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Understanding the progression of neurological diseases is vital for accurate and early diagnosis and treatment
planning. We introduce a new characterization of disease progression, which describes the disease as a series
of events, each comprising a significant change in patient state. We provide novel algorithms to learn the
event ordering from heterogeneous measurements over a whole patient cohort and demonstrate using com-
bined imaging and clinical data from familial Alzheimer's and Huntington's disease cohorts. Results provide
new detail in the progression pattern of these diseases, while confirming known features, and give unique
insight into the variability of progression over the cohort. The key advantage of the new model and
algorithms over previous progression models is that they do not require a priori division of the patients
into clinical stages. The model and its formulation extend naturally to a wide range of other diseases and
developmental processes and accommodate cross-sectional and longitudinal input data.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Modeling patterns of disease progression is a key aim of medical
science. Such patterns further our understanding of the disease and
help construct staging systems that assist diagnosis and treatment. For
example, the AnnArbor system (Carbone et al., 1971) classifies lympho-
mas into four stages that progress froma localized tumorwithin a single
lymph node to a widespread involvement of lymph nodes and other
organs.

Disease progression occurs at various levels, ranging from the symp-
toms a patient experiences to cellular and biochemical changes. For
instance, the first symptoms of Alzheimer's disease (AD) are a loss of
episodic memory, followed by a progressive deterioration of other
cognitive abilities, such as language and executive function. However,
cellular pathology precedes these symptoms, often by many years
(Dickerson et al., 2009; Scahill et al., 2002; Thompson et al., 2001,
2003). This cellular pathology includes amyloid plaques and intracellu-
lar neurofibrillary tangles (NFTs), which are linked to neuronal
sycholinguistics, P.O. Box 310,
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degeneration and loss (Herrup, 2010). The spread of NFTs has a consis-
tent pattern starting inmemory-related areas, such as the hippocampus
and the entorhinal cortex, progressing to other higher cognitive areas
and finally the primary cortices (Braak and Braak, 1991).

The importance of understanding the progression patterns of
neurological diseases is reflected in recent efforts to collect large-scale
multi-center data sets combining clinical, imaging and pathology
measurements from hundreds of patients, suffering from Alzheimer's
disease (Mueller et al., 2005) or Huntington's disease (Tabrizi et al.,
2009). Despite the availability of these data, current models of disease
progression (Dickerson et al., 2009; Jack et al., 2010; Scahill et al.,
2002; Thompson et al., 2001, 2003) remain crude. These models use
symptomatic staging to divide patients into a small number of groups,
e.g. “presymptomatic”, “mild”, “moderate” or “severe”, and assess the
differences in biomarkers among those groups. Symptomatic staging
is an invaluable tool to explain disease progression to patients and
their families. However, it relies on imprecise and subjective clinical
assessment, which limits the temporal resolution of progression
models constructed this way and thus their power to discriminate
diseases and stage patients. The need is therefore urgent for techniques
that exploit large-scale heterogeneous data sets to obtain more detailed
models of disease progression.
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In this paper, we introduce a direct computational approach to
modeling disease progression. The new model describes the disease
as a sequence of discrete events. In our model, the events are changes
in patient state, such as the onset of a new symptom (“patient shows
reduced memory performance”) or the first measurement of tissue
pathology (“lumbar puncture shows reduced beta amyloid”). The
computational aim is to find the ordering of the events that is most
consistent with a set of measurements from a cohort of patients.
Thus the event-based model translates naturally into a semantic
description of the disease similar to a clinician's intuitive description
of its progression.

We formulate the event-based disease progression model and
develop new Bayesian statistical algorithms for fitting that refine an
earlier version of this model in Fonteijn et al. (2011). We demonstrate
the model and fitting procedure on data from two cohorts of patients:
a familial Alzheimer's disease (fAD) cohort and a Huntington's disease
(HD) cohort. FAD is a rare autosomal-dominantly inherited variant of
AD, which causes early onset (Bertram et al., 2010). HD is also an
autosomal-dominantly inherited disease (The Huntington's Disease
Collaborative Research Group, 1993) and is characterized by motor
and cognitive impairment and neuropsychiatric disturbance. The
disease progression patterns of both fAD (Ridha et al., 2006; Scahill
et al., 2002) and HD (Paulsen et al., 2008; Rosas et al., 2008; Tabrizi
et al., 2011) have been well studied using clinical staging and imaging,
which provides useful validation for the event-based model. The
models here consist of two types of events: clinical events and atrophy
events. Clinical events are transitions to a later clinical status, such as
frompresymptomatic AD toMild Cognitive Impairment (MCI),whereas
atrophy events correspond to the occurrence of significant regional
atrophy within a patient. However, the formulation extends easily to
include other event types.

The remainder of this paper is structured as follows: The “Theory”
section formulates the event-based disease progression model and
develops algorithms for fitting. Materials and methods section
provides more detail about the fAD and the HD data sets, in terms of
demographics and data acquisition procedures, and outlines the pre-
processing pipeline that we use. Results section summarizes the
results of fitting the event-based disease progression model to both
cohorts and further experiments to demonstrate the model's ability
to stage unseen data and its consistency between hemispheres.
Discussion section discusses the implications of these findings,
indicates what the current limitations of the model are and concludes
with suggestions for future work.
Theory

This section develops the event-based model and the algorithms
for estimating the model. “The event-based disease progression
model” section formally introduces the event-based disease progres-
sion model and derives a forward model from an event ordering to
the set of measurements acquired from the patient cohort. The
forward model provides a data likelihood function, given an event
sequence. The section “Model estimation” casts the estimation of a
characteristic event sequence for a particular data set into a Bayesian
framework and introduces a Markov Chain Monte Carlo
algorithm for sampling from the posterior distribution on the event
sequence. The section “Mixture models for the data likelihood” details
the particular mixture model for the likelihood function of
individual measurements required to complete the forward model in
The section “The event-based disease progression model” for the
particular data sets and event types that we use here. The section
“Modeling different event types” discusses how the model is adapted
to include different types of events.
The event-based disease progression model

Fig. 1 illustrates the event-based disease progression model and the
algorithmswe devise to estimate it. Themodel consists of a set of events
E1,…, EN and an ordering S=(s(1),…, s(N)), which is a permutation of
the integers 1, …, N determining the event ordering Es(1), …, Es(N). The
set of events is specified a priori and we estimate S from a data set X,
which contains a set Xj of measurements from each patient j=1, …, J
and Xl from each control l=1,…, L. Each set Xj={x1j, x2j,…, xNj}, or sim-
ilarly Xl, contains measurements xij, that are informative about the
occurrence of event Ei in patient j.

Two key assumptions of the event-based model are: first, measure-
ments decrease monotonically as the disease progresses; second, the
event sequence is consistent over all patients. The first assumption is
in line with existing models of disease progression, such as the hypo-
thetical model for AD in Jack et al. (2010). Thus, patients for whom
event Ei has occurred cannot revert to an earlier state where Ei has not
occurred. This assumption is essential because it ensures that snapshots
are informative about the full event ordering. The second assumption is
essential to enable pooling of snapshots from individual patients to
inform the complete event sequence for the whole cohort.

Fitting the event-based disease progressionmodel requires the eval-
uation of the probability density function p(S | X) of a particular event
ordering given the data. We start by fitting simple models for the likeli-
hood function p(xij | Ei) on the measurement xij given that Ei has oc-
curred and, similarly, p(xij | ¬Ei) on xij given that Ei has not occurred.
We assume that both distributions are independent of j. In the remain-
der of this section we treat these distributions as known. The section
“Mixture models for the data likelihood” explains how we
construct models for these likelihoods.

If patient j is at position k in the progression model, events Es(1),
…, Es(k) have occurred, while events Es(k+1), …, Es(N) have not, and
we can write the likelihood of that patient's data given S as

pðXj S; kj Þ ¼ ∏
k

i¼1
p
�
xij Es ið Þ
��� �

∏
N

i¼kþ1
p xij I Es ið Þ

��� �
;

�
ð1Þ

where we assume that individual measurements are independent.
We integrate out the hidden variable k to obtain

pðXj Sj Þ ¼
XN
k¼0

p kð Þp Xj S; kj Þ;
�

ð2Þ

where p(k) is the prior probability of being at position k in the ordering;
we assume a uniform prior on k here. Next, we assume independence of
measurements from different patients to obtain

pðX Sj Þ ¼ ∏
J

j¼1
p Xj Sj Þ:
�

ð3Þ

Combining Eqs. (1)–(3) yields the total likelihood

pðX Sj Þ ¼ ∏
J

j¼1

XN
k¼0

p kð Þ ∏
k

i¼1
p xs ið Þ;j
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� �
∏
N

i¼kþ1
p xs ið Þ;j
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Model estimation

We use Bayes' theorem to obtain the posterior distribution

pðS Xj Þ ¼ p Sð ÞpðX Sj Þ
p Xð Þ : ð5Þ

The marginal distribution p(X) is analytically intractable. We
therefore use a MCMC algorithm (Gilks et al., 1996) to sample from



Fig. 1. Conceptual overview of the event-based disease progressionmodel. (a) Idealized time courses of eventmeasures during the disease. The data Xj from patient j provides a snapshot
of disease progression (solid black lines). These time courses are simply examples thatmatch the assumptions of themodel and play no explicit role in fitting themodel. (b) The left panel
shows simulatedmeasurements for controls (green) and patients (red). Patients include cases inwhich the event has and has not occurred; controls only “not occurred”. The right panel
shows the histograms of themeasurement for all patients (red) and all controls (green).We fit amixture of a Gaussian and a uniform distribution (dotted lines in right panel of (b)) to all
subjects' measurements of one event to estimate p(xij | Ei) (the uniform component) and p(xij | ¬Ei) (the Gaussian component) for each event in each patient. These likelihoods are
visualized in (c) for the four eventmeasures and six representative patients. The events are ordered according to the underlying event sequence, whereas the patients are ordered accord-
ing to their disease stage to facilitate visualization. Note that p(xij | Ei) (right panel in c) is the same for all patientswithin each event, except for a cut-off, beforewhich p(xij | Ei) is zero. This
reflects the fact that these components are modeled by uniform distributions, whose upper bounds are set to the mean of the respective p(xij | ¬Ei) (see Mixture models for the data
likelihood section). (d) The data likelihood supports a MCMC algorithm, which samples the posterior distribution on the ordering S to provide a list of T candidate orderings with the
most likely appearing the most often (see left panel d). Finally, we compute the characteristic ordering S , which orders the events by their average position in the MCMC samples, as
in Figs. 3 and 4. The positional variance diagram shows the histogram of positions of each event over theMCMC samples, which gives insight into the uncertainty onS . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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p(S | X). We use flat priors on the ordering S, on the assumption that a
priori all orderings are equally likely.

The MCMC algorithm proceeds as follows: at each iteration t, a
perturbation S′ of the current model St swaps the positions of two
randomly chosen events. Next, St+1=S′ with probability min(a, 1)
where a=p(X | S′)/p(X | St) is the likelihood ratio; otherwise
St+1=St. MCMC algorithms depend on accurate initialization to
achieve good mixing properties within realistic time spans. We there-
fore initialize the MCMC algorithm with an initial sequence close to
the maximum likelihood solution SML for p(X | S). We find the initial se-
quence with a greedy ascent algorithm from a random starting point.
The greedy ascent algorithm uses the same perturbation rule as the
MCMC algorithm, but sets a=1 for p(X | S′)>p(X | St) or a=0 other-
wise. We run the greedy algorithm for 2000 iterations, which generally
is enough to reach a localmaximum.We repeat the greedy algorithm10
times from different initialization points, which provides high likeli-
hood of reaching the global maximum in at least one iteration. Next,
we run the MCMC procedure for 1,100,000 iterations, of which we
discard 100,000 burnin iterations and retain the remaining 1,000,000
samples.

We derive a characteristic event ordering and a positional variance
diagram expressing the uncertainty in the ordering from the set of
1,000,000 MCMC samples (see Fig. 1D). We compute the characteristic
ordering S, by ordering the events by their average position in the
MCMC samples. We suggest this characteristic ordering, rather than
for example simply the maximum likelihood ordering, because it con-
tains additional information about the separation of consecutive events
in the characteristic ordering thatmay beuseful, althoughwe do not ex-
ploit this extra information here. The positional variance diagram illus-
trates the posterior distribution on S and shows a histogram of the
position in the ordering of each event over the set of MCMC samples.

Mixture models for the data likelihood

Evaluating Eq. (4) requires separate models for both p(xij | Ei) and
p(xij | ¬Ei), which we estimate from the set of measurements Yi=
{xij | j=1, …, J} ∪ {xil | l=1, …, L} associated with event Ei from all
the controls and patients. However, the fact that a subject is a patient
or a control does not determine whether Ei has occurred or not within
that subject. This necessitates fitting a mixture model to the data,
whose components correspond to p(xij | Ei) and p(xij | ¬Ei) respectively.

The particular choice of model for each component depends on the
type of event and the measurement that informs on its occurrence.
Here, the measurements we use are predominantly measurements of
gray matter atrophy obtained from comparison of anatomical MR im-
ages to an earlier baseline. The atrophymeasurement is always positive,
unity corresponds to no volume change and values less than one indi-
cate atrophy. Therefore we fit a mixture of a Gaussian and uniform dis-
tribution in which the Gaussian component corresponds to p(xij | ¬Ei),
while the uniform distribution corresponds to p(xij | Ei). The distribu-
tions of atrophy measurements from controls appear single modal for
all regions in our data sets and the Gaussianmodel thus provides a sim-
ple and effective model. We use a uniform distribution on [m1, m2] for
p(xij | Ei) to reflect that the measurement gradually decreases as the se-
verity of the event increases and patientsmay have any level of severity.

Our limited data sets do not provide good coverage of the whole
range of severity, as the cohorts are skewed toward early disease stages,
so we impose the uniform shape. The lower bound m1 is smaller than
any atrophy measurement we observe, whereas the upper bound m2

is set to the mean of the Gaussian component that represents individ-
uals in which Ei has not occurred. Under this model, subjects with
severe atrophy have the same p(xij | Ei) as subjects whose atrophy is
comparable to controls. This might seem counterintuitive, as perhaps
p(xij | Ei) should be larger formore severe atrophy. However, the impor-
tant quantity in the MCMC sampling is the ratio p(xij | Ei)/p(xij | ¬Ei),
which is much larger for severe atrophy, because p(xij | ¬Ei) is smaller.
In the fitting procedure,we assume that the controls contain no sub-
jects in which Ei has occurred, while the patients contain both classes of
subjects. We therefore start by fitting the Gaussian component to the
data from the controls separately and then fit the mixture to the com-
plete data set, while keeping the Gaussian component's parameters
fixed, using the Expectation Maximization algorithm (Dempster et al.,
1977).

Earlier work (Fonteijn et al., 2011) used a Gaussian mixture model
for p(xij | Ei) instead of the uniformmodel we use here. The twomodels
in fact produce similar results for the fAD cohort, which contains
patients at a range of different disease stages. However, the uniform
model behaves much better for the HD cohort. The HD cohort is heavily
skewed toward earlier stages, so, in each region, less patients tend to
show atrophy than in the fAD cohort. In many regions, the distribution
of atrophy values over the whole cohort appears unimodal, because
only a few patients show atrophy. This impedes separating the
data into two Gaussian components. The uniform distribution, on the
other hand, guarantees a long tail into the abnormal part of the
atrophy distribution for each region and thus better separates p(xij | Ei)
and p(xij | ¬Ei).
Modeling different event types

The event-baseddisease progressionmodel of the fAD cohort includes
both clinical events and atrophy events. The atrophy events can be trea-
ted exactly as in the section “Mixturemodels for the data likelihood” sec-
tion, but the clinical events require slightly different treatment, because
they are binary rather than informed by a measurement: either the
patient was classified as AD from the cognitive tests or they were not.
We simply assign fixed high and low likelihood values to p(xij | Ei) and
p(xij | ¬Ei) respectively if the event has occurred, or vice versa if not.
These likelihood values were selected to be representative for the range
of values we observe for the atrophy events. The values we use in fact
come fromfitting amixture of twoGaussians top(xij | ¬Ei) over all atrophy
events and subjects. The means of both components provide the fixed
high and low likelihood values of p(xij | ¬Ei) for the clinical events.We re-
peat this procedure for p(xij | Ei). However, in practice, the ordering of the
clinical events A, B andC (which correspond to changes in clinical diagno-
sis, see Subjects section) does not critically depend on the exact choice for
these likelihood values: using likelihood values that are randomly drawn
from the mixture distributions of likelihood values does not shift the po-
sition of events A and B,whereas the shift in the position of event C is lim-
ited tomaximally 2 places inmore than 95% of the cases (see Fig. 3 for the
positions of events A, B and Cwhen using themixture of Gaussians to de-
termine the fixed high and low likelihood values). Moreover, changing
the likelihood values of the clinical events always leaves the ordering of
the atrophy events unaffected.
Materials and methods

We demonstrate the event-based disease progression model on
data from two cohorts. Both data sets are longitudinal and contain
multiple measurements per patient. However, for the purposes of
demonstrating the model here, we treat each snapshot as indepen-
dent as if it came from a separate patient. We use two types of
event: clinical events and atrophy events. Clinical events are transi-
tions to a later clinical status, such as from presymptomatic AD to
Mild Cognitive Impairment (MCI). Criteria for transition are outlined
in the section “Subjects”. Atrophy events correspond to the occurrence
of significant regional atrophy within a patient. We compute regional
atrophy values from serial T1-weighted MRI data, about which we
provide more details in the section “Image acquisition”. The section
“Data preprocessing” outlines the preprocessing steps which are
used to compute regional atrophy values.
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Subjects

The fAD data set is the same as used in Ridha et al. (2006). Briefly,
nine carriers of autosomal mutations associated to AD were recruited
from the Cognitive Disorders Clinic at the National Hospital for Neurol-
ogy andNeurosurgery. 25 Age-matched and sex-matched controls (two
to three controls per mutation carrier) were also recruited from
spouses, relatives and healthy volunteers. All participants gave written
informed consent as approved by the local ethics committee. All muta-
tion carriers underwent comprehensive clinical and neuropsychological
assessments, including the mini-mental state examination (MMSE)
(Folstein et al., 1975) and volumetric MRI scans, at each visit (41 visits:
three to eight per patient, time interval between visits ≈1 year). All
controls underwent the same procedure (54 visits, two for each partic-
ipant, except for two participantswho had four scans each). The clinical
status of each mutation carrier was classified at each time point as: 1)
presymptomatic, if participants fell short of both NINCDS-ADRDA and
MCI criteria; 2) MCI, if the patient fulfilled MCI criteria (Petersen et al.,
1999); and 3) familial AD, if the patient fulfilled National Institute of
Neurological and Communicative Disorders and Stroke and AD and
Related Disorders (NINCDS-ADRDA) diagnostic criteria for probable
AD (McKhann et al., 1984). The transitions between these clinical
statuses constitute the clinical events: event A indicates that the patient
is presymptomatic, event B that the patient has progressed from
presymptomatic to MCI and event C indicates the transition from MCI
to familial AD. All mutation carriers became affected during the
follow-up period and so have a known date of onset, except one who
has remained presymptomatic.

The HD data have previously been analyzed in Henley et al. (2009).
61 patients with genetically-confirmed HD were recruited from the
multidisciplinary HD clinic at the National Hospital for Neurology and
Neurosurgery, London and the Huntington's Disease Clinic at Adden-
brooke's Hospital, Cambridge. 40 patients were classified as “early
HD” (stages 1 and 2) (Shoulson and Fahn, 1979), and 21 patients
were gene carrierswithoutmotor signs, i.e. premanifest. Twenty neuro-
logically normal controls, either patients' partners or at-risk subjects
who had tested negative for the HD gene expansion, were also
recruited. All subjects gave written informed consent in accordance
with the Declaration of Helsinki, and the study had local research ethics
committee and Hospital Trust approval. Subjects underwent assess-
ment by a neurologist and psychologist, using the UHDRS clinical rating
scale (Huntington's Study Group, 1996) which comprised motor, func-
tional and cognitive assessments. Subjectswere scanned at baseline and
after 12 months. A subset of the subjects (13 controls, 16 premanifest
patients and 25 early HD patients) were also scanned at 24 months
after baseline.

Image acquisition

Imaging on the fAD cohort was undertaken with two scanners: in
the period between 1991 and 2000 a 1.5 T GE Signa MRI scanner
(General Electric Medical Systems, Waukesha, WI, USA) was used. T1
images were acquired using a Spoiled Gradient Echo technique with
the following parameters: (256×256 matrix, field of view 24×24 cm,
in-plane resolution 0.9375×0.9375 mm, TR/TE/NEX/FA=35ms/5 ms/
1/35°) yielding 124 contiguous 1.5 mm thick slices. Between 2000 and
2005 scans were acquired on a different 1.5 T GE Signa scanner. On
this scanner T1 images were acquired using an inversion recovery
fast spoiled gradient echo sequence with the following parameters:
256×256 matrix, field of view 24×18 cm, in-plane resolution
0.9375×0.9375 mm, TR/TE/TI/NEX/FA=14 ms/5.4 ms/650 ms/1/15°,
yielding 124 contiguous 1.5 mm thick slices.

Imaging for the HD data set was undertaken using a 1.5 T GE Signa
MRI scanner. T1 images were acquired using an inversion recovery
prepared fast spoiled gradient echo sequence with the following
parameters: 256×256 matrix, field of view 24×18 cm, in-plane
resolution 0.9375×0.9375 mm, TR/TE/TI/NEX/FA=13ms/5.2 ms/
650 ms/1/13°, yielding 124 contiguous 1.5 mm thick coronal slices.

Data preprocessing

The preprocessing pipeline extracts anatomically defined regions,
determines voxel-wise atrophy using non-rigid registration methods
and combines both steps to compute regional atrophy values.

We use FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) (version
4.5) to segment the brain into cortical and subcortical structures. Free-
Surfer starts with gray matter/white matter segmentation. It then uses
a labeling procedure on each subject's data which is based on a training
set of manually segmented scans (Fischl et al., 2002, 2004). Thus an
anatomical segmentation of cortical and subcortical gray matter is
achieved which is dependent on each subject's individual anatomy
and which has similar accuracy to manual labeling (Fischl et al.,
2004). In the fAD data, we supplement FreeSurfer's segmentation with
subject-specific hippocampus masks, which were manually traced by
Ridha et al. (2006).

We calculate voxel-wise atrophy values using non-linear registra-
tion methods. We use a free form deformation registration method
(Modat et al., 2010), which first uses a rigid registration to realign the
repeat scans to the baseline scan and then uses a set of cubic B-splines
to locally deform the repeat scan to match the baseline scan. In each
voxel, the change that is required by this matching procedure is quanti-
fied by the determinant of the Jacobian of the deformation field. We
calculate regional atrophy by calculating the median Jacobian determi-
nant for each segmented region.

Results

This section starts by demonstrating the convergence and mixing
properties of the algorithm (“Convergence and mixing properties” sec-
tion), before describing the characteristic event sequences for the fAD
and HD cohorts (“Event sequence of fAD cohort” and “Event sequence
of HD cohort” sections respectively). The sections “Positional variance
for the fAD cohort and Positional variance for the HD cohort” then dis-
cuss the positional variance diagrams for both cohorts. The last two sec-
tions describe additional experiments that demonstrate the robustness
and validity of the event-based disease progression model.

Convergence and mixing properties

Fig. 2a shows traces from the greedy ascent algorithm that is used to
initialize the MCMC algorithm in the fAD cohort. The traces are similar
for the HD cohort and are therefore not shown. Although the ten itera-
tions are randomly initialized, they converge to very similar solutions
within 2000 iterations. The log likelihood is several orders ofmagnitude
higher for the fitted model than random starting points suggesting that
the maximum likelihood model is well defined. Fig. 2b shows the
MCMC trace, which suggests that the MCMC chain indeed converges
when initialized with the greedy ascent algorithm and with the current
burnin period.

Event sequence of fAD cohort

Fig. 3 shows the characteristic event sequence S for the fAD cohort.
We average regional atrophy across hemispheres to reduce the number
of events and the model's complexity (The section “Consistency of
event-based models between hemispheres” shows experiments that
include regions from both hemispheres separately). Significant atrophy
first occurs in the hippocampus, the precuneus and the inferior parietal
cortex, followed by temporal neocortical regions. Other parietal and
frontal areas become involved subsequently, while primary cortices
are only affected in late stages. This progression pattern broadly agrees
with how neurofibrillary tangles spread through the brain (Braak and

http://surfer.nmr.mgh.harvard.edu/


Fig. 2. Plots of the log-likelihood during the greedy ascent phase (left figure) and theMCMCphase (rightfigure) of the algorithm. All 10 iterations of the greedy ascent phase are initialized
randomly, yet converge on a common solution within 2000 iterations. The MCMC trace shows good mixing, while remaining relatively close to the maximum-likelihood solution.
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Braak, 1991). An interesting difference in our findings is the relatively
late involvement of the entorhinal cortex, which is known to show
early pathology, including atrophy (Cardenas et al., 2003; Du et al.,
2004; Xu et al., 2000). However, the small size of the entorhinal cortex
makes it difficult to segment automatically and therefore increases the
variance of the automatically generated atrophymeasures. Significance
of entorhinal atrophy is thus harder to establish than in larger regions,
which shifts the event later in S. Manual tracing of the entorhinal cortex
(Cardenas et al., 2003; Du et al., 2004; Xu et al., 2000)would likelymove
the event sooner. The positions of clinical events B (MCI diagnosis) and
C (AD diagnosis) reveal new information that previous models cannot:
the set of regions that, on average, show significant atrophy at the time
Fig. 3. Event-based disease-progression model for the fAD cohort. The upper panel shows the c
spacing is arbitrary and simply separates the positions of the icons for visualization purposes. T
through the brain in fAD. These snapshots show in red the cumulative set of regions inwhich sig
snapshot are listed beneath each snapshot in order of appearance. The names of the regions are
upper panel are the clinical events. In particular, B and C represent transition to clinical MCI and
before all other events. (For interpretation of the references to color in this figure legend, the r
of diagnosis. For example, only the hippocampus shows an atrophy
measurement substantially different to controls prior to clinical MCI.

Event sequence of HD cohort

Fig. 4 shows S for the HD cohort. The early HD events occur in the
putamen, the caudate and the thalamus. Both pathological studies
(Vonsattel et al., 1985) and imaging studies (Aylward et al., 2010;
Tabrizi et al., 2011) support the early involvement of these regions.
Atrophy then spreads toward the cuneus, the superior frontal cortex
and the precentral cortex, in agreement with the progression pattern
found by Rosas et al. (2008) at various clinical stages of HD. The early
haracteristic ordering S . The horizontal axis indicates position within sequence S; vertical
he lower panel shows snapshots of the reconstructed time course of the spread of atrophy
nificant atrophy has occurred up to this stage. The events that have occurred since the last
consistent with the FreeSurfer nomenclature (Desikan et al., 2006). The red events in the
AD respectively. We include event A (pre-MCI) largely as a sanity check, as it must occur
eader is referred to the web version of this article.)
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occurrence of cingulate atrophy is supported by other imaging studies
(Henley et al., 2009; Tabrizi et al., 2009) and is in line with the observed
deficits inmood and emotional processing in HD patients (Tabrizi et al.,
2009).
Positional variance for the fAD cohort

Fig. 5 shows the positional variance diagram for each cohort. These
diagrams show the histogram of positions of each event over the
MCMC samples and thus express the posterior distribution on the
event sequences. Although the diagrams require some care in inter-
pretation, since they are posterior distributions on a single ordering
rather than true distributions of orderings, they provide unique insight
into the variance of the progression pattern, which no previous models
provide.

In the fAD positional variance diagram, the separation of events that
are consecutive in S is often weak, but events further apart in S show
no overlap in positional variance, demonstrating that their temporal
separation is consistent over the cohort and a strong feature of the
disease progression. Moreover, we observe consecutive clusters of
regions, where ordering within the clusters is weak (extensive overlap
of region positions within the cluster), but ordering between clusters is
strong (little or no overlap between the clusters themselves).

An appealing interpretation of these clusters is that they represent a
division of the events into separate stages within which events may
occur in any order, but between which events rarely switch position.
However, a weak local ordering of events can be caused by a number
of factors. First, weakly separated events can arise when the event
sequence is variable over the population, or when these events occur
simultaneously, which would justify the interpretation of clusters of
events as disease stages. Second, weak local ordering can also arise
when the data set does not provide snapshots at all stages, as is likely
the case in the fAD data where the number of snapshots (41) is of the
same order as the number of events (38). This undersampling also
introduces blocks of events whose ordering is undetermined by the
data. Thus, although S estimated from the fAD cohort may exhibit a
degree of overfitting in this way, our formulation of the model and its
estimationmitigate the effect, because the positional variance diagrams
reveal which parts of the ordering the data support.
Fig. 4. Event-based disease-progression model for th
Positional variance for the HD cohort

The HD positional variance diagram shows strong grouping of the
early events, but a large block of later events has only weak relative
ordering. However, the cohort does not include any late stage patients
and therefore evidence for any particular ordering of late events is
expected to be weak. Moreover, HD is pathologically and clinically
heterogeneous and different clinical presentations are likely to have
different patterns of regional atrophy (Rosas et al., 2008). This, as well
as the larger number of patients and fewer repeats, is likely to contrib-
ute to the greater positional variance than we observe in fAD.

Staging patients within the event-based model

The event-based disease progression model provides a natural
framework for fine-grained staging of patients. We can use S to deter-
mine the stage k for each patient which maximizes the data likelihood,
i.e. the k thatmaximizesp Xj

� ���S; kÞ in Eq. (1). In the fAD cohort, there are
multiple measurements for each patient. A simple check on the validity
of themodel investigates whether later time points within each patient
correspond to later stages in the disease progression model. To provide
a proper test for unseen data, we fit the model separately for each time
point, excluding that time point, and estimate the position of the
excluded time point in themodel of the remaining data. Fig. 6 shows in-
deed that generally later time points within patients correspond to later
stages. Exceptions arise for scans acquired during the late stages of the
disease. Fig. 5 shows that there is high uncertainty around the relative
ordering of these late stages, which makes the ordering of the later
time points more difficult to discern.

Consistency of event-based models between hemispheres

The disease progression models in Figs. 3–5 use regional atrophy
values averaged across hemispheres. To test consistency between
hemispheres, we fit separate models for atrophy events in left and
right hemisphere regions. Fig. 7 shows that the ordering is largely
consistent across hemispheres for the fAD cohort. The upper right
block of events shows little correspondence in event position across
hemispheres. However, these events correspond to the lower right
e HD cohort. See Fig. 3 for further information.

image of Fig.�4


Fig. 5. Positional variance of the event sequence for both diseases. Each row shows the logarithm of the frequency with which a region occupies each position in the event sequence over
the set of samples from theMCMC. The regions are ordered according to S . The uniform square at the bottom right of the fAD diagram contains events that show no substantial deviation
from controls.
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block of events in Fig. 4 in which there is no substantial deviation from
controls so the ordering is weak.

Discussion

The event-based disease progression model has major advantages
over current approaches to modeling the progression of neurological
and other diseases. First, it directly extracts the time line of disease pro-
gression from the data, instead of relying on clinical staging. Moreover,
the model uniquely characterizes uncertainty in the event ordering
(Fig. 5), arising from measurement noise and heterogeneity over
the population. Characterizing uncertainty provides new insight and
is essential for model-based discrimination of different diseases and
diagnosis. Second, model fitting naturally exploits longitudinal or
cross-sectional data sets or, as we demonstrate here, heterogeneous
data sets with different numbers of time points for each patient. Third,
the approach combines information from different sources naturally.
Here, for example, we demonstrate orderings of events including
Fig. 6. Staging results for all follow-up scans in all patients in the fAD cohort. We use the
event-based disease progression model to compute the most likely disease stage for each
scan. Each separate trajectory joins the points representing each individual scan from one
individual patient. The horizontal axis indicates the number of the follow-up scan.Within
patients, later follow-up scans generally correspond to later stages in the model.
regional atrophy events informed by imaging as well as clinical events
informed by patients' scores in cognitive tests. Events informed by
other types of measurement, such as blood tests, other imaging modal-
ities, lumbar puncture, or biopsy, are straightforward to incorporate as
new event types. This is a key area for further work, since including
different measurement modalities enables events to be informed by
multiple measurements, which would relax the one-to-one mapping
between measurements and events and lead to more robust event
detection.

These advantages make the model and estimation procedure very
suitable for application in large multi-modal data sets, such as the
Fig. 7. Comparison of orderings of left and right events in a model containing events for
regions in both the left and the right hemisphere of the fAD cohort.We fit separatemodels
for both hemispheres. Each point plots the position of a left-hemisphere event, relative to
all left-hemisphere events, against the position of the corresponding right-hemisphere
event relative to all right-hemisphere events. The horizontal and vertical error bars
indicate the positional standard deviation over all MCMC samples for the left and right
hemisphere respectively.
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ADNI data set for AD (Mueller et al., 2005) and the TrackHD data set for
HD (Tabrizi et al., 2009). Such experiments will provide complete
progression models for AD, HD and a variety of other diseases, which
promise great advances in early and accurate diagnosis. The newmeth-
od scales up easily to larger data sets, as computation is linear in both
the number of patients and events. Some complications are likely to
arise from misclassifications, because some large data sets do not have
confirmed diagnosis for the whole cohort. For example, clinical diagno-
sis in sporadic AD is imprecise and large cohorts therefore potentially
contain a proportion of misdiagnosed patients and undiagnosed con-
trols. Future work must quantify the robustness of the method to the
misclassification inherent in more general large-scale studies.

The event-based model offers a natural framework to compare pro-
gression patterns among phenotypes in AD, HD or any other disease. In
a similar way, comparison of models of treatment and control groups in
clinical trials can reveal the effect of a treatment on the progression,
potentially providing new markers of treatment efficacy. Moreover,
staging based on the event-based model (see Staging patients within
the event-based model section) offers promise as a more reliable basis
for treatment plans than clinical staging.

Other classes of model are similar to the event-based model. The
most comparable model fits time lines of the emergence and extinction
of species to the fossil record from different sites (Puolamäki et al.,
2006). The main difference with the event-based model is the fact
that species can appear and disappear from the fossil record. This
makes this model symmetric with respect to time reversal and necessi-
tates the input of prior information to break this symmetry. The event-
based model is already asymmetric with respect to time reversal,
because we assume that, once a patient shows evidence that an event
has occurred, this evidence will remain present at later time points.
Another related class of models is state-space models, such as Hidden
Markov Models (HMM), which have found widespread use in areas
such as speech recognition (Rabiner, 1989) and gene finding (Korf,
2004). Although both state-space models and the event-based model
are similar in that they use a set of abstract states (disease stages in
the event-based model) to represent patterns of observed data, impor-
tant differences exist: first, state-space models generally require input
data with known temporal ordering, which the data we model does
not have. Second, the transition probabilities between states in state-
space models are generally learned from the data, whereas the transi-
tion probabilities between stages in the event-based model are defined
implicitly (1 for subsequent stages, 0 for all other combinations of
stages).

The model and estimation procedure in their current form make
various assumptions thatmust be consideredwhen interpreting results.
First, we emphasize that the nature of the events in the model is
“pathology becomes detectable through a particular measurement”
rather than “pathology appears”. The sensitivity of the measurements
to pathology limits the ability of any progression model to reflect the
underlying order of pathology. Tomake this clear, we refer to the ideal-
ized ordering of pathology occurrences as the pathology ordering to
distinguish it fromS, which is the order inwhich events become detect-
able. Differences in the sensitivity of event measurements (heterosce-
dasticity) cause departures of S from the pathology ordering. The
relatively late position of the entorhinal cortex we observe in fAD (see
Fig. 3) provides an example: inaccurate segmentation of the entorhinal
cortex reduces sensitivity of the atrophymeasurement relative to other
regions; a significant deviation of atrophy from controls therefore
occurs later than in regions that are later in the pathology ordering
but whose atrophy measurements are more sensitive. In practice, diag-
nosis and staging mechanisms must rely on measurements. Therefore,
the model of detectability through measurement, which S provides,
has direct practical utility, but we must be cautious in inferring the ide-
alized pathology ordering.

Second, Eq. (1) assumes independence of the likelihood of each
measurement conditional on event occurrence. However, we do
observe pairs of events whose event measures are highly correlated.
The current formulation of the model ignores this source of residual co-
variance. Hence we describe the events above as “pathology becomes
detectable through a particular measurement”. Modeling this kind of
covariance may increase sensitivity to underlying pathological events
and bring S closer to the pathology ordering. This necessitates further
development both to evaluate dependencies between measurements,
which requires larger data sets thanwe have here, and to accommodate
those dependencies within the model. This is a key area for further
work, since modeling measurement dependency further enables relax-
ation of the one-to-one mapping between measurements and events
enabling events informed by multiple measurements and vice versa.

Third, Eq. (2) requires all sets ofmeasurementsXj to be independent.
Here, we treat repeated examinations of the same subject at different
time points as independent. This approximation biases S toward the
progression pattern of individuals with more repeats and underesti-
mates the population variance of the event sequence. This effect may
contribute to the greater positional variance in the HD data set com-
pared to fAD. Future work will adapt the estimation procedure to ac-
commodate repeat exams more appropriately, but again this requires
larger data sets. Thus, we ignore and simply note the effect for now.

Last, the positional variance diagrams (Fig. 5) should be inter-
preted with care, because the diagrams show the posterior distribu-
tion of a single event sequence, which is assumed to be common
among all patients, rather than the variance of the ordering over the
cohort. The positional variance diagram contains contributions from
both measurement noise and the underlying population variance.
We also note that the posterior distribution contains more informa-
tion than we explore here. In particular, the positional variance
diagrams do not express the covariance in the position of pairs of
events, which do exist and may suggest interesting causal relation-
ships. Future work will explore this information.

A key novelty of this work is the formulation of a cohort-level com-
putationalmodel. The event-basedmodel is the simplest of a rich family
of related models for future development and study. For instance, the
model adapts easily to allow groups of events to occur simultaneously,
thus determining natural staging systems directly from the data. Future
models might also incorporate a mixture of event sequences to reveal
and capture disease sub-typeswith different progression patternswith-
in a single cohort. Another useful variant of the model might combine
multiple measurement types (for instance regional cortical thickness
and volume) to inform a single event, which could potentially increase
the robustness of event detection. Other variants for future develop-
ment might retain the temporal information that is currently factored
out in order to capture the ordering independently of varying rates of
progression across the cohort. This variant could for example identify
an appropriate temporal marker against which to measure the timings
of each event across the cohort.Wider future applications include char-
acterizations of developmental processes, such as normal aging or the
acquisition of language, mathematical ability or other skills.

In conclusion, we have introduced a novel framework for studying
and characterizing disease progression and show progression patterns
for two important neurodegenerative diseases in unique detail. The
simplicity of the model in its current form enables application even on
modest data sets, as demonstrated here. More generally, the idea pro-
vides rich opportunities for refinement and further development to
characterize features of diseases and similar processes.
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