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Abstract
Features of the diffusion-time dependence of the diffusion-weighted magnetic resonance imaging
(MRI) signal provide a new contrast that could be altered by numerous biological processes and
pathologies in tissue at microscopic length scales. An anomalous diffusion model, based on the
theory of Brownian motion in fractal and disordered media, is used to characterize the temporal
scaling (TS) characteristics of diffusion-related quantities, such as moments of the displacement
and zero-displacement probabilities, in excised rat hippocampus specimens. To reduce the effect
of noise in magnitude-valued MRI data, a novel numerical procedure was employed to yield
accurate estimation of these quantities even when the signal falls below the noise floor. The
power-law dependencies characterize the TS behavior in all regions of the rat hippocampus,
providing unique information about its microscopic architecture. The relationship between the TS
characteristics and diffusion anisotropy is investigated by examining the anisotropy of TS, and
conversely, the TS of anisotropy. The findings suggest the robustness of the technique as well as
the reproducibility of estimates. TS characteristics of the diffusion-weighted signals could be used
as a new and useful marker of tissue microstructure.
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1. Introduction
Understanding developmental and pathological changes in biological tissues relies on
performing a detailed examination of the underlying microstructural alterations. The MR
measurement of translational self-diffusion of the ubiquitous water molecule provides an
indirect method to study local microscopic structure. The sensitivity of diffusion-weighted
MRI (DWI) to the microscopic environment has made it an indispensable tool for the
examination of neural tissue, proven by its sensitivity to an ever increasing number of
pathologies affecting the brain and spinal cord (de Carvalho Rangel et al., 2011).

Although each conventional diffusion-weighted MR image does not possess resolution at the
cellular level, a collection of such images nonetheless enables one to quantify attributes of
the underlying microscopic architecture. For example, by acquiring a series of diffusion-
weighted signals with different diffusion sensitization obtained by varying the wavenumber,
q, and subsequently transforming the data, one can directly quantify the dispersion profiles
associated with diffusion of water molecules (Cory and Garroway, 1990) using a method
called q-space MR. Another important independent quantity one can adjust is time during
which diffusion is observed, which determines the distances probed by the molecules
(Latour et al., 1994; Pfeuffer et al., 1998; Sen, 2004).

Diffusion acquisitions obtained by independently varying the wavenumber and diffusion
time, were used, in conjunction with a diffusion model of Brownian motion taking place in
disordered media and fractals, to characterize the temporal and spatial dependence of
diffusion propagators in red blood cells, normal human brain tissue, and a specimen of
glioblastoma tumor (Özarslan et al., 2006b). Moreover, variations in the parameters
quantifying the temporal scaling (TS) behavior were shown to exist, suggesting this
method’s potential to generate new contrast.

As in many different areas of science (Mandelbrot, 1982), fractal concepts have been used to
model neural tissue from cellular (Smith et al., 1989; Caserta et al., 1990) to voxel and organ
levels (Kiselev et al., 2003); such an approach is justified due to the extremely complicated
architecture of the neural tissue. Indeed, neural tissue exhibits a great deal of self-similarity
across different length scales (Lichtman and Denk, 2011). When the distances that could be
probed by DWI are concerned, the influence of macromolecules, cytoskeleton, cell
membranes, and myelin needs to be considered. The temporal dependence of the variance of
distances (i.e., mean-squared displacements) probed by randomly moving molecules in
fractal environments is known to deviate from its normal linear behavior due to the presence
of restrictions exhibited at many different length scales. Hence, Brownian motion taking
place in fractal media is referred to as anomalous diffusion. Anomalous diffusion has been
observed in many different environments (Gefen et al., 1983) including biological tissues
and in very different contexts (Langlands and Henry, 2010). The proposal of using the MR
technique, as an exquisite probe of molecular diffusion, to measure anomalous diffusion
within disordered media has been made since the 1980s in theoretical studies (Banavar et al.,
1985; Jug, 1986; Kärger et al., 1988; Widom and Chen, 1995; Zavada et al., 1999). MR
measurements have been performed in model systems (Klemm et al., 2002; Müller et al.,
1996), sand grains (Stallmach et al., 2002), as well as in lung tissue (Kveder et al., 1988) and
duck embryos (Cheng, 1993).

On a very different line of thought, diffusion in biological tissues (carcinomas, fibrous
mastopathies, adipose and liver tissue) has been modeled via Lévy alpha-stable distributions
(Köpf et al., 1996). The corresponding MR signal attenuation is given in terms of a stretched
exponential (Kohlrausch-Williams-Watts, KWW) function (Kohlrausch, 1847). Such
processes are characterized by statistical moments that diverge, hence it is not meaningful to
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quantify the temporal scaling of the variance. This approach has recently been applied to
neural tissue (Magin et al., 2008; Hall and Barrick, 2008; Zhou et al., 2010; Santis et al.,
2011; Gao et al., 2011). As described in more detail in the Discussion section, the models
based on the stretched exponential function differ fundamentally from the fractal-based
ones.

In yet another approach, the asymptotic behavior of the q-dependence of the MR signal
attenuation curve can be described by a power-law (Köpf et al., 1996), which can be
considered a generalization of the Debye-Porod law for MR acquisitions (Sen et al., 1995).
The Rigaut-type asymptotic fractal expression (Rigaut, 1984; Rigaut et al., 1998) has been
used to capture the power-law decay from the signal attenuation curves (Köpf et al., 1998).
More recently, such a dependence was shown to possibly originate from a sample of
diffusion tensors drawn from a Wishart distribution (Jian et al., 2007); this finding was used
to address the neuronal connectivity problem from multi-directional MR acquisitions.

In this work, we follow the theory of diffusion in disordered media and fractal environments
and continue the approach taken by Özarslan et al. (2006b). We use the technique on MRI
data sets, and the resulting TS contrast is assessed within excised hippocampi, whose
microstructure was previously studied using diffusion tensor imaging (DTI) (Shepherd et al.,
2006, 2007). In the next section, we provide a brief overview of the theory of diffusion in
disordered media and its MR measurement with minor extensions in the modeling
framework of (Özarslan et al., 2006b). MR imaging protocol and a number of computational
tools employed to accurately compute the TS parameters are presented in the following
section and the associated appendices. The results of the TS characteristics, the contrast
based on the TS parameters, and the interplay of diffusion anisotropy with TS behavior are
presented in the Results and Discussion sections.

2. Theory
In this paper, we use the method introduced by Özarslan et al. (2006b) with minor
extensions. The technique follows the theory of diffusion in fractals and disordered systems,
a comprehensive review of which can be found elsewhere, e.g., (Havlin and ben Avraham,
2002). A brief review of the relevant theory is included in this section for completeness.

In disordered media and fractals, the temporal dependence of the diffusional mean-squared
displacement (〈r2〉) is known to deviate from linearity (Gefen et al., 1983). For this
dependence, a power-law is observed in deterministic fractals (O’Shaughnessy and
Procaccia, 1985), which accurately describes the temporal scaling (TS) behavior of diffusion
in more realizable environments for a considerable range of length and time scales. For
example, Saxton (2007) has shown that, in biological media, the presence of a hierarchy of
binding sites leads to a wide anomalous diffusion regime.

Generally speaking, this power-law can be expressed through the relationship

(1)

where t is the diffusion time, and dw is the fractal dimension of the diffusion process, which
can be considered to be a “statistical fractal.” This point follows from the self-similarity of
the random walks; a discrete step taken at one time-point can be envisioned to be the sum of
net displacements taken during smaller time intervals. The above scaling relationship
provides a means to categorize different diffusion processes. For “normal” (e.g., Gaussian)
diffusion, dw is exactly 2, which leads to the linear dependence of 〈r2〉 on diffusion-time
mentioned earlier. When the mean-squared displacements increase more rapidly, i.e., dw < 2,
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the process is considered to be in the superdiffusive regime. The opposite case of dw > 2 is
encountered in a subdiffusive process.

Besides the mean-squared displacement, another quantity whose scaling relationship is of
interest is the return to the origin probability (RTOP), which is the likelihood of molecules
to undergo zero net displacement during the diffusion time. The relevant relationship is
given by

(2)

where ds is referred to as the spectral or fracton dimension (Alexander and Orbach, 1982),
which quantifies the scaling behavior of the density of states for the Laplacian operator.
Within the context of random walks on a discrete lattice, it is related to the number of
distinct sites visited by the random walker.

Both dw and ds depend on characteristics of the diffusion process taking place within the
fractal medium; as such, they are referred to as dynamic exponents. In contrast, the fractal
dimension, denoted by df, is a static exponent describing the scaling of the mass of the
environment with distance. Remarkably, in deterministic fractals, the two dynamic
exponents are related to df through the simple relationship

(3)

It should be noted that these quantities have tremendously important implications for
transport processes in complex media (Condamin et al., 2007).

A diffusion propagator of the following form possesses all of the scaling relationships
described so far (O’Shaughnessy and Procaccia, 1985):

(4)

where d is the dimension of the embedding (free) space, which is invariably 3 for our
purposes, and Φ is some function whose exact form does not affect the scaling relationships.
Comparison of the above expression to the three-dimensional Gaussian propagator reveals
that the “normal” values for ds and df are 3 as well.

Note that the above form for the propagator makes a number of assumptions that we shall
relax to accommodate more general diffusion processes that are observed in gray-matter.
First of all, the above propagator assumes the diffusion process to be isotropic. Second, any
even-order moment of the displacements is implied to be related to dw, which is a
consequence of the following relationship, which holds for the mth-order radial moment:

(5)

For the time being, we shall focus on measuring diffusion along a single direction, taken to
be the z-direction, which is determined by the orientation of the diffusion sensitizing
gradients. The data are acquired in a space reciprocal to the displacement space, with the
wavenumber q = (2π)−1γδG, where γ is the gyromagnetic ratio and δ is the duration of the
diffusion gradients whose magnitude is denoted by G. When only one radial line in q-space
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is sampled, it is meaningful to consider a one-dimensional propagator through a Fourier
transform of such one-dimensional q-space data, which is given by

(6)

where Δ is the separation of the two gradient pulses and thus represents the diffusion-time,
while E(q, Δ) is the MR signal attenuation profile (i.e., the q-space signal values divided by
the signal at q = 0) for this diffusion-time. It follows from this expression that, the MR
signal can be written in terms of the moments of this one-dimensional propagator through
the relationship

(7)

where we assumed that the propagator is symmetric, i.e., all odd-order moments vanish. The
one-dimensional propagator defined in Eq. 6 is just the projection of the three-dimensional
displacement probability onto the axis specified by the gradient orientation. As discussed in
detail by Özarslan et al. (2009), in isotropic spaces, the three-dimensional propagator can be
obtained from its one-dimensional projection. The moments of the two propagators are also
related. For example, the second moment is simply 〈r2〉 = 〈x2 + y2 + z2〉 = 3〈z2〉. Therefore,
〈z2〉 is proportional to Δ2/dw as well. However, in more general cases, one can still expect
similar scaling relationships for the projected propagator. In fact, it was shown in Özarslan
et al. (2006b) that scaling relationships implied by the following form of the propagator
describe the temporal evolution of the diffusion process well:

(8)

where  is the parameter for the projected propagator corresponding to ds, and Ψ is a well-

behaved function of its argument. On the other hand,  is defined through the expression

(9)

which is analogous to Eq. 3. Note that the “normal” values for  and  are 1. The value of
 can be estimated by exploiting the time dependence of the probability for zero net

displacement along the z-axis through the relationship

(10)

In this work, we go one step further and relax the requirement that 〈zm〉 ∝ Δm/dw, which is
implied by Eq. 8. Instead, we allow for the possibility that the temporal scaling of the higher
order moments are described by different exponents, i.e.,

(11)

Clearly, d2 = dw.
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We shall quantify the TS descriptors, dm, for m =2,4,6, and 8, along with  and ds. For this
purpose, we need to relate the q-space signal profiles to the quantities 〈z2〉, 〈z4〉, 〈z6〉, 〈z8〉,
P1(0), and RTOP for different values of the diffusion time. As discussed in (Özarslan et al.,
2011), these quantities can be linked to the q-space data profile, denoted by E(q), through
the expressions

(12)

(13)

(14)

Note that Eq. 14 holds only when the signal is perfectly isotropic.

3. Methods
3.1. MR Image Acquisition

To investigate the temporal scaling (TS) behavior of diffusional processes in neural tissue,
we acquired a series of diffusion-weighted MR images from four excised rat hippocampi
with varying diffusion gradient strengths and diffusion times. Prior to imaging, rats were
perfusion-fixed with 4% formaldehyde. The hippocampi were dissected medially from each
hemisphere and immersed in fresh fixative for 8–10 days, then washed overnight in
phosphate-buffered saline (PBS, with pH < 7.4) prior to imaging. Samples were imaged
inside an NMR tube containing PBS. Temperature was maintained throughout the
experiments using the temperature control unit of the magnet previously calibrated by
methanol spectroscopy. Samples were imaged with a 5 mm birdcage coil inside a 600 MHz
narrow-bore spectrometer with a Bruker Avance console. These experiments were
performed with the approval of the University of Florida Institutional Animal Care
Committee (IACUC).

The first sample, which we refer to as “sample A,” was imaged using a pulsed gradient
stimulated-echo pulse sequence with the following parameters: TR=1000 ms, TE=12.6 ms,
bandwidth=35 kHz, resolution=(78 × 78 × 500) μm3, matrix size=(64 × 64), number of
slices=4, diffusion gradient pulse duration (δ)=2 ms. Images were acquired with 32 different
diffusion gradient strengths increasing from 91.75 to 2935 mT/m in steps of 91.75 mT/m,
yielding a resolution of 4 μm in the displacement domain. The gradients were applied along
the slice direction. This q-space acquisition scheme was repeated for 5 values of diffusion
pulse separation (Δ) between 12 and 210 ms evenly spaced on a logarithmic scale. The
number of averages was increased from 6 to 14 for increasing diffusion time values to
produce images with comparable quality at different diffusion times. The experiments were
performed at 17 °C. Figure 1 shows DWI data for all diffusion-time points (top to bottom)
and every third gradient strength (left to right).

In addition to the q-space acquisition described, the same specimen underwent a series of
four diffusion tensor imaging (DTI) scans. The diffusion times were 12.0, 24.5, 103, and
210 ms for these DTI acquisitions, respectively. Each data set consisted of a total of 27
scans, 6 of which were at low diffusion-weightings, while the remaining 21 were collected
with different gradient orientations at the b-value of 1280 s/mm2. The 6 gradient directions
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for the lower diffusion weighting were determined by the vertices of an icosahedron residing
on one of the hemispheres. Similarly, the 21 gradient directions for the greater diffusion-
weighting were computed from the first order tessellation of the icosahedron. The number of
averages was varied between 8 and 20 as the diffusion time was prolonged. All other
parameters were identical to those for the q-space acquisitions described above.

To assess the reproducibility of the TS features at physiologically more relevant conditions,
the remaining three specimens, referred to as samples “B1,” “B2,” and “B3,” were imaged at
37 ± 0.2 °C using a similar protocol. The gradient encoding scheme was identical to that for
sample A. However, 8 diffusion time values were used ranging from 12 to 147 ms evenly
spaced on a logarithmic scale. The number of experiments was varied between 4 and 8 to
reduce the effects of noise at longer diffusion times. To prevent the bias that can be
introduced by processes that may occur during the course of the experiment, the ordering of
experiments with different Δ values was random.

3.2. Computation of the TS exponents
The estimation of the TS exponents described in the Theory section proves to be a
challenging task when there is significant noise in the data, which is expected to be the case
in conventional image acquisitions. This fact can be appreciated from an examination of
Figure 1 which illustrates the quick disappearance of the signal particularly at longer
diffusion times for Sample A. The problem is more severe for Samples B1–3 because of the
faster diffusion rate at the higher temperature.

Of particular concern is the estimation of  and ds exponents that rely on an accurate
estimation of integrals over the entire q-axis (see Eqs. 13 and 14). When magnitude valued
data are used, computation of these integrals is problematic because they would diverge due
to the finite value of the “noise floor”—the expected value of pure noise. Moreover, since
the noise variance in magnitude data is signal-dependent (Koay and Basser, 2006), the
influence of noise is different at different diffusion times. Consequently, any bias introduced
by noise is expected to shift the estimates of the TS parameters. To overcome these issues,
we devised a multi-step procedure that unifies some recent developments in the
identification of noise (Koay et al., 2009b) and handling of noisy magnitude signals (Koay
et al., 2009a) as well as the representation of q-space signals (Özarslan et al., 2008a).

Our goal is to produce voxel-by-voxel estimates of the TS parameters from the five-
dimensional (three spatial, one temporal, and one q-space dimensions) data sets. Figure 2
shows the results of our numerical scheme for an arbitrary voxel of the data set obtained
from the B1 sample.

Our strategy involves the following steps:

1. For each of the time points, the images from one slice, resulting in a three-
dimensional array (with two spatial and one q-space), are fed into our PIESNO
(probabilistic identification and estimation of noise) framework developed in (Koay
et al., 2009b), which automatically identifies the noise-only regions in an image
sequence, and provides an accurate estimate for the standard deviation of the
underlying Gaussian noise. Note that noise characteristics do not vary from slice to
slice. Although all slices could be fed into the algorithm, one slice was sufficient to
provide accurate estimates.

2. For each voxel of the image, we estimate the signal profile using an extension of
the 1D-SHORE (one-dimensional simple harmonic oscillator based reconstruction
and estimation) method to include regularization as described in detail in Appendix
A. The 1D-SHORE framework represents the E(q) profile in an orthogonal basis of
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Hermite functions, and was shown to provide very accurate interpolations and
reasonable extrapolations of the signal. The estimation of the parameter, u,
determining the stiffness of the spring, thus the breadth of the basis functions, was
accomplished using a scheme similar to that in (Özarslan et al., 2011). More details
can be found in Appendix A. N, which determines the number of basis functions to
be used, was set to 10. This step produces a meaningful “mean value” for the noisy
magnitude signal. This estimate is shown via the continuous black line in the large
plot in Figure 2, which is estimated from the original discrete magnitude valued
samples depicted by the black dots.

3. The estimates for the mean values obtained from the previous step were fed into the
scheme developed to “break the noise floor” (Koay et al., 2009a), which produces
discrete signal values without any bias introduced by the Rician character of the
magnitude valued data. The results are depicted by red diamonds in the large panel
of Figure 2. As shown by Koay et al. (2009a) the noise in these transformed data is
Gaussian, hence the transformed signal can assume negative values, e.g., when the
underlying noise-free signal intensity is smaller than the additive Gaussian noise.

4. The 1D-SHORE estimation (step 2) is repeated for the Gaussian signals, which
results in a continuous representation of the signal values without bias due to the
magnitude noise, which has been inappropriately called Rician noise. The resulting
continuous representation is shown by red lines in Figure 2.

5. The 1D-SHORE coefficients were used in the estimation of even-order moments of
displacement distribution and zero-displacement probabilities. The necessary
analytical relationships linking the 1D-SHORE coefficients to these quantities are
provided in Appendix B.

6. The above computations were repeated for all diffusion times and voxels of the
image within the hippocampus. The end result includes four-dimensional (three
spatial and one temporal) arrays of 〈z2〉, 〈z4〉, 〈z6〉, 〈z8〉, P1(0), and RTOP.

7. The power-laws in Eqs. 2, 10, and 11 imply a linear dependence of the logarithm of
each of the above quantities on the logarithm of the diffusion time. Therefore, a
linear regression routine was used to estimate the relevant TS parameters by fitting
a line to these data. IDL’s robust linear fitting routine “LADFIT” was used to
remove any inaccuracy due to outliers, which could result from unjustifiable values
for the quantities. Such robust fitting was observed to be necessary almost
exclusively for the RTOP values, which were used in the estimation of ds. Figure 3
illustrates the linear fits for the same voxel used in Figure 2 to illustrate the signal
transformational framework.

It is instructive to discuss Figure 2 to understand the effects of the signal transformational
framework presented in steps 2–4. The original magnitude valued signal values (black dots)
and the final 1D-SHORE representation of the transformed Gaussian-distributed data points
(red lines) are shown for all eight values of the diffusion time. Since the latter can assume
negative values, it was necessary to plot the absolute value of these curves. However, we
used dotted lines to depict the negative sections of the curves as was done previously to
illustrate the negative signal values predicted for double pulsed field gradient (double-PFG)
experiments (Özarslan and Basser, 2007; Özarslan, 2009). In this figure, the result of step 2,
which involves the 1D-SHORE of the signal before transformation is shown in the large plot
corresponding to the shortest diffusion time. It should be noted that the computational
approach taken does a superb job of estimating the signal at smaller q-values, which is
necessary for the accurate estimation of the moments. Moreover, at larger q-values, i.e.,
when the signal is relatively small, the signal transformational framework yields a curve that
decays much faster than what the original data points would imply. In most cases, the
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scheme introduces an oscillatory tail with zero-crossings, which, unlike in the case of the
double-PFG acquisitions mentioned above, are likely to be spurious. However, since this
oscillation is around the zero-value, evaluation of integrals over the horizontal axis yields
significant cancelations, which are expected to improve the estimates of the quantities P1(0),
and RTOP.

The linear fitting employed in the last step of the above procedure further prevents the
influence of any unexpected value on the final estimate of the relevant TS parameter.

4. Results
Adequacy of the model

Figure 3 illustrates the linear correlation coefficients for the sample B1, which are found to
be very close to 1 for all parameters; this is an exciting finding that demonstrates the
adequacy of the power-law dependencies hypothesized in the Theory section for all regions
of the rat hippocampus. The biggest deviation for the absolute value of the correlation
coefficient from its ideal value of 1 is observed for the ds estimation; however, this is likely
to be the consequence of the q2 factor in the integrand of Eq. 2, which makes the evaluation
of this integral very challenging when the range of q-values with significant signal is
limited.

Contrast in the TS parameters
The images of the TS parameters are shown in Figure 4A. Some contrast within the rat
hippocampus is clearly evident in these images. To enable comparisons, we show the
apparent diffusion coefficient (ADC) maps for each of the five diffusion times computed
from the low-q part of the attenuation curves in panel B, and the results obtained from the
DTI-acquisition (with Δ = 24.5 ms) for the same specimen are depicted in panel C. There
appear to be three tissue types in the TS maps: (i) Three white-matter structures of fimbria,
alveus, and dorsal hippocampal commissure (labeled on the fractional anisotropy map).
These regions are known to have highly coherent, traditional white matter histology. On DTI
maps (Basser and Pierpaoli, 1996), these areas are characterized by their high anisotropy and
low mean diffusivity values (Shepherd et al., 2006). (ii) The granule cell and pyramidal cell
layers (labeled on the  map). These regions are composed of densely packed neuronal cell
bodies and apical and basal dendrites. The DTI results reveal that these regions have
intermediate anisotropy and high diffusivity. (iii) All other hippocampal regions composed
of a more homogeneous mixture of neurons, glia and neuropil, which have intermediate
diffusivity and anisotropy. In these ‘molecular’ areas of the hippocampus, dw values are
tightly clustered around 2.0 indicating normal diffusion. The d4, d6, and d8 maps yield
qualitatively similar contrast to that provided by the dw index. The contrast in the  and ds
images also seems similar, though inverted, to that in the dw map. Interestingly, the contrast
between the granule and pyramidal cell layers (ii) and remaining gray-matter regions (iii)

disappears in the  and df maps, whereas some contrast with the fimbria region prevails.

The contrasts provided in the TS-parameter maps are different from those provided by the
ADC maps in Figure 4B and the DTI-derived parameter maps in Figure 4C. The ADC map
for the shortest diffusion time appears similar to the dw map. However, even in this map
differences can be observed, most notably, in the stratum lacunosum-moleculare region of
the hippocampus. Note how the ADC maps evolve as the diffusion time is increased in
Figure 4B. A comparison of the pyramidal neurons and SLM regions reveals how differently
these two regions behave as the diffusion time is varied. Specifically, the SLM region
remains hyperintense throughout, but the region with pyramidal neurons start hyperintense
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at short diffusion time and end up hypointense at the long diffusion time suggesting a higher
rate at which ADC is decaying. Our model enables the quantification of this difference by
characterizing the rate of temporal change, which cannot be captured by looking at the
diffusivity values at a particular diffusion time as in individual ADC or MD maps. The
direction encoded color map (Pajevic and Pierpaoli, 1999) reveals that the orientational
preference of diffusion varies significantly throughout different regions of the hippocampus.
Although we have one-dimensional sampling of the q-space, the contrast obtained from the
TS parameters appears to be independent of this orientational dependence of the anatomy.
The relationship between the TS parameters and anisotropy will be discussed in more detail
below.

Reproducibility of the TS parameters
Figure 5 shows maps of the three most important TS-parameters for the B1, B2, and B3
datasets (from top to bottom). It is clear that the contrast in these maps (and others, which
are not shown) is very similar to that obtained for specimen A. The only difference seems to
be in the fimbria region of the  and df, which may be attributed to partial volume effects
and dissection injury. Perhaps more important is the consistency of the generated maps
across the three samples in this figure. This consistency demonstrates the reproducibility of
the TS parameters as well as the robustness of the estimation methods. Therefore, these
results indicate that the method can be used for population studies.

Anisotropy of TS
It should be noted that the estimation of the TS exponent dw requires the computation of the
second order moment of the displacements, which can be obtained from the data at low q-
values (see Eq. 12). In fact, the mean-squared displacement is simply equal to 2DΔ, where D
is the apparent diffusion coefficient. When the environment is anisotropic, the diffusion
coefficient D exhibits orientational dependence, which can be expressed in terms of the
diffusion tensor, D, to be D(v) = vTDv, where v is a unit vector. Therefore, a series of DTI
acquisitions with different diffusion times can be used to characterize both the orientational
and temporal dependence of the diffusion process. We first investigated whether dw
estimates were anisotropic. The top row of Figure 6 illustrates the dw maps for three
different orientations of v along with that obtained from the trace of the diffusion tensor.
The corresponding maps of the correlation coefficients are included in the second row of
panel A. Some sensitivity of the dw estimates on the orientation is evident. Most notably, the
contrast between the region with pyramidal neurons and the surrounding tissue disappears
when the local preference of diffusion (as suggested by the direction encoded color map in
Figure 4C) coincides with v even though there is no anisotropy or orientation contrast
between these regions. The most significant contrast is evident when v points through the
plane, i.e., when it is consistently perpendicular to the orientational preference of diffusion.

Note the poorer performance of the fit in white-matter structures for directions perpendicular
to the orientation of the fibers. This is thought to be due to the limited ability of DTI with
the current acquisition parameters to describe diffusion in such highly restricted
environments. More specifically, the signal attenuation at the employed b-value was
insignificant when the gradient orientation was perpendicular to the fibers. However, the
correlation coefficients across the remaining regions demonstrate the adequacy of the
hypothesized power-law to characterize the TS of diffusion independent of the gradient
orientation.

We repeated the above scheme to estimate an array of 130 dw values corresponding to
different v directions isotropically distributed over the surface of a sphere. To this end, the
mean-squared displacement (MSD) values were obtained along different directions by
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employing the relationship MSD(v) = 2D(v)Δ along with D(v) = vTDv. This scheme
effectively uses the diffusion tensor computed from the DTI acquisitions, which involve
only 27 measurements, to obtain a reasonable interpolation of the diffusivity, hence MSD,
profiles. The leftmost image of Figure 6B shows the variance of the dw estimates from these
130 estimates. Some anisotropy in the dw estimates is visible in this map, particularly in the
white-matter regions of the hippocampus as well as in the pyramidal neurons. The 130-
element array of orientation dependent estimates, dw, was used to compute a dw tensor
defined through the expression dw(v) = vTdwv. This expression was turned into a matrix
equation, and the solution, including the unique components of dw were estimated by
computing the pseudoinverse of the design matrix. The dw tensor was subsequently
diagonalized. From left to right, the remaining three images of Figure 6B show the direction
encoded color (DEC) maps associated with the eigenvectors corresponding to the largest,
middle, and smallest eigenvalues. The most visible pattern is obtained within the region
containing the pyramidal cells in the last image, which corresponds to the direction along
which the dw value is smallest; this observation may suggest that the “special” direction
associated with the diffusion process is given by the eigenvector corresponding to the
smallest eigenvalue similar to the case of diffusion taking place in the proximity of
macroscopic walls (Özarslan et al., 2008b). In fact, the DEC information within the regions
containing pyramidal neurons in the last image of Figure 6B appears to be consistent with
the DTI-derived DEC map obtained from the principal eigenvector of the diffusion tensor.

TS of anisotropy
The next question we ask is the obverse of the one asked above: How does the anisotropy
information vary with diffusion time? To understand this, we use the same data set that
includes a series of four DTI acquisitions with different diffusion times. Unlike above
however, we process the DTI data sets separately for each diffusion time. The results are
shown in Figure 7. In panel A of this figure, we illustrate the DTI-derived maps of mean
diffusivity (MD), fractional anisotropy (FA), and DEC. The FA index is essentially a map of
the variance of the eigenvalues onto the [0, 1] interval, where this map is chosen somewhat
arbitrarily to generate reasonable contrast within the tissue. As shown by Özarslan et al.
(2005), trace(R2), where R is the normalized diffusion tensor obtained by dividing the
diffusion tensor by its trace, can be considered a quantity without a particular scaling. We
plot the temporal dependence of this quantity for several regions of the hippocampus in
panel B where symbols with different colors represent the trace(R2) values for different
regions shown on the hippocampus image with matching colors. Anisotropy values seem to
increase with increasing diffusion times. Somewhat naively, a scaling relationship of
trace(R2) ∝ Δα was fitted to the data on a voxel-by-voxel basis. The resulting map of α
values and the corresponding linear correlation coefficient map is shown in Figure 7. The
region with pyramidal neurons stands out once again with its elevated α values. In fact, this
region appears to be the only region where the TS of diffusion anisotropy, as characterized
by trace(R2) values, consistently obeys the hypothesized power-law scaling relationship. No
significant change was observed in the temporal dependence of the DEC maps.

5. Discussion
Determinants of TS

In this article, we demonstrated how the temporal scaling behavior of certain quantities
associated with the underlying diffusion process can be modeled using power laws. The
superb agreement between the model and the real MRI data obtained from specimens of
excised rat hippocampi suggests the adequacy of such models. However, the determinants of
the observed scaling exponents are yet to be understood. It is tempting to interpret the
observed contrast within the framework of diffusion in disordered media and fractals—the
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main source of inspiration for employing power-laws. In fact, anomalous diffusion has been
observed within tissues in different contexts using methods other than MR (Sanabria et al.,
2007). Subdiffusive behavior within the pyramidal and granule cell layers is attributed to the
complex tissue architecture within those regions. In these layers of the rat hippocampus,
water diffusion may be restricted on at least 2 length scales: (i) the large neuronal cell bodies
(and potentially large nuclei) and (ii) the extremely complicated dendrites and synaptic
boutons on the individual neuron’s soma, proximal dendrites and axon. The theory of
diffusion on comb-like structures states that when diffusion along the backbone of a comb-
like structure is measured, the trapping of particles along channels perpendicular to the
backbone leads to anomalous diffusion in the subdiffusion regime. The complicated and
intricate neuropil contacting neurons in the rat hippocampal cell layers could trap water
molecules in narrow channels resulting in the observed anomalous diffusion.

However, one should be cautious that there may be other factors that may influence the TS-
contrast. For example, there is evidence that susceptibility variations within the medium
may lead to a deviation of the TS behavior of the apparent MSD values from linearity
(Zupanc̆ic̆, 1988), which is expected to be pronounced when the acquisition is performed at
high fields like in this study. We note that more recent experimental results by Palombo et
al. (2011) have suggested the robustness of the parameter 2/dw on susceptibility differences.
Another factor that should be considered is the T1 relaxation and compartmentalization. In
the acquisition of the data sets, we employed a stimulated echo pulse sequence, which made
it possible to have the same echo time for all diffusion times. However, T1 relaxation is not
eliminated between the second and third 90° radiofrequency pulses. In the presence of
multiple compartments with different T1 relaxation rates within each voxel, acquisitions
with different diffusion times weight these compartments differently. Surface relaxation can
play a similar role because the likelihood of an interaction between the confining surfaces
and diffusing molecules is influenced by the diffusion time (Grebenkov, 2010). These
effects could lead to variations in the TS behavior stemming from sources other than the
direct effect of diffusion. As far as diffusion is concerned, some bias in the estimates could
be introduced by the pulse duration, which is ignored in the above analysis. Although this
effect was mitigated to some extent by employing short (2 ms) gradient pulses, the pulse
duration is expected to be important when similar studies are performed on clinical scanners.
Despite all these complications, it is interesting to note that the power-law behavior is
prevalent throughout the hippocampus, and that the estimated values appear to be
approximately uniform in most regions of the sample. Moreover, in a previous study
(Özarslan et al., 2006b), we observed similar power-law dependencies in very different
specimens of erythrocyte ghosts and glioblastoma multiforme tumor suggesting the
applicability of the model to very different environments. Thus, although the exact source of
the changes in the TS parameters requires further investigation, the method can be employed
to characterize the resulting apparent TS characteristics.

High order moments and the collapse of the propagator
As described in the Theory section, we extended the method introduced in (Özarslan et al.,
2006b) by fitting power-laws to higher order moments of the diffusion propagator. The
hypothesized dependence seems to prevail for these higher order moments. Moreover, a
comparison of the maps generated from the temporal dependence of these moments
indicates that it is not possible to characterize the temporal scaling of all moments via a
single exponent dw, which is implied by the functional form of the propagator given in Eq.
8. Instead, Eq. 11 seems to be observed with different (usually increasing) dm values
suggesting a multifractal nature of the structure (Stanley and Meakin, 1988). This finding
suggests that the scaling behavior of the propagator may be more complicated than that in
Eq. 8.
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Another test for the form of the propagator in Eq. 8 involves computing the Fourier
transform of the q-space signals for each diffusion time point. This transformation is
computed readily from the 1D-SHORE coefficients thanks to the remarkable property of the
basis functions that each of these functions is essentially the Fourier transform of itself (see
Eqs. 18–19). The resulting propagators for the voxel used in Figures 2 and 3 are shown in
Figure 8A. As expected, the propagators are broadened as the diffusion time is increased.
The form of the propagator in Eq. 8 implies that all points on these curves would fall onto a

single curve if the quantity  is plotted against the quantity zΔ−1/dw; the shape
of this curve is given simply by the shape of the Ψ function. The results are shown in Figure
8B. There is an excellent agreement for the smaller values of the abscissa. The deviations on
the right hand side of this plot are likely due to the temporal scaling behavior of moments of
order higher than 2, which are not accommodated by Eq. 8.

Effect of breaking the noise floor
This study demonstrated the use of a technique developed to reduce the undesired effects of
employing magnitude valued signals (Koay et al., 2009a). Note that the purpose of this
technique is not to reduce the noise itself. Rather, it was designed to transform the Rician
distributed signal into a Gaussian distributed signal so that any bias introduced by taking the
magnitude of the complex-valued data is removed. An examination of the results with and
without this technique revealed that the power law dependencies prevail in both cases.
However, the correction obtained by breaking the noise floor seems to influence the
estimates for all TS parameters. The most significant change is observed for the ds and 
indices as data at low signal (i.e., large q) values are most important for these parameters
though some changes are observed in the estimates of the TS of the moments as well. The
bias removal algorithm appears to be pushing the estimates toward their “normal” values in
most voxels thus reducing the occurrences of TS parameters in the superdiffusive regime.

Two-dimensional diffusion encoding
The methods employed in this study involve five-dimensional acquisitions. In addition to the
three spatial dimensions of each physical image, two more dimensions are sampled by
varying the wavenumber (q) and the diffusion time (Δ) independently, thus yielding a two-
dimensional data set for each voxel. Such acquisitions are necessary to compute all of the
parameters we discussed above. In the current study, we attempted to collect the data sets
that represent a nearly ideal case with wide ranges of Δ and q values. However, the prospect
for significantly shortening the acquisitions is apparent. As can be noted from Figures 1 and
2, a substantial portion of the data sets are well within the noise region and could be
excluded. Also note that fewer q and Δ values could be sampled. In any case, reasonably

large q-values are necessary for the estimation of , ds, , and df as they rely on integrals
taken over the entire q-axis. On the contrary, however, the estimation of dw requires data at
low q-values only. Clearly, this condition can be realized in most MRI scanners, including
clinical ones. In fact, 4 DTI acquisitions with different diffusion times were sufficient to
quantify not only dw but also its anisotropy. If the contrast in the dw maps is indeed not that
different from the contrast in other TS images, as suggested by the findings in excised rat
hippocampi, acquisitions at low q-values will be sufficient to extract all of the desired TS
information, thus making the technique practical for clinical applications.

Further, it should be noted that the characterization of TS can be cast as a two-dimensional
reconstruction problem as can be best appreciated from Figure 8. Since the propagators
corresponding to each diffusion time and their temporal evolution are relatively featureless,
significant “compression” of the two-dimensional diffusion sampling is expected to be
feasible. Therefore, recently developed sparse reconstruction methods such as compressed
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sensing (Donoho, 2006; Candés et al., 2006) could be used to efficiently reconstruct all
propagators from very few acquisitions.

Comparison with other recent approaches to anomalous diffusion
The observation of anomalous diffusion in biological and medical applications of MR has
attracted a great deal of interest in recent years (Özarslan et al., 2006b; Magin et al., 2008;
Hall and Barrick, 2008; Zhou et al., 2010; Santis et al., 2011; Gao et al., 2011). The present
study is based on the work introduced in (Özarslan et al., 2006b), and applies it to imaging
data with a few extensions such as the temporal dependence of higher order moments and
the relationship between diffusion anisotropy and TS. (Özarslan et al., 2006b) differs from
some of the other articles (Hall and Barrick, 2008; Santis et al., 2011) mentioned above in a
fundamental way sometimes overlooked in some articles. Specifically, these studies assume
the q-dependence of the MR signal attenuation to be characterized by a stretched
exponential function (Kohlrausch, 1847), i.e., E(q) = exp(−(bD)μ/2) with μ < 2—the same
assumption employed by Köpf et al. (1996) and Bennett et al. (2003). Since b ∝ q2, the
exponent is proportional to qμ. However, it is known that such a dependence emerges in the
characteristic function of a Lévy alpha-stable distribution, which is a heavy-tailed
distribution, i.e., its variance diverges for μ ≠ 2 (Metzler and Klafter, 2000). Although such
a process can be regarded as “anomalous,” the divergence of the second moment prohibits
the characterization of its temporal dependence, which we deem as the central criterion for
anomalous diffusion (see Eq. 1). In sharp contrast, our method allows for all moments to be
finite (see Eq. 7). In this sense, our technique is consistent with conventional methods like
the cumulant expansion (Liu et al., 2003) or biexponential function fitting (Mulkern et al.,
1999) though the temporal dependence implied by our model is different. From a practical
point of view, the approach based on stretched exponentials can be used with one-
dimensional diffusion encoding (e.g., by varying the q-values only). In fact, the stretched
exponential method mentioned above intrinsically assumes that the dependence of the signal
on q2 is identical to that for Δ since b ∝ q2Δ. However, in our spectroscopic (Özarslan et al.,
2006b) as well as image acquisitions, we consistently observed that such identical
dependence does not exist for real tissue. In a sense, this difference in dependencies is what
we exploit to create new forms of MRI contrast. Consequently, our approach demands
acquisitions with different Δ as well as q values.

We would like to note that the study by Magin et al. (2008), wherein the authors employ
fractional differential operators to relate anomalous diffusion to the MR signal intensity,
does not assume the dependence of the signal on q2 and Δ to be the same. Instead, the
Bloch-Torrey equation (Torrey, 1956) is generalized by fractionalizing either the spatial or
the temporal derivative. The latter approach, which was also taken by Damion and Packer
(1997), yields solutions that are consistent with Eq. 1 and to some extent with our technique.
However, in real applications of the method, the authors choose to fractionalize the spatial
derivatives and fit the solutions to data acquired by varying the q-values only (Zhou et al.,
2010; Gao et al., 2011). Since the related solutions are stretched exponential functions of q,
they correspond to processes with infinite variance.

6. Conclusion
In conclusion, we exploited the diffusion-time dependence of several q-space MR derived
parameters to generate new forms of contrast in neural tissue. Our approach employed the
technique introduced by Özarslan et al. (2006b) with several significant extensions. This
technique hypothesizes that parameters obey scaling relations characterized by power-laws
as is the case of fractals and disordered media, which were shown to be obeyed in all regions
of the excised rat hippocampus. It is necessary to encode diffusion by sampling different
diffusion times in addition to different q-values. The correction of noise-induced bias was a
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challenging task and important for handling such data sets. This difficulty was overcome by
integrating three recently introduced techniques Özarslan et al. (2008a); Koay et al.
(2009b,a) into a multi-step procedure. The generated contrast appears to be novel, i.e.,
different from the contrast obtained in other traditional quantities such as ADC images, and
other DTI-derived maps. Hence, we argue that such contrast may provide unique
information about the microstructure of the neural tissue, which could be sensitive to
alterations due to numerous pathologies, development, and aging. TS contrast was observed
to be reproducible in different specimens and under different conditions, which suggests the
possibility of employing the method in population studies. Several DTI acquisitions at
different diffusion times revealed some anisotropy of the TS parameters in white-matter and
in the region comprising the pyramidal neurons. Diffusion in these regions was found to be
in the subdiffusion regime while the anisotropy in the latter region appeared to obey a
power-law. In summary, the findings of this study indicate that characterizing the temporal
scaling of the diffusion-related parameters via power laws could produce, novel and
reproducible contrast that could complement existing MRI markers in assessing the structure
of neural tissue, thus increasing the sensitivity and specificity of the available methods. It is
too soon to propose these fractal parameters as possible quantitative imaging biomarkers for
subtle changes in disease, degeneration, aging, etc., in neural tissue, but it would be
worthwhile to begin performing systematic studies in different populations of subjects to test
their robustness and sensitivity. Moreover, an examination of the existing findings, eg., in
muscle tissue (Kim et al., 2005), suggests that it would be worthwhile to begin testing these
parameters in complex tissues other than neural tissue to understand their TS properties.
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Appendix A: Signal transformational framework with regularized 1D-
SHORE for breaking the noise floor

In this appendix, we outline the necessary steps needed to construct a signal
transformational framework (Koay et al., 2009a) of a regularized smoothing spline based
upon 1D-SHORE technique (Özarslan et al., 2008a; Özarslan et al., 2011).

Review of 1D-SHORE
In the 1D-SHORE technique, the diffusion-weighted MRI signal, S(q), can be expressed in
the 1D-SHORE basis as

(15)

The basis functions are given by

(16)

where the characteristic length, denoted by u, is a parameter that determines the spread of
the basis functions, which can be estimated from the data, and Hn is the Hermite polynomial
of order n. Note that for the application in this paper, magnitude valued data are used.
Therefore, the purely imaginary odd-ordered terms can be excluded. In this case, the i−n

factor is simplified to (−1)n/2. Henceforth, we shall consider only the cases with even n.

The basis functions φn(q, u) are related to the well-known solution to the simple harmonic
oscillator problem in quantum mechanics and they satisfy the equation

(17)

This eigenvalue equation has the remarkable property that its Fourier transform is of the
same form up to some overall factor. Therefore, the propagator can be reconstructed directly
from the an coefficients in the same basis, i.e.,

(18)

where

(19)

In this article, we exploit the ability of the 1D-SHORE basis to represent diffusion-weighted
signal profiles to estimate the scaling laws accurately. It should be noted that the fitting
described above is performed merely as a computational tool to obtain analytical and
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continuous representations of the S(q) decay curves and the associated propagators. Since
the fitting is performed independently for each diffusion time, no assumption is employed
for the TS behavior at this stage, and no biophysical meaning is ascribed to the estimated an
coefficients. The cumulant expansion method (Liu et al., 2003) is an alternative that also
represents the propagator in terms of Hermite polynomials. However, this scheme employs a
Taylor series expansion of the characteristic function (the signal) in terms of the cumulants,
resulting in a limited radius of convergence. Reconstructing the propagator from its
cumulants is known to be quite problematic (Blinnikov and Moessner, 1998); this fact was
recently discussed within the context of diffusion MR (Ghosh et al., 2010).

In the remainder of this Appendix, we incorporate the 1D-SHORE technique into our
recently developed framework (Koay et al., 2009a) to correct the noise-induced bias in
magnitude valued data.

Regularization
In the presence of noise, it is well known that the higher the number of basis functions used
in a simple non-regularized least squares fit, the higher the likelihood that the fit will capture
spurious oscillatory trends in the data. To avoid overfitting the data, the estimation needs to
be regularized. A general strategy for solving regularized least squares problems has been
well described elsewhere, e.g., see (Wahba, 1990; Ruppert et al., 2003).

The regularized 1D-SHORE estimation problem can be solved by finding a model of S(q),

denoted by , such that F(q, u) minimizes the following objective
function:

(20)

where F(m) refers to the mth order derivative of F with respect to q, yi = S(qi) is the ith
measurement at the q-value of qi, and λ is the penalty parameter (or the smoothing
parameter). In practice, one usually takes m to be 2 so that smoothness is favored over rapid
oscillations (or larger curvature). Equation 20 can be expressed concisely in matrix form as
follows:

(21)

where the superscript T denotes matrix or vector transposition, y is the vector of signal
values yi, X is the design matrix with components Xij = φj(qi, u), and a is the vector of the
1D-SHORE coefficients, an. Finally, the (j, k)-component of the matrix R is given by

(22)

For the specific case when m = 2, it can be shown that

(23)
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Note that if any of the argument of the factorials in the denominator is negative, the
corresponding term will vanish. Consequently, R is a quintdiagonal symmetric matrix. The
second order derivative of the basis functions can be obtained readily from Eq. 17. The
derivation of Eq. 23 further entails evaluating integrals involving the product of three
Hermite polynomials and an exponential function, which can be found in Equation 7.375.2
of (Gradshteyn and Ryzhik, 2000).

The smoothed observation vector, ŷλ, is given by

(24)

where Sλ = X(XTX + λR)−1XT is known as a smoother matrix. Similar to our earlier work in
(Koay et al., 2009a), we will use a generalized cross validation (GCV) function to select the
optimal λ. The GCV function is defined by:

(25)

where RSS(λ) = ||y − ŷλ||2. For a computationally efficient method for finding the optimal λ
based on the GCV function, please refer to Appendix C of (Koay et al., 2009a).

Throughout this Appendix, the parameter u has been assumed to have a certain value.
However, u can also be thought of as a parameter to be optimized during the regularization.
To find the optimal u value, we first compute an initial estimate, u0, based upon the decay

rate of the E(q) profile near q = 0. Specifically, the expression  is fitted to the
first few data points with lowest q-values. This u0 estimate is used to define our search
interval, which is given by [0.7u0, 1.2u0]. Finally, within this interval, the u value that
minimizes the GCV is deemed optimum.

Signal transformational framework with regularized 1D-SHORE for breaking
the noise floor

The basic aim of our recent signal transformational framework for breaking the noise floor
(Koay et al., 2009a) is simply to transform noisy signals that follow certain Gaussian-
derived distributions (e.g., Rician distribution, non-Central Chi distribution, etc.) to ensure
that the transformed signals are Gaussian distributed. This framework consists of three
essential steps. First, data are smoothed with any spline model to obtain the average values
of the noisy magnitude signals. Second, the “average value” of a noisy magnitude signal is
mapped to the “average value” of the corresponding underlying signal intensity using a fixed
point formula of the underlying signal intensity or the signal-to-noise ratio (Koay et al.,
2009a; Koay and Basser, 2006). Here, we treat the estimations of the underlying signal
intensity and of the Gaussian noise standard deviation (SD) separately. Note that we use our
Probabilistic Identification and Estimation of Noise (PIESNO) technique (Koay et al.,
2009b) to estimate the Gaussian noise standard deviation. Third, the corresponding noisy
Gaussian signal of each of the noisy magnitude signals is found through a composition of
the inverse cumulative probability density function of a Gaussian random variable and the
cumulative probability density function of a non-Central Chi or other specific Gaussian-
derived random variable. Please refer to (Koay et al., 2009a) for more in-depth discussion of
this framework.

In summary, the essence of the proposed work is to use the regularized 1D-SHORE
technique in the first stage of the signal transformation framework and use it again to fit the
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transformed noisy signals. The end result is a sequence of 1D-SHORE coefficients
corresponding to the signal profile after the removal of bias due to noise. These coefficients
are subsequently used to estimate the biophysical parameters of interest.

Appendix B: Estimation of the moments and zero-displacement probability
Once the 1D-SHORE coefficients are computed using the scheme outlined in Appendix A,
these coefficients can be used to estimate many different features of the diffusion process
conveniently and accurately. To this end, analytical relationships between the 1D-SHORE
basis functions and the desired quantities are necessary. In this work, the TS behavior of
even-order moments of the diffusion propagator are characterized. These moments are given
in terms of the 1D-SHORE coefficients as

(26)

The probability of zero-displacements along the gradient direction (z) is used to compute the
scaling exponent . This return to the xy-plane probability can be computed using the
relationship

(27)

Finally, as demonstrated by Özarslan et al. (2009), for an isotropic medium, having data
along a single radial line in q-space is sufficient to reconstruct the entire three-dimensional
propagator. Therefore, a true return to origin probability (RTOP) can be computed from one-
dimensional data. It is straightforward to show that the RTOP can be computed directly from
the 1D-SHORE coefficients through the expression

(28)
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HIGHLIGHTS

1. Diffusion-time dependence of the diffusion MR signal leads to a novel contrast
in neural tissue.

2. Anomalous diffusion was observed via q-space MR experiments on excised rat
hippocampi.

3. We model the temporal scaling (TS) of the signal using fractal and disordered
media concepts.

4. We devised a computational framework to remove any bias due to Rician nature
of the signal.

5. The interplay between TS and diffusion anisotropy was investigated.
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Figure 1.
Diffusion weighted MR images of an excised rat hippocampus (sample A) with varying q-
values and diffusion times. All five diffusion time points were included, whereas every third
q-value, starting from the second, is included.
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Figure 2.
Results of the scheme used to remove the noise-induced bias on the estimates is illustrated
for a randomly selected voxel, which is shown by the yellow dot on the hippocampus image
belonging to sample B1. The large plot shows the original magnitude-valued data points
(black filled circles), its 1D-SHORE representation (black curve), the bias-corrected signal
(red solid diamonds), and its 1D-SHORE representation (red curve) for the shortest diffusion
time. Also provided are the magnitude-valued data points and the 1D-SHORE representation
of the bias-corrected signal for other diffusion times. Note that the latter can assume
negative values, which cannot be shown using logarithmic plots. Therefore, the absolute
value of the negative sections of the resulting curves is plotted via red dotted curves.
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Figure 3.
Plots illustrate the fits employed to estimate various TS exponents for the same voxel used
in Figure 2. The temporal dependence of the second, fourth, and sixth order moments yields
the parameters dw, d4, and d6, respectively. The parameter  is obtained from the scaling
behavior of the return to the xy-plane probability. Similarly, ds is computed from the time-
dependence of the return-to-origin probability (RTOP), which is estimated under the
assumption that diffusion is isotropic. The images overlaid on the gray background are the
absolute value of the linear correlation coefficients for the B1 specimen indicating the
robustness of the hypothesized power-law dependence throughout the rat hippocampus.
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Figure 4.
A. Images of the exponents characterizing the temporal scaling of the diffusion process. B.
The apparent diffusion coefficient (ADC) maps for all five diffusion times computed from
the low-q regime of the data sets. C. Traditional DTI-derived mean diffusivity (MD),
fractional anisotropy (FA), and direction encoded color (DEC) maps computed for the same
slice. White-matter structures of dorsal hippocampal commissure (DHC), alveus, and
fimbria are identifiable on the FA map, whereas the regions of granule cell layer and
pyramidal neurons are shown on the  map. Finally, the label, SLM, on the ADC map
stands for stratum lacunosum-moleculare.
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Figure 5.
Maps of the walk dimension (dw, left column), projected spectral dimension ( , middle

column), and projected fractal dimension ( , right column) for three different excised rat
hippocampi scanned at 37°C. Different rows correspond to different specimens (B1 through
B3). The similarity of the images for different samples suggests the reproducibility of the
temporal scaling parameters under identical experimental conditions.
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Figure 6.
A. The first three images of the top row show the dw-valued maps computed from the
scaling of mean-squared displacement (MSD) values along the right-left, up-down, and
through the slice directions, respectively. The last image is computed similarly from the
average mean-squared displacement value as suggested by the trace of the diffusion tensor.
The second row illustrates the corresponding linear correlation coefficient maps. B. The first
image shows the variance of the dw values computed from the MSD values along 130
directions as a measure of anisotropy in the dw estimates. The following three images are the
DEC maps illustrating the orientation of the three eigenvectors computed from a tensor fit to
these 130 dw values.
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Figure 7.
A. DTI-derived mean diffusivity (MD), trace(R2), fractional anisotropy (FA), and direction
encoded color (DEC) maps for different diffusion times. Note that trace(R2), where R is the
diffusion tensor divided by its trace, is a measure of anisotropy like the commonly used
relative anisotropy (RA) and FA parameters but without any particular dimensional scaling
Özarslan et al. (2005). B. The variation of trace(R2) with diffusion time in different regions-
of-interest specified on the rat hippocampus. C. Under the assumption that trace(R2) obeys
the power-law, trace(R2) ∝ tα, a voxel-by-voxel fit reveals the α map on the left. The
goodness-of-fit as illustrated by a map of the absolute value of the linear correlation
coefficients (|r|) on the right suggests that the power-law assumption is valid only in a
limited region of the rat hippocampus.
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Figure 8.
A. The data from the voxel used in Figure 2 is Fourier transformed into the displacement
domain using the 1D-SHORE framework. The curves indicate the resulting one-dimensional
propagators. B. The data points sampled in panel A are re-plotted making use of some
derived scaling relationships. The functional form of the propagator hypothesized in Eq. 8
would require all data points corresponding to different diffusion times to lie on a single
curve.
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