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Abstract
Cortical network architecture has predominantly been investigated visually using graph theory
representations. In the context of human connectomics, such representations are not however
always satisfactory because canonical methods for vertex–edge relationship representation do not
always offer optimal insight regarding functional and structural neural connectivity. This article
introduces an innovative framework for the depiction of human connectomics by employing a
circular visualization method which is highly suitable to the exploration of central nervous system
architecture. This type of representation, which we name a ‘connectogram’, has the capability of
classifying neuroconnectivity relationships intuitively and elegantly. A multimodal protocol for
MRI/DTI neuroimaging data acquisition is here combined with automatic image segmentation to
(1) extract cortical and non-cortical anatomical structures, (2) calculate associated volumetrics and
morphometrics, and (3) determine patient-specific connectivity profiles to generate subject-level
and population-level connectograms. The scalability of our approach is demonstrated for a
population of 50 adults. Two essential advantages of the connectogram are (1) the enormous
potential for mapping and analyzing the human connectome, and (2) the unconstrained ability to
expand and extend this analysis framework to the investigation of clinical populations and animal
models.
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Introduction
The ability to collect enormous amounts of structural and functional connectivity data from
human populations has grown so impressively that it has by far surpassed the rate at which
methods for the analysis, visualization and interpretation of such data are made available.
Due to the high dimensionality and high information complexity of data acquired using
magnetic resonance imaging (MRI), functional MRI (fMRI) and diffusion tensor imaging
(DTI), novel perspectives upon their optimal utilization often require the innovation of
ingenuous ways to capture, condense and systematize complex architectural and functional
relationships between cortical units. In the past, cortical network architecture as inferred
from neuroimaging has preponderantly been visualized using the obvious symbols of graph
theory. Although precise and minimalistic, such representations are not always adequate,
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however, in the context of the emerging field of connectomics because typical approaches to
vertex segregation and edge ordering do not always lead to visual representations that are
optimally revealing of essential functional and structural relationships in the brain. Thus,
although such representations have been variously adapted to the exploration of cortical
structure, function or information-theoretic content, cortical networks remain difficult to
understand due to the overwhelming number of complex relationships whose overarching
implications can easily be lost during their visual exploration. Consequently, interpretation
and analysis of connectivity have traditionally required a disappointing amount of
simplification and dimensionality reduction, frequently to the detriment of conveying
essential aspects of neural architecture. For these very reasons, historically, the introduction
of inventive and illuminating methods for complex data visualization has greatly improved
the effectiveness of scientific analysis and dissemination, as in Darwin's introduction of
directed graphs to depict phylogenetic information (Darwin, 1859) or Sneath's use of heat
maps to understand array and expression data (Sneath, 1957).

The term ‘connectome’ was suggested independently and simultaneously in 2005 bySporns
et al. (2005) and by Hagman (2005) to refer to a comprehensive map of neural connections
in the brain. The generation and study of connectomes are known as ‘connectomics’. In this
paper, a novel methodology for the conceptual mapping and visualization of human
connectomics is introduced through the use of an intuitive circular representation which is
tailored in a germane fashion to the depiction of brain architecture. It is demonstrated how
this simple and elegant conceptual framework is equipped with the ability to organize,
inspect and classify brain connections in a visually-insightful and content-rich manner, and
with the clear advantage of a high data-to-ink ratio. We name this representation a
‘connectogram’. Using joint MRI/DTI data acquisition and automatic image segmentation, a
protocol is illustrated for the extraction of 148 cortical and 17 non-cortical anatomical
parcellations using standard nomenclature, followed by the calculation of structural anatomy
metrics (volume, area, cortical thickness, curvature) for cortical regions. For some given
human subject, these structural data are subsequently combined with the connectivity profile
extracted from DTI to generate the connectogram of that subject. To demonstrate the
scalability potential of this approach, the generation of a statistically-informed, population-
level connectogram is illustrated for a population of 50 adult male subjects. Intrinsic merits
of the present approach include significant potential for connectome mapping and analysis
across the human species, as well as an essentially unlimited capability of extending this
approach to the study, representation, and comparison of diseased populations.

Materials and methods
Subjects

50 healthy adult males with ages between 25 and 35 were included in the study. All subjects
were screened to exclude cases of pathology known to affect brain structure, a history of
significant head injury, a neurological or psychiatric illness, substance abuse or dependence,
or a psychiatric disorder in any first-degree relative.

Neuroimaging, segmentation and parcellation
T1-weighted neuroimaging data were selected from the LONI Integrated Data Archive
(IDA; http://ida.loni.ucla.edu). Segmentation and regional parcellation were performed
using FreeSurfer (Dale et al., 1999; Fischl et al., 1999; Fischl et al., 2002) following the
nomenclature described inDestrieux et al. (2010). For each hemisphere, a total of 74 cortical
structures were identified in addition to 7 subcortical structures and to the cerebellum.
Segmentation results from a sample subject are shown in Fig. 1(A). One midline structure
(the brain stem) was also included, for a total of 165 parcellations for the entire brain. The
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cortex was divided into 7 lobes, with the number of parcellations in each being equal to 21
(frontal, Fro), 8 (insula, Ins), 8 (limbic, Lim), 11 (temporal, Tem), 11 (parietal, Par), and 15
(occipital, Occ). Five representative statistics were computed for each parcellation: gray
matter (GM) volume, surface area, mean cortical thickness, mean curvature, and white
matter (WM) fiber count per unit GM volume (‘degree of connectivity’). Diffusion tensors
were computed from DWI images and rotationally re-oriented at each voxel. Tensor-valued
imageswere linearly realigned based on trilinear interpolation of log-transformed tensors as
described inChiang et al. (2011) and resampled to isotropic voxel resolution (1.7×1.7×1.7
mm3). Diffusion gradient data were processed in native space using TrackVis (trackvis.org)
to reconstruct fiber tracts. Data processing workflows were created using the LONI Pipeline
(pipeline.loni.ucla.edu). The results of DTI tractography analysis for a sample subject are
shown in Fig. 1(B).

Color coding and abbreviation schemes
Each cortical lobe was assigned a unique color scheme: black to red to yellow (Fro),
charlotte to turquoise to forest green (Ins), primrose to lavender rose (Lim), pink to lavender
to rosebud cherry (Tem), lime to forest green (Par), and lilac to indigo (Occ). Every
structure was assigned its unique RGB color based on esthetic considerations; subcortical
structures were colored light gray to black. Color scheme choice and assignment to each
lobe were made by taking into account the arrangement and adjacency of lobes on the
cortical surface, with the goal of avoiding any two adjacent lobes from having overlapping
or similar color schemes. The individual colors of the scheme associated with any particular
lobe were assigned to every parcellation within that lobe in such a way as to create an
esthetic effect when displayed on cortical surfaces or connectograms. To label each
parcellation with a certain name, an abbreviation scheme was created which was both
unambiguous and short enough to be displayable outside the connectogram's outermost ring.
Table 1 summarizes each parcellation's abbreviation, full description and FreeSurfer code as
defined in the original parcellation scheme (Destrieux et al., 2010), as well as the associated
RGB code. Table 2 contains the legend to the abbreviations and specifies their unambiguous
mapping to corresponding keywords. An illustration of the color coding used for each
parcellation as described above is shown in Fig. 1(C). In addition, it should be mentioned
that the color labeling convention described above is only one of the numerous coloring
schemes which could be employed. However, one advantage that our convention offers is
that it minimizes the likelihood that the color maps for two distinct, adjacent lobes are
similar, which thus ensures straightforward association of distinct lobes with distinct
coloring schemes. Another advantage of our convention is its potential for standardization,
such that the color schemes used in the present study can be used again either by ourselves
or by other researchers in future studies without the possibility of confusion.

Connectivity calculation
To compute connectivity between regions for each subject, fiber tractography was
performed using the FACT tracking algorithm (Mori et al., 1999) in TrackVis software
(http://trackvis.org). Based on the raw FA at each voxel, TrackVis was used to reconstruct
each fiber; as the algorithm processed a tract passing along a set of voxels, a drop in FA
below the automatic threshold signaled the algorithm to stop and move on to the next tract.
The location of each fiber tract extremity was identified via automatic thresholding in
TrackVis from within the set of voxels associated with each parcellated region, while the
GM volume associated with each parcellation was calculated in FreeSurfer. For those fibers
which both originated and ended within any two distinct parcellations of the 165 available,
each fiber extremity was associated with the appropriate parcellation. For each tract, the
corresponding entry in the connectivity matrix of the subject's brain was appropriately
updated to reflect an increment in fiber count (Hagmann et al., 2008; Hagmann et al., 2010).
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Fibers that both originated and ended within the same parcellation were discarded. Each
subject's connectivity matrix was normalized by the total number of fibers within that
subject; for population-level analysis, all connectivity matrices were pooled across subjects
and averaged to compute probabilistic connection probabilities. A sample connectivity
matrix thus obtained is shown in Fig. 1(D).

Connectogram design
Structure and connectivity information were graphically rendered in a circular diagram
format using freely available Circos software, which has been described in detail elsewhere
(Krzywinski et al., 2009; www.cpan.org/ports). In brief, Circos is a cross-platform Perl
application which employs a circular layout to facilitate the display of relationships between
pairs of positions by the use of various graphical elements, including links and heat maps.
Although traditionally used to visualize genome data, Circos can be effectively applied to
the exploration of data sets involving complex relationships between large numbers of
factors. In the present case, cortical parcellations were represented as a circular array of 165
radially aligned elements representing the left (quadrants II–III) and right (quadrants I, IV)
cerebral hemispheres, each positioned symmetrically with respect to the vertical axis. We
name this representation a ‘connectogram’. The brain stem was positioned at the inferior
extremity of the Circos ring because of it being the onlymidline structure. In this fashion,
Circos' ability to display chromosomeswasmodified for lobar depiction, while its
functionality for illustrating cytogenetic bands was used instead to represent cortical
parcellations. As previously described, each parcellation was assigned a unique RGB color.
A complete list of parcellations, their abbreviations and associated RGB codes are provided
in Table 1. Parcellationswere arrangedwithin each lobe in the order of their location along
the antero-posterior axis of the cortical surface associated with the published FreeSurfer
normal population atlas (Destrieux et al., 2010). To determine this ordering, the center of
mass was computed for the GM surface portion associated with each parcellation, and the
order of all parcellations was determined based on the locations of these centers of mass as
their distance from the frontal pole increased along the antero-posterior coordinate axis.
Thus, parcellated regions are displayed on each of the left and right semicircles of the
connectogram in antero-posterior order, which makes the arrangement straightforward to
interpret.

Connectivity representation
For subject-level connectograms, links were generated between any two parcellations
whenever a WM tract existed between them. In population-level analyses, the former was
done whenever there was a non-vanishing probability for a WM tract to exist between the
two regions. Links were color-coded by the average fractional anisotropy (FA) value
associated with the fibers between the two regions connected by the link, as follows. The
lowest and highest FA values over all links (FAmin and FAmax, respectively) were first
computed. For any given connection i where i=1, …, N (N being the total number of
connections), the FA value FAi associated with that connection was normalized as FA′i
=(FAi−FAmin)/(FAmax−FAmin), where the prime indicates the FAi value after normalization.
After this normalization, FA′i values were distributed in the interval [0, 1], where 0
corresponds to FAmin and 1 corresponds to FAmax. The interval [0, 1] was then divided into
three subintervals (bins) of equal size, namely [0, 1/3], [1/3, 2/3], and [2/3, 1]. For every i =
1, …, N, link i was color-coded in either blue, green or red, depending on whether its
associated FA′i value belonged to the first, second, or third bin above, respectively. In
addition to encoding FA in the link's color as described, fiber count was also encoded as link
transparency. Thus, within each of the three FA bins described, the link associated with the
highest fiber count within that bin was rendered as perfectly opaque, whereas the link with
the lowest fiber count was colored as transparent as possible without rendering it invisible.
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For example, the link with FA′i = 1/3 was colored opaque blue, whereas the link with the
lowest FA′i value was colored as faintest (most transparent) blue. Similarly, the link with
FA′i = 2/3 was colored opaque green, and the link with the lowest value of FA′i greater than
1/3 was colored faintest green. The links associated with the lowest fiber counts were drawn
first, and links with progressively larger fiber counts were drawn on top of the former. The
process was successively repeated by drawing links with higher fiber counts on top of links
with lower fiber counts. Thus, links associated with the largest fiber counts were drawn on
top of all other links. A sample connectogram created using the methods above is shown in
Fig. 1(E). To represent directionality information, links can be displayed such that they
gradually change color from one extremity to the other in order to distinguish incoming
from outgoing information. For example, a link transmitting information from region A to
region B can be colored such that its extremity at A is red (outgoing information) and its
extremity at B is blue (incoming information). The link would thus gradually change color
along its length from A to B, indicating directionality from the former to the latter. In
addition, the user can additionally select only one or several parcellated regions for which
links are displayed.

Representation of cortical metrics
Within the circular structure representing the cortical parcellations, five circular heat
mapswere generated, each encoding one of five structural measures associated with the
corresponding parcellation. Proceeding inward towards the center of the circle, these
measures were: total GM volume, total area of the surface associated with the GM–WM
interface (at the base of the cortical ribbon), mean cortical thickness, mean curvature and
connectivity per unit volume. For each parcellation, the latter measure was computed as the
number of fibers with endings within that parcellation divided by the total GM volume of
the parcellation. For the subject-level analysis, these measures were computed over the
entire volumetric (or areal, as appropriate) extent of each parcellation; for the population-
level analysis, they were additionally averaged over all subjects. Values for each structural
measure were encoded as colors, using a color scheme mapping that ranged from the
minimum to the maximum of the data set. For example, the cortical thickness t with values
ranging from tmin to tmax was normalized as t1 = (t−tmin)/(tmax−tmin). The latter value was
mapped onto a unique color from the color map of choice. Thus, for example, hues at color
map extremities correspond to tmin and tmax, as required. For subcortical structures, brain
stem and cerebellum, three measures (area, thickness and curvature) were unavailable on a
parcellation-by-parcellation basis; their corresponding heat map entries were consequently
left blank. A detailed legend that outlines the representation of cortical metrics, as outlined
above, is shown in Fig. 1(F).

Network analysis
Because network theory can provide essential insight into the structural properties of cortical
connectivity networks in both health and disease (Sporns, 2011), several network metrics of
particular significance were computed for each subject, starting with the degree of each
node. In our case, nodes were denoted by parcellated regions and edges were represented by
fiber tracts. The node degree is the number of edges connected to a node and its calculation
has fundamental impact upon many network measures; moreover, node degree distributions
are highly informative of network architecture. The entry indexed by i and j in the distance
matrix of the graph contains the minimum length of the path connecting vertices i and j and
was computed using the algebraic shortest paths algorithm (Rubinov and Sporns, 2010). The
node assortativity (Newman, 2002), i.e. the correlation coefficient for the degrees of
neighboring nodes, was also computed in addition to the graph diameter, which is the largest
entry in the distance matrix. The eccentricity of a node is the greatest geodesic distance
between it and any other vertex, and can be thought of as how far a node is from the node
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most distant from it in the network. A measure related to eccentricity is the graph radius,
which is the minimum eccentricity of any vertex. To investigate local network segregation,
the clustering coefficient (Fagiolo, 2007), transitivity, the community structure and the
modularity (Newman and Leicht, 2007) of the network were computed. Investigating
network segregation is important because it can reveal how much information brain regions
exchange as well as the extent to which such regions remain structurally segregated from
each other. The clustering coefficient is an elementary measure of local segregation and
measures the density of connections between a node's neighbors. The transitivity is a
collectively normalized variant of the clustering coefficient which circumvents the problem
of disproportionate influence by low-degree nodes upon the clustering coefficient value. The
community structure (Blondel et al., 2008) yields a subdivision of the network into non-
overlapping groups of nodes in a manner that maximizes the number of within-group edges,
and minimizes the number of between-group edges. Finally, modularity conveys the balance
of density of within-and between-module connections, and represents another useful
measure of network segregation. To study network integration, the characteristic path length
of the network was computed, which is the average of the entries in the distance matrix. A
related and allegedly more robust measure of integration is the global efficiency of the
network (Latora and Marchiori, 2001), which is the average of the inverse of the distance
matrix. The local efficiency is the global efficiency computed on the neighborhood of the
node, and is related to the clustering coefficient. The network density is another useful
measure which is equal to the fraction of present connections to possible connections.
Finally, to grasp the effects of network influence and centrality, the network participation
coefficient (Guimera and Nunes Amaral, 2005) was calculated, which assesses the diversity
of between-module connections. In addition, betweenness centrality (Brandes, 2001)was
computed, which is the fraction of all shortest paths in the network that contains a given
node. Nodes with high values of betweenness centrality participate in a large number of
shortest paths. For each of the measures listed above, the mean and standard deviation were
computed for each subject. To compare the connectivity profile of a sample subject against
that of his/her population, the mean value of each measure over all vertices was standardized
using the corresponding mean and standard deviation of the means of that measure of the
population, and Z scores were then computed for the sample subject.

Availability
The connectogram generation workflow is being made freely available via the LONI
Pipeline environment (pipeline.loni.ucla.edu). Details and a sample pipeline file are
provided in the Supplementary material.

Results
Fig. 2 illustrates the connectivity profile of a sample subject drawn from our normal
population. To illustrate the capabilities of our methodology, it is useful to discuss specific
features of this connectivity profile as obviated by the connectogram. One such feature is the
thick red link that connects the left and right superior frontal gyri (SupFG) in the
connectogram. The fact that this link is colored in red indicates, as explained in the previous
section, that the fiber tracts between these regions have mean FA values that are greater than
67% of all FA values in the entire brain. The complete opacity of the link (i.e. its full red
color, compared to other links that are colored using transparent, light hues of red) indicates
that, among all regions in the brain that are connected to each other, the right and left gyri
are linked to each other by connections that have a very high fiber count compared to counts
between any two regions. In other words, other regions are connected by fibers that have
lower counts, with the exception of the connection between the brain stem and left and right
cerebella, which also have particularly large fiber counts. All these results are to be expected
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given the large area and spatial extent of the SupFG, which is colored in Fig. 1(C) using the
same color as that of the outermost connectogram segment associated with this structure in
Fig. 2 (light pink, see Fig. 1(F) for the connectogram legend).

Proceeding inward towards the center of the circle, the next ring encodes the GM volume of
each parcellation. In the case of the SupFG, the bright green displayed for both left and right
gyri indicates that the GM volumes of these structures are (among) the largest among those
of all parcellations, which is again expectable given the spatial extent of these anatomical
structures. The next concentric circle is encoding the total area of the parcellation, and in the
case of the superior frontal gyri the associated color is bright yellow which indicates, as
expected, that these structures have some of the largest areas among all parcellations. The
GM thickness (next concentric circle) of the gyri is encoded by light green, which indicates
that their thickness is close to the average parcellation thickness. The mean curvature of the
SupFG is revealed to be somewhat larger than average, given that the encoded colors for
both left and right gyri are light orange hues. Finally, the degree of connectivity (depicted on
the innermost circle of the connectogram) is relatively low. This measure, which represents
the total count of fibers with endings in the structure under consideration divided by the total
surface area of that structure, indicates that the SupFG has relatively low surface density of
fibers for the sample patient considered. Information regarding the GM volume, parcellation
area, mean GM thickness, mean curvature and degree of connectivity can be decoded for
other regions from the connectogram using the color scaling displayed in Fig. 2, in a manner
analogous to that exemplified above for the SupFG. In conclusion, the discussion above
highlights the richness of information that can be gathered visually from the connectogram
about any cortical regions based on the color coding used.

An interesting feature of the connectogram in Fig. 2 is the asymmetry in the connectivity
profile of the left SupFG compared to that of the right SupFG. Specifically, the connections
of the left SupFG to the right subcallosal gyrus (SbCaG) and to the right middle posterior
cingulated gyrus and sulcus (MPosCgG/S) have higher fiber counts and larger FAs than the
connections between the corresponding contralateral structures (i.e. right SupFG to left
SbCaG and to left MPosCgG/S). This interesting characteristic associated with the
connectivity profile of this subject is very easy to note from the connectogram, and
highlights its usefulness in identifying patterns of either symmetry or asymmetry in the
brain. Although it is not our purpose here to provide an exhaustive description of all
connectivity patterns in the selected subject in Fig. 2, suffice it to note that the connectogram
approach is very useful for such type of undertaking, as well as for exploring the
connectivity profile of specific regions.

Whereas Fig. 2 displayed the connectivity profile of one sample subject, Fig. 3 illustrates the
connectivity profiles of four other subjects selected from our population. The purpose of this
figure is to graphically illustrate the degree of similarity as well as the variability between
the connectivity profiles of different subjects, which can be easily explored using our
connectogram methodology. For all four subjects presented, the left and right cerebella are
linked by connections that have large fiber counts and relatively low FA, whereas structures
that are part of the dorsolateral prefrontal cortex (e.g. precentral and central gyri or sulci) are
consistently linked to subcortical structures, creating a characteristic ‘V-shaped’ pattern in
the connectograms. Careful visual investigations of these four connectograms reveal other
common patterns as well, but also a great degree of variability between subjects, not only in
the fiber counts of various connections between regions but also in the FA values associated
with them.

Fig. 4 displays the population-level connectogram pooled over all 50 subjects included in
our analysis using the methods already described. As expected given the process of

Irimia et al. Page 7

Neuroimage. Author manuscript; available in PMC 2013 April 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



averaging across subjects, this connectogram exhibits a greater degree of bilateral symmetry
than all other subject-specific connectograms already examined. Although some left–right
asymmetry persists even here, it is reasonable to expect that either (A) some patterns of this
type may disappear with the inclusion of additional subjects in the analysis, or (B) some
asymmetry patterns may in fact be enhanced with increasing sample size. The latter would
then suggest structural laterality differences that are highly consistent over a very large
population, and the methods of statistical analysis could then be employed to quantify the
significance of such differences. Whereas it is not our purpose here to investigate how our
population connectogram might change upon inclusion of additional subjects, it is
worthwhile to point out that our methodology is highly amenable to this type of
investigation. This is the case not only for healthy populations, but also for clinical
populations where connectomic analysis using our approach might allow one to obtain
significant insights regarding the structural connectivity profile in disease.

Although differences between control and target populations are not explored in this study
via connectogram design, it is useful to demonstrate our ability to perform statistical
analyses using our paradigm by comparing the cortical network properties of the subject in
Fig. 2 against the mean connectivity profile of his/her population, which is displayed in Fig.
4. To this end, Table 3 displays, for the sample patient in Fig. 2, the mean values of the
network metrics described in the previous section, in addition to the values of the Z score
associated with each of these metrics for the sample subject, computed as previously
described. Inspection of the Z scores in Table 3 indicates that, for all computed network
metrics, the sample subject that was selected for illustration was never farther away than
1.228 standard deviations from the mean of the healthy population from which he/she was
selected, indicating that this subject was quite typical of the population from the standpoint
of the cortical network measures that were calculated. This simple analysis of cortical
measures in which a single subject was compared to an entire population using the standard
measures of network theory can be used in conjunction with the analysis of the
connectogram of the subject to gain insight into his/her connectivity profile. It is quite
possible that this type of investigation can be useful especially when comparing a patient
with any of the many clinical conditions that affect structural connectivity (e.g. traumatic
brain injury (TBI), parkinsonism, dementia, etc.) to a population of matched healthy subjects
or to other diseased subjects. Thus, the methodology outlined in this paper can be applied to
a wide variety of case studies and even to the comparison of two different populations, with
potential relevance to many areas of neuroscience.

Discussion
Significance and innovation

With the intense interest in the in vivo mapping of human connectomics, as evident in the
launching of the Human Connectome Project (HCP, www.humanconnectomeproject.org) by
the National Institutes of Mental Health and Aging, considerable effort has arisen into
techniques that graphically represent the interconnectedness of neural structures. Along with
ongoing efforts to map population level connectomics is an interest for clinical application
to the individual subject or patient. Being able to graphically depict and assess deviation
from population-level averages is illustrative of damaged or altered connectivity, as in the
case of TBI. Such illustration can be essential for localizing compromised regional
connectivity and for characterizing network-level changes in network efficiency resulting
from cortical insult.

The use of summary graphical depictions has been strongly advocated as a means for
clinicians to rapidly and succinctly examine patient case, medication, and treatment histories
at a glance (Powsner and Tufte, 1994, 1997). Computations of network-level properties are a
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valuable means to assess efficiency and the ‘wiring costs’ needed to link spatially disparate
brain regions (Bullmore et al., 2009). In addition, calculation of population average network
metrics and of their degree of variation permits individualized connectomics comparison. As
noted above, this is of potentially great importance in the context of patients having
degenerative disease (e.g. dementia, TBI, mental illness, etc.).

In this article, we have introduced a novel technique for the mapping and visualization of
population-level and individual human connectomics via an intuitive two-dimensional
circular representation. We illustrate, in a population of subjects as well as in an instance
drawn from it, how this simple and elegant conceptual framework is well suited toward the
organization, representation, and inspection of brain connectivity in a visually-insightful and
content-rich manner. Using combined MRI/DTI data acquisition and automatic image
segmentation, we have described our approach for the extraction of 148 cortical and 17 non-
cortical anatomical parcellations using standardized nomenclature, followed by the
calculation of structural anatomy metrics (volume, area, cortical thickness, curvature) for
cortical regions. By combining these structural data with the connectivity profile extracted
from high-angular resolution DTI, we have been able to generate detailed representations of
regional geometry and connectivity for each individual to assess and examine their statistical
properties.

The graphical representation presented here differs from three-dimensional approaches
which provide excellent renderings of nodes and their linkages in anatomical space
(Bullmore and Sporns, 2009), and that when examined along with force-directed graphs
illustrate clustering and relatedness (Hagmann et al., 2008). For example, the Connectome
Viewer Toolkit (http://www.connectomeviewer.org) is an open source framework to analyze
and interactively display connectomes in three dimensions using a variety of visualization
options (Gerhard et al., 2011). The 3D nature of such graphs, while essential for the accurate
illustration of relative anatomical proximity of network nodes, requires an interactive
graphical user interface in which to manipulate, orient, and examine degrees of connectivity
within brain networks. These representations are sometimes difficult to include efficiently in
journal articles or for examination in print due to their intrinsic three-dimensional nature.
Two-dimensional approaches have been explored (Bassett and Gazzaniga, 2011) in the form
of wiring diagrams that employ the classical representations of graph theory, and such
representations are helpful for understanding network structure. However, many of them do
not provide additional insight into nodal neuroanatomy and can often be difficult to interpret
or to explore due to frequent, dense clustering of nodes throughout the two-dimensional
spatial extent of the connectivity representation, as well as to the large number of graph
edges, which can render emerging properties of the system difficult to discern. As expanded
in the following section, our representation overcomes many of these drawbacks and
provides a useful method for connectomic visualization.

To our knowledge, methods which are suitable for jointly representing inter-regional
connectivity in addition to regional anatomical metrics have not been widely examined.
Moreover, the present method is among the very few that allows one to explore cortical
network connectivity in 2D format without the drawbacks of directly converting 3D graphs
into 2D images. Such drawbacks include, for example, the loss of significant information
contained in the 3D structure of the representation, such as spatial positioning of nodes
either closer or farther away from the user's viewpoint. By contrast, our present technique
makes use of its 2D, circular modality of display to eliminate the disadvantages that can be
incurred as a 3D graph is converted to two dimensions for printing and inspection without
the requirement of using a dedicated software package. In addition, the inclusion of edge
transparency and the freedom of its manipulation by the user can be employed to highlight
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significant connections in their decreasing order of importance without compromising the
overall complexity of the graph structure.

Another important advantage of the present approach includes significant potential for
connectographic mapping and analysis across human samples, as well as an essentially
unbounded capacity for extending this powerful analysis method to the study and
comparison of diseased populations and/or animal models, as described for example in
(Irimia et al., in press) Our methodology provides an anatomically informed arrangement of
(1) nodal cortical and sub-cortical architecture, (2) their geometric properties, and (3) the
degree and properties of regional connectivity. Representing such information has not
previously been performed within a single summary graphic. However, the information
needed to create them is readily available from workflow tools such as LONI Pipeline
utilizing FreeSurfer, Track-Vis, etc. Thus, the representation presented here has similar
qualities for the ease for depicting and representing a complete set of connectomics
information. The color-driven representation of neuroanatomical geometry as well as degree
of inter-regional connectedness also have a number of esthetic qualities — not the least of
which is a high data-to-ink ratio (Tufte, 2001), e.g. maximizing scientific information
content while minimizing superfluous graphical elements. In the following section, the
innovative aspects of our circular representation framework are compared in more detail
with the features of other methods employing either 2D or 3D representations. The
connectogram software presented in this paper is freely available for download as an
integrated module within the LONI Pipeline (pipeline.loni.ucla.edu, see also Dinov et al.,
2010).

Comparison with other methods
A wide array of methodologies for the visualization of connectivity has been proposed. Most
of these representations rely on variations of classical graph theory to (1) create and position
network nodes at 3D locations associated with various anatomical landmarks, (2) represent
nodes using shapes of various sizes and colors in order to encode properties of interest, and
to (3) modulate edge properties (weight, color, thickness, etc.) according to the degree of
connectivity between nodes as expressed using some metric of choice. In the remainder of
this subsection, these three modalities of visualization are discussed and analyzed from the
perspective of existing methodologies and then compared to our own approach to emphasize
the advantages and disadvantages of each framework.

The first task involved in connectomics visualization is that of node creating and
positioning. One method of representation which is very popular in this respect is illustrated
in numerous publications (Bassett et al., 2011; Gerhard et al., 2011; Yan et al., 2011), where
nodes are positioned at the 3D anatomical coordinates of anatomical brain regions, and
connection strengths are represented by edge thickness. This modality of representing brain
connectivity has the advantage that, when viewed in three dimensions, it allows one to
associate underlying neuroanatomy with precisely the locations of the regions of interest
involved in the connectivity representation. An important disadvantage of this method is that
it can sometimes make emergent network structure very difficult to grasp (Sanz-Arigita et
al., 2010). By comparison, our proposed visualization paradigm arranges nodes in their
order along the antero-posterior axis (which preserves the logical spatial ordering of the
parcellated regions), although it omits their precise 3D coordinates. However, even in doing
so, our method provides the capability of making all nodes equally visible to the viewer
when the connectogram is inspected on the printed page or outside any software
environment that involves the manipulation of perspective in three dimensions for the
purpose of detailed inspection. In fairness, it should be noted that 2D visualization of brain
networks where node positioning follows exact anatomical positioning is in fact possible if
the cortical surface is spread out as a 2D sheet, as for example in (Palva et al., 2010) or
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using certain parameter options of the Connectome Viewer software (Gerhard et al., 2011).
However, such representations remain at least partially problematic because of the difficulty
to associate arbitrary locations on 2D flattened maps of the cortex to the familiar 3D
topology of the brain. By contrast, our circular scheme follows the conventional antero-
posterior positioning of nodes, thus creating a more intuitive 2D visualization of network
structure.

The second challenge which must be addressed to visualize a connectome diagrammatically
is that of depicting nodes using visual symbols that are representative of their properties. For
example, in (Chen et al., 2011; Dosenbach et al., 2007; Ginestet and Simmons, 2011;
Spoormaker et al., 2010) and many other publications, nodes are depicted as circles or
spheres that are colored differently to encode various properties. One advantage of this
modality of visualization is that it allows one to easily grasp common edge properties, as
well as to visually classify nodes into classes according to their coloring. Disadvantages of
this method include the fact that nodes that are very close to each other may visually overlap
edges or each other, thus making graph structure more difficult to decipher and interpret.
This problem may be partially addressed by modifying node transparency (Ginestet and
Simmons, 2011), although this does not entirely remove the difficulty of depicting cortical
networks with high densities of nodes or edges. By contrast to these methods, ours ensures
that all nodes are simultaneously visible. In addition, our connectogram approach allows one
to display an arbitrary number of node properties at a time through the use of color-coded
rings that are concentric to the outermost circle.

The third difficulty involved in depicting connectomics relationships schematically involves
the modulation of edge properties (weight, color, thickness, etc.) according to the degree of
connectivity between nodes as expressed using some metric of choice. In many applications,
edges are modulated by color (Cao and Slobounov, 2010; van den Heuvel and Pol, 2010) or
by thickness (He and Evans, 2010; He et al., 2010). In one widely-disseminated approach
similar to ours in its use of a circular diagram (Holten, 2006; Modha and Singh, 2010),
concentric circles are used to represent the hierarchical subdivision of the central nervous
system in a top–down approach (e.g. brain to cortex to lobes to gyral/sulcal structures, etc.).
In such representations, edges radiate from the center of a circle (the top structure) to the
circumference (the lowest-level structures) and edge position in the hierarchy is
consequently important. In this last approach as well as in ours, the circular shape of the
connectivity graph is appealing and useful for the 2D representation of relationships
between different areas of the brain. One challenge that the circular approach to connectome
viewing addresses is that of complexity and dimensionality reduction. In the hierarchical
approach (Holten, 2006; Modha and Singh, 2010), this is addressed via the top–down
organization of connections; in ours, it can be controlled by displaying connections
emanating only from one hemisphere, one lobe, or from a single brain structure, thus
allowing the user great leeway in the ability to modify the level of complexity being
displayed in the connectogram.

Conclusion
Circle-based arrangements for connectome visualization are increasingly gaining acceptance
in neuroimaging and computational neuroscience circles (Modha and Singh, 2010). While
many examples of connectomic and network-level layouts have been proposed, the approach
described here for the joint 2D graphical representation of regional geometric attributes and
inter-regional connectivity is a novel, informative, and attractive means for depicting whole
brain connectivity from neuroimaging data. It allows for single subject as well as
population-level rendering and is complimentary to computations of network architecture.
The manner in which we envision the potential contribution of our proposed method to
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existing visualization tools for connectomics is by complementing existing software
methodologies for mapping the highly complex networks of the cortex, such as the
Connectome Viewer. In introducing the present visualization method, our purpose is to
acknowledge the strengths and weaknesses of various other methods for depicting
connectomics, and consequently to complement them in a constructive manner that is
beneficial to members of the community who use such tools. In conclusion, our depiction of
structural and connectivity data highlights the detailed richness of connectome-related
information, which is often challenging to visualize and interpret. Consequently, we expect
our representation to have appreciable applicability to the study of both population- and
patient-level connectivity.

Supplementary materials related to this article can be found online at doi:10.1016/
j.neuroimage.2012.01.107.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

DTI diffusion tensor imaging

fMRI functionalmagnetic resonance imaging

FA fractional anisotropy

Fro frontal

GM gray matter

HCP Human Connectome Project

Ins insula

IDA integrated data archive

Lim limbic

LONI Laboratory of Neuro Imaging

MPosCgG/S medial posterior cingulate gyrus and sulcus

MRI magnetic resonance imaging

NA-MIC National Alliance for Medical Image Computing

NIH National Institutes of Health

Occ occipital

Par parietal

SbCaG subcallosal gyrus

SupFG superior frontal gyrus

TBI traumatic brain injury
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Tem temporal

WM white matter

3D threedimensional
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Fig. 1.
(A) Segmentation results from a sample subject selected from the LONI IDA and included
in the present study. Segmentation and regional parcellation were performed using
FreeSurfer (Dale et al., 1999; Fischl et al., 1999; Fischl et al., 2002) following the
nomenclature described inDestrieux et al. (2010). (B) Results of DTI tractography analysis
for a sample subject. Diffusion tensors were computed from DWI images and rotationally
re-oriented at each voxel. Diffusion gradient data were processed in native space using
TrackVis (trackvis.org) to reconstruct fiber tracts. (C) Representation of the reconstructed
pial surface for a sample subject. Each cortical lobe was assigned a unique color scheme, as
explained in the Materials and methods section. Additionally, every structure was assigned
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its unique RGB color based on esthetic considerations (see text for details). (D) Example of
a connectivity matrix computed for a sample subject. Vertical and horizontal lines are used
to delimitate entries in the matrix corresponding to connections within the left and right non-
cortical regions (first two squares on the diagonal), within the left and right cortical
hemispheres (last two squares on the diagonal), as well as connections between the two
hemispheres or between cortex and non-cortical structures (off-diagonal elements). (E) A
sample connectogram created a single subject (see Fig. 2 and text for details). (F) Legend of
the representation of cortical metrics in the connectogram. Within the circular structure
representing the cortical parcellations, five circular heat maps are present, each encoding
one of five structural measures associated with the corresponding parcellation. Proceeding
inward towards the center of the circle, these measures re: total GM volume, total area of the
surface associated with the GM–WM interface (at the base of the cortical ribbon), mean
cortical thickness, mean curvature and connectivity per unit volume.
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Fig. 2.
Connectogram for a sample subject. The outermost ring shows the various brain regions
arranged by lobe (fr — frontal; ins — insula; lim — limbic; tem — temporal; par —
parietal; occ — occipital; nc — non-cortical; bs — brain stem; CeB — cerebellum) and
further ordered anterior-to-posterior. The color map of each region is lobe-specific and maps
to the color of each regional parcellation as shown in Fig. 1(C). The set of five rings (from
the outside inward) reflect the measures listed in Fig. 1(F). For non-cortical regions, only
average regional volume is shown. The links represent the computed degrees of connectivity
between segmented brain regions. Links shaded in blue represent DTI tractography
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pathways in the lower third of the distribution of FA, green lines the middle third, and red
lines the top third (see text for details). Circular color maps detail the scale for each metric.
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Fig. 3.
Connectograms of four subjects selected from the healthy population. Illustrated are both the
degrees of similarity and of variability between the connectivity profiles of different
subjects, which can be easily explored using our connectogram methodology.
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Fig. 4.
As in Fig. 2, for the entire population of 50 subjects.
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Table 1

Summary of each parcellation's abbreviation, full description and FreeSurfer code as defined in the original
parcellation scheme (Destrieux et al., 2010), as well as the associated RGB code in the connectogram.

Abbreviation Description FreeSurfer code RGB code

Neocortical structures

ACgG/S Anterior part of the cingulate gyrus and sulcus G_and_S_cingul-Ant 255 255 180

ACirInS Anterior segment of the circular sulcus of the insula S_circular_insula_ant 102 255 255

ALSHorp Horizontal ramus of the anterior segment of the lateral sulcus
(or fissure)

Lat_Fis-ant-Horizont 0 255 204

ALSVerp Vertical ramus of the anterior segment of the lateral sulcus (or
fissure)

Lat_Fis-ant-Vertical 0 255 255

AngG Angular gyrus G_pariet_inf-Angular 0 255 0

AOcS Anterior occipital sulcus and preoccipital notch (temporo-
occipital incisure)

S_occipital_ant 51 51 255

ATrCoS Anterior transverse collateral sulcus S_collat_transv_ant 153 0 204

CcS Calcarine sulcus S_calcarine 102 153 255

CgSMarp Marginal branch (or part) of the cingulate sulcus S_cingul-Marginalis 255 192 201

CoS/LinS Medial occipito-temporal sulcus (collateral sulcus) and lingual
sulcus

S_oc-temp_med_and_Lingual 153 204 255

CS Central sulcus (Rolando's fissure) S_central 255 51 0

Cun Cuneus (O6) G_cuneus 0 153 255

FMarG/S Fronto-marginal gyrus (of Wernicke) and sulcus G_and_S_frontomargin 204 0 51

FuG Lateral occipito-temporal gyrus (fusiform gyrus, O4–T4) G_oc-temp_lat-fusifor 102 102 255

HG Heschl's gyrus (anterior transverse temporal gyrus) G_temp_sup-G_T_transv 102 0 102

InfCirInS Inferior segment of the circular sulcus of the insula S_circular_insula_inf 0 102 102

InfFGOpp Opercular part of the inferior frontal gyrus G_front_inf-Opercular 255 204 0

InfFGOrp Orbital part of the inferior frontal gyrus G_front_inf-Orbital 153 051 0

InfFGTrip Triangular part of the inferior frontal gyrus G_front_inf-Triangul 255 0 0

InfFS Inferior frontal sulcus S_front_inf 153 102 0

InfOcG/S Inferior occipital gyrus (O3) and sulcus G_and_S_occipital_inf 51 153 255

InfPrCS Inferior part of the precentral sulcus S_precentral-inf-part 255 153 0

IntPS/TrPS Intraparietal sulcus (interparietal sulcus) and transverse parietal
sulci

S_intrapariet_and_P_trans 51 255 51

InfTG Inferior temporal gyrus (T3) G_temporal_inf 255 0 255

InfTS Inferior temporal sulcus S_temporal_inf 204 0 153

JS Sulcus intermedius primus (of Jensen) S_interm_prim-Jensen 153 204 0

LinG Lingual gyrus, lingual part of the medial occipito-temporal
gyrus (O5)

G_oc-temp_med-Lingual 102 204 255

LOcTS Lateral occipito-temporal sulcus S_oc-temp_lat 153 153 255

LoInG/CInS Long insular gyrus and central insular sulcus G_Ins_lg_and_S_cent_ins 0 204 204

LOrS Lateral orbital sulcus S_orbital_lateral 102 0 0

MACgG/S Middle–anterior part of the cingulate gyrus and sulcus G_and_S_cingul-Mid-Ant 255 240 191

MedOrS Medial orbital sulcus (olfactory sulcus) S_orbital_med-olfact 255 102 0

MFG Middle frontal gyrus (F2) G_front_middle 255 255 051

MFS Middle frontal sulcus S_front_middle 255 153 51
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Abbreviation Description FreeSurfer code RGB code

MOcG Middle occipital gyrus (O2, lateral occipital gyrus) G_occipital_middle 0 204 244

MOcS/LuS Middle occipital sulcus and lunatus sulcus S_oc_middle_and_Lunatus 0 51 255

MPosCgG/S Middle–posterior part of the cingulate gyrus and sulcus G_and_S_cingul-Mid-Post 255 224 203

MTG Middle temporal gyrus (T2) G_temporal_middle 255 102 204

OcPo Occipital pole Pole_occipital 0 0 153

OrG Orbital gyri G_orbital 255 255 153

OrS Orbital sulci (H-shaped sulci) S_orbital-H_Shaped 255 204 204

PaCL/S Paracentral lobule and sulcus G_and_S_paracentral 204 255 153

PaHipG Parahippocampal gyrus, parahippocampal part of the medial
occipito-temporal gyrus (T5)

G_oc-temp_med-Parahip 204 204 255

PerCaS Pericallosal sulcus (S of corpus callosum) S_pericallosal 255 164 200

POcS Parieto-occipital sulcus (or fissure) S_parieto_occipital 204 255 51

PoPl Polar plane of the superior temporal gyrus G_temp_sup-Plan_polar 204 153 255

PosCG Postcentral gyrus G_postcentral 204 255 204

PosCS Postcentral sulcus S_postcentral 153 255 0

PosDCgG Posterior–dorsal part of the cingulate gyrus G_cingul-Post-dorsal 255 175 201

PosLS Posterior ramus (or segment) of the lateral sulcus (or fissure) Lat_Fis-post 204 255 255

PosTrCoS Posterior transverse collateral sulcus S_collat_transv_post 51 102 255

PosVCgG Posterior–ventral part of the cingulate gyrus (isthmus of the
cingulate gyrus)

G_cingul-Post-ventral 255 208 202

PrCG Precentral gyrus G_precentral 204 102 0

PrCun Precuneus (medial part of P1) G_precuneus 204 255 0

RG Straight gyrus (gyrus rectus) G_rectus 255 204 153

SbCaG Subcallosal area, subcallosal gyrus G_subcallosal 255 153 200

SbCG/S Subcentral gyrus (central operculum) and sulci G_and_S_subcentral 255 102 153

SbOrS Suborbital sulcus (sulcus rostrales, supraorbital sulcus) S_suborbital 255 51 102

SbPS Subparietal sulcus S_subparietal 102 153 0

ShoInG Short insular gyri G_insular_short 51 255 204

SuMarG Supramarginal gyrus G_pariet_inf-Supramar 204 255 102

SupCirInS Superior segment of the circular sulcus of the insula S_circular_insula_sup 0 153 153

SupFG Superior frontal gyrus (F1) G_front_sup 255 102 102

SupFS Superior frontal sulcus S_front_sup 204 153 0

SupOcG Superior occipital gyrus (O1) G_occipital_sup 0 0 255

SupPrCS Superior part of the precentral sulcus S_precentral-sup-part 255 0 102

SupOcS/TrOcS Superior occipital sulcus and transverse occipital sulcus S_oc_sup_and_transversal 0 102 255

SupPL Superior parietal lobule (lateral part of P1) G_parietal_sup 153 255 153

SupTGLp Lateral aspect of the superior temporal gyrus G_temp_sup-Lateral 153 51 255

SupTS Superior temporal sulcus S_temporal_sup 204 51 255

TPl Temporal plane of the superior temporal gyrus G_temp_sup-Plan_tempo 153 0 153

TPo Temporal pole Pole_temporal 255 204 255

TrFPoG/S Transverse frontopolar gyri and sulci G_and_S_transv_frontopol 255 153 153

TrTS Transverse temporal sulcus S_temporal_transverse 255 153 255

Subcortical structures
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Abbreviation Description FreeSurfer code RGB code

Amg Amygdala Amygdala 159 159 159

CaN Caudate nucleus Caudate 96 96 96

Hip Hippocampus Hippocampus 223 223 223

NAcc Nucleus accumbens Accumbens-area 128 128 128

Pal Pallidum Pallidum 64 64 64

Pu Putamen Putamen 32 32 32

Tha Thalamus Thalamus-proper 191 191 191

Cerebellar structure

CeB Cerebellum Cerebellum–cortex 255 64 0

Midline structure

BStem Brain stem Brain-stem 207 255 48
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Table 2

Abbreviations for cortical parcellations used in connectograms. This scheme unambiguously maps the
correspondence between each word or prefix and the appropriate keyword (see Table 1 for a list of
parcellations).

Abbreviation Keyword

A Anterior

Acc Accumbens

Ang Angular

B Brain

C Central

Ca Callosal

Cau Caudate

Cc Calcarine

CeB Cerebellum

Cg Cingulate

Cir Circular

Cla Claustrum

Co Collateral

Cun Cuneus

D Dorsal

F Frontal/fronto-

Fu Fusiform

G Gyrus/gyri

H Heschl

Hip Hippocampus/hippocampal

Hor Horizontal

In Insula/insular

Inf Inferior

Int Intra-

J Jensen

L Lateral/lobule

Lin Lingual

Lu Lunate/lunatus

Lo Long

M Middle

Med Medial

Mar Marginal

N Nucleus

Oc Occipital/occipito-

Op Opercular

Or Orbital

P Parietal

Pa Para-
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Abbreviation Keyword

Pal Pallidum

Per Peri-

Pl Plane

Po Pole/polar

Pos Posterior/post-

Pr Pre-

Pu Putamen

p Part

pl Plane

R Rectus

S Sulcus/sulci

Sb Sub-

Sho Short

Su Supra-

Sup Superior

T Temporal

Tha Thalamus

Tr Transverse

Tri Triangular

V Ventral

ver Vertical
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Table 3

Statistical comparison of the sample subject in Fig. 1 to the healthy population of adults from which he/she
was drawn. Listed are (1) the network measures computed, (2) the mean of each network measure over all
network nodes for the sample subject and for the population, as well as (3) the Z score for the sample subject.
Where measures are designated as binary in parentheses, the cortical network was assumed to be binary (i.e.
with an edge weight of 1 if a connection existed between the nodes involved). Where measures are designated
as weighted, the weight of each edge in the cortical network was assumed to be equal to the fiber count
associated with the connection between nodes

Network measure Mean Z score

Sample subject Population

Assortativity 0.004 0.027 0.694

Betweenness (binary) 367.673 336.961 0.693

Betweenness (weighted) 645.600 620.600 0.326

Clustering coefficient (binary) 0.458 0.459 −0.051

Clustering coefficient (weighted) 3.371 6.284 −0.861

Community structure 4.630 4.977 −0.523

Degree 8.315 10.477 −1.001

Density 0.051 0.064 −1.001

Diameter 7.000 6.392 0.783

Distance (binary) 3.242 3.056 0.694

Distance (weighted) 7.806 7.473 0.224

Eccentricity 5.673 5.054 1.228

Efficiency (global) 0.360 0.384 −0.794

Efficiency (local) 0.656 0.682 −0.620

Lambda 3.222 3.037 0.694

Modularity 0.692 0.662 1.124

Participation coefficient 0.288 0.303 −0.598

Radius 4.000 3.451 0.642

Transitivity (binary) 0.340 0.360 −0.614

Transitivity (weighted) 2.495 5.001 −0.886
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