifying a
return visit to a math card as a first visit. This illustrates another problem. Both the
imaging and timing data in this case are much more like what is observed on a first
visit to a math card than on a return visit. We suspect that this is an instance of the
participant actually solving the equation again, effectively treating it as a first visit
to a math card. If so, this is really not a misclassification but a problem with our
definition of ground truth.
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• The card misclassification in the second row of Figure 9 involves the converse
error of classifying a first visit to a math card as a return visit. This reflects an
interesting consequence of the logic of the Viterbi algorithm. The combined
imaging and timing data are actually consistent with the correct classification of
this card. However, the system is looking for an overall coherent interpretation and
there can only be 8 first visits to math cards. It has stronger evidence for classifying
the card in the first row as a first visit than for the card in the second row.

In none of these cases does the misclassification problem reflect the absence of finer spatial
information.

The focus of this paper has been on the classification of events in a complex state space and
the memory game has been chosen as a paradigm for creating a challenging space with a
strong definition of ground truth. However, as reviewed in the introduction, the primary
interest in this task in past research has been as a tool to study memory. The Imperfect
Memory Model described in this paper, which involved estimating each participant’s
probability of forgetting, was used simply to obtain transition probabilities for the HMM.
The only other effort we know of to model individual memory performance in this task is by
Lavenex et al. (2011), who proposed a buffer model to estimate participants’ working
memory capacities. Their model assumes that participants have perfect memory for the last
n locations that they have visited and not matched, where n is an estimate of working
memory capacity. According to this model, if a participant fails to revisit a card that would
yield a match, it is because that card is no longer in the working memory buffer. If so, the
participant should move on to visit a new card. In contrast, our Imperfect Memory Model
predicts that memory failures would involve revisits but to the wrong card. This is because
our model has perfect memory for which cards it has visited, but it sometimes forgets which
visited locations go with which visited cards. This aspect of our model is consistent with
past work on the memory game showing that participants are very good at recognizing the
identities of the cards they have seen, but less accurate at remembering the locations of the
cards (Eskritt, Lee, & Donald, 2001). In our experiment, when participants failed to revisit a
matching card, they revisited some other card 72% of the time7. On average, at these points
of memory failures, 71% of all unmatched cards have been visited. Thus, participants are not
returning to visited locations any more that one would predict if one assumed they were just
randomly choosing among the unmatched cards. Thus, it seems that they are neither under-
sampling visited locations in this circumstance, as the Lavenex model would imply, nor
over-sampling them, as our model would predict. This suggests that actual memory is a
more complex mixture of memory for the identities and the locations of items than what is
represented in either model. Perhaps a more accurate memory model would provide a basis
for better identification of participants’ trajectories in the state space.

By focusing on classification in a complex state space, this paper provides a stronger
foundation for subsequent applications of the methodology we have described. For example,
as discussed in Anderson et al. (2010, 2011), one application is to improve the design of
tutoring systems. Indeed, one of the original motivations of the present task was to establish
that this methodology could distinguish between different kinds of problem solving—in this
case, solving anagrams versus algebra problems—to identify when participants were
engaged in mathematical thinking and when they were not. Another application would be to
collect data on trial-by-trial measures of internal states. For example, we hope to use such
data to identify when participants use retrieval versus computation during the course of skill
acquisition (e.g., Delaney et al., 1998). In addition, as discussed in Anderson (in press), we

7This reflects an analysis of the 38% of failures to revisit a matching card. Most of time (62%) participants revisit the matching card,
as both models would imply.
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can use model evaluation methods associated with HMMs to evaluate alternative models or
discover new models. All these examples highlight the potential of using the extremely rich
data that come from fMRI in conjunction with behavioral data and modeling techniques to
reach a new level of discrimination in tracking problem solving.
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Figure 1.
Sample illustrations of the memory game. The locations and identities of the algebra
equations and anagrams are shown in A and the corresponding solutions are shown in B.
During game play, a problem was not shown until its card was selected and a solution was
not shown until its card was matched. Unselected and unmatched cards appeared in red with
no text. An example of what the game display might look like for a participant about
halfway through a game is shown in C. For a full video reproduction of a game played by an
actual participant, see http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993.
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Figure 2.
An illustration of a fragment of the state space for the memory game. Each circle represents
one of the states – 34 of the 625 states are represented. The four digits in each state reflect
the number of visited math cards, the number of matched math cards, the number of visited
verbal cards, and the number of matched verbal cards. The state space is shown as beginning
with the state of no cards matched, passing through some of the states with cards matched,
and ending in a state with all cards matched.
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Figure 3.
Distributions of the number of turns. See discussion in text.
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Figure 4.
(a) Number of times different types of cards are viewed as a function of how many cards
have been matched and whether it is the first or second card. (b) Predictions of the Imperfect
Memory Model.
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Figure 5.
Mean times for various events, classified by whether they involve viewing Card 1, viewing
Card 2, or are the subsequent InterTurn. Data are also divided according to whether it was a
failed turn versus a successful turn and whether it was a first visit or a return visit. Data for
the last turn of the game are plotted separately.
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Figure 6.
An illustration of how the exact latencies provide evidence about an event, even in a case
like this where the mean failure and success times for InterTurns are similar (see Figure 5).
The ”Ratio” line is the ratio between the empirical densities for failures and successes.
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Figure 7.
Ability of the linear discriminant function to distinguish among categories. The x-axis gives
the various categories and proportion of scans from that category. The bars for each category
show the proportion of scans in each category assigned to each of the six possible
categories. Information sufficient to recreate this analysis is available in the files available at
http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993.
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Figure 8.
(a) Representation of the two dimensions in the projection of the LDA for the four
categories: first visit to a math card (blue), return visit to a math card (green), first visit to a
verbal card (orange), and return visit to a verbal card (brown). Large dots represent mean
participant values and small dots individual scans. (b) Regions with strong weightings on the
first dimension that reflects the math versus verbal dimension. (c) Regions with strong
weightings on the second dimension that reflects the first versus return visit dimension. (d)
Regions with strong weightings in the LDA for discriminating between InterTurns after
matching a pair and InterTurns after mismatching. See text for further discussion.
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Figure 9.
An example of classification performance for a single game. The brown line indicates
whether the participant was viewing Card 1, Card 2, or InterTurn (value 0). The other lines
show the relative evidence from the classifier for the 6 interpretations of a turn. The symbols
in the boxes indicate the true identity of the event: V1 = first visit to a verbal card, V2 =
return visit to a verbal card, A1 = first visit to a math (algebra) card, A2 = return visit to a
math card, N = nonmatch, and M = Match. Symbols in red are cases that the algorithm failed
to classify correctly.
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Figure 10.
An illustration of the contributions of different sources of information to the success of
classification. Information sufficient to recreate this analysis is available in the files
available at http://act-r.psy.cmu.edu/publications/pubinfo.php?id=993.
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Figure 11.
Accuracy in classification as a function of number of matches.

Anderson et al. Page 28

Neuroimage. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Anderson et al. Page 29

Table 1

The 25 states of the math cards or the verbal cards

Number of Cards

Visited Matched

0 0

1 0

2 0

2 2

3 0

3 2

4 0

4 2

4 4

5 0

5 2

5 4

6 0

6 2

6 4

6 6

7 0

7 2

7 4

7 6

8 0

8 2

8 4

8 6

8 8
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Table 2

The 24 operators for the memory game

Card 1 Card 2 Match

Math First Math First no

Math First Math Return no

Math First Verbal First no

Math First Verbal Return no

Math Return Math First no

Math Return Math Return no

Math Return Verbal First no

Math Return Verbal Return no

Verbal First Math First no

Verbal First Math Return no

Verbal First Verbal First no

Verbal First Verbal Return no

Verbal Return Math First no

Verbal Return Math Return no

Verbal Return Verbal First no

Verbal Return Verbal Return no

Math First Math First yes

Math First Math Return yes

Math Return Math First yes

Math Return Math Return yes

Verbal First Verbal First yes

Verbal First Verbal Return yes

Verbal Return Verbal First yes

Verbal Return Verbal Return yes
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