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Abstract 

Discriminating complex sounds relies on multiple stages of differential brain activity. The specific 

roles of these stages and their links to perception were the focus of the present study. We presented 

250ms duration sounds of living and man-made objects while recording 160-channel 

electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or 

unknown item. We tested whether/when the brain discriminates between sound categories even 

when not transpiring behaviorally. We applied a single-trial classifier that identified voltage 

topographies and latencies at which brain responses are most discriminative. For sounds that the 

subjects could not categorize, we could successfully decode the semantic category based on 

differences in voltage topographies during the 116-174ms post-stimulus period. Sounds that were 

correctly categorized as that of a living or man-made item by the same subjects exhibited two 

periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential 

activity before the sound ended (starting at 112ms) and on a separate period at ~270ms post-

stimulus onset. Because each of these periods could be used to reliably decode semantic categories, 

we interpreted the first as being related to an implicit tuning for sound representations and the 

second as being linked to perceptual decision-making processes. Collectively, our results show that 

the brain discriminates environmental sounds during early stages and independently of behavioral 

proficiency and that explicit sound categorization requires a subsequent processing stage. 

 

 

1. Introduction 

We are constantly immersed in noisy environments where accurate and quick sound identification is 

essential for daily activities such as communicating and navigating. We recognize, for example, 

whether the sound was emitted by a machine (i.e. telephone ringing) or produced by a living source 

(i.e. a dog barking) even in the absence of visual cues and in noisy contexts. Correct sound 

identification depends on the amount of available sensory evidence, on the ability to compare 

different options within a range of possibilities and often implies making a choice, i.e. a perceptual 

decision.  

Investigating how sensory information is gathered and used to form a decision variable represents an 

active field of research in both monkeys and humans (reviewed in Gold and Shadlen, 2007 and 

Heekeren et al., 2008). In both visual and somatosensory domains, several studies emphasize a 

causal link between sensory evidence accumulated in low-level cortices and perceptual decision-

making. The idea is that even if the actual decision is made by higher-level cortices by integrating 
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accumulated sensory evidence, stimulus identification can already be inferred from activity in early 

sensory areas. During a vibrotactile discrimination experiment, single-unit recordings in 

somatosensory cortex predicted whether monkeys could perceive a difference in the stimulation 

frequency (Salinas et al., 2000). In the same kind of tasks, Romo et al. (Romo et al., 2003) 

demonstrated the role of prefrontal medial and premotor cortices in forming the decision initially 

driven by evidence in somatosensory areas (see also Hernandez et al., 2002; de Lafuente et al., 

2005). The same pattern of sequential stages has been repeatedly shown in the visual domain. Here, 

a popular paradigm involves discriminating the direction of motion of a field of moving dots 

(Newsome et al., 1989; Britten et al., 1992; Shadlen et al., 1996; Kim and Shadlen, 1999; Bennur and 

Gold, 2011) during which activity in area MT could predict motion discrimination, whereas activity in 

lateral intraparietal area (LIP), the frontal eye-field (FEF) and the dorsolateral prefrontal cortex 

(DLPFC) was directly related to forming the decision. More recently, perceptual decision-making in 

the visual domain has been investigated with complex stimuli and tasks involving perceptual and 

semantic categorization (Philiastides et al., 2006a; Philiastides et al., 2006b; Ratcliff et al., 2009; 

Simanova et al., 2010; Murphy et al. 2011). 

To date, few studies have examined perceptual decision-making in the auditory domain and were 

mainly based on the discrimination of phonemes (Binder et al., 2004; Kaiser et al., 2006). Binder et al. 

carried out a functional magnetic resonance imaging (fMRI) experiment where participants were 

asked to identify speech sounds masked by varying levels of noise (Binder et al 2004). Results 

showed that activity within a cortical region anterior to primary auditory cortex predicted 

performance accuracy, whereas activity in the inferior frontal cortex was related to response time. 

With more emphasis on the temporal dynamics of perceptual decision-making in the auditory 

domain, Kaiser et al. showed differential activity in the gamma frequency band starting at 120ms 

post-stimulus onset when comparing different sounds patterns, and differential activity between 

easy and difficult decisions at later stages of sound processing (Kaiser et al 2006). However, localizing 

or at least distinguishing the cortical regions underlying these sequential stages in humans remains 

still unexplored in speech identification and even more in the context of complex sound 

identification. 

Recently, the analysis of auditory event-related potentials (AEPs) in response to complex stimuli 

revealed that sound processing starts unfolding at 70ms post-stimulus onset for living/man-made 

categorizations (Murray et al. 2006) and that finer semantic analysis takes place along later 

discontinuous temporal periods including the discrimination between human and animal voices (De 

Lucia et al. 2010a), and musical and other man-made sounds (De Lucia et al. 2009). These results 
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show that latencies of sound processing and discrimination can depend critically on the level of 

semantic categorization. Given that the participants were not explicitly asked to identify sound 

subcategories in these studies, the specific functional role of each of these differential stages and 

their link to perception remains unresolved. 

Here, we apply a multivariate analysis to AEPs in response to sounds of living and man-made objects 

while participants were explicitly instructed to categorize (and identify) the sound. The ability to 

categorize sounds was challenged by manipulating the sound duration. In a preliminary 

psychophysics experiment we evaluated the duration for which the number of recognized and 

unrecognized sounds was roughly counterbalanced. This sound duration was then used for the main 

experiment. In the analysis, we separately considered those trials corresponding to sounds that 

subjects could correctly categorize and those for which subjects were not able to provide an answer. 

Our main goal was to evaluate whether differential activity to the living and man-made semantic 

categories manifests irrespective of behavioral outcome and to uncover the electrophysiological 

response linked to subjects’ ability to perceive the sound’s category. We hypothesized that living and 

man-made categorization is still detectable in the EEG response even when subjects do not 

categorize the sounds and that a second (later) modulation was present only for correctly 

categorized sounds. This hypothesis stems from the abovementioned works on perceptual decision-

making showing the existence of at least two stages in stimulus processing; the first one related to a 

coarse level stimulus representation, the second (later in time) to integration of available sensory 

information. We based our analyses on a multivariate decoding approach revealing at which latency 

it is possible to accurately decode the semantic category of the sounds in presence or not of correct 

categorization. Importantly, our method is based on modulation in voltage topographies (De Lucia et 

al., 2007; Murray et al., 2009; De Lucia et al. 2010b; Tzovara et al., 2011; Bernasconi et al., 2011) 

which takes advantage of the overall voltage configuration at the scalp without a priori selection of 

specific electrodes’ location. 

 

2. Materials and Methods 

In the following we first present a pilot study whose aim was to select the sound duration at which 

the number of sounds identified was roughly equal to that unidentified. We then present the main 

experiment of this study that used the same sounds from the pilot study (and the duration estimated 

based on the pilot study results) in combination with the recording of EEG.  
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2.1 Pilot study 

Subjects: 

Fifteen healthy subjects (all men and 20-26 years old) participated in a psychophysical test. All 

subjects were right-handed and provided written, informed consent to participate in the study, the 

procedures of which were approved by the Ethics Committee of the Centre Hospitalier Universitaire 

Vaudois and University of Lausanne. No subject had a history of neurological or psychiatric illness, 

and all reported normal hearing and vision (or corrected to normal). 

Stimuli: 

Auditory stimuli were complex, meaningful sounds (16 bit mono; 44100 Hz digitalization) of living 

and man-made objects, including 108 sounds (53 sounds of living objects) (Supplemental Material 1). 

Sounds of living items included human non-verbal vocalizations and animal vocalizations (15 and 38, 

respectively). Within the man-made category there were 12 sounds of musical instruments. We 

prepared three sound sets each including 108 stimuli, which differed in the sound duration: 100ms, 

250ms, 500ms. 

Each subject was tested using one fixed duration of the sounds to avoid any priming effects. Initially, 

we planned to test 5 subjects for each duration. However, as detailed below, it was immediately 

evident from the first 3 subjects that the 100ms duration was too short for accurate performance. 

Consequently, 3 subjects were tested with 100ms duration sounds, 7 subjects were tested with 

250ms duration sounds, and 5 subjects were tested with 500ms duration sounds. Sounds were 

presented via insert earphones (model ER-4P; Etymotic Research) at an individually adjusted volume, 

and subjects were asked to categorize the sound as living or as man-made.  

Results: 

With the 100ms duration the first three subjects were unable to categorize or identify the majority of 

the presented sounds. We decided therefore to exclude the 100ms sound duration from further 

testing. With the 500ms duration sound bank, the five subjects categorized the overwhelming 

majority of the sounds. Finally, we observed that the best sound length was 250ms. In this case we 

tested seven subjects (five subjects initially planned plus those that we did not test with 100ms 

sound duration). With 250ms sound duration, five of the seven subjects could correctly categorize 75 

sounds (within which 38 were also correctly identified) and could not categorize 33 sounds. We 
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concluded that 250ms duration was optimal within the three tested durations for obtaining a 

balanced number of identified and unidentified sounds. 

 

2.2 EEG Experiment  

Subjects 

Nine healthy subjects (4 women), aged 20-30 years participated in the EEG study. All subjects 

provided written, informed consent to participate in the study, the procedures of which were 

approved by the Ethics Committee of the Centre Hospitalier Universitaire Vaudois and University of 

Lausanne. All subjects were right-handed (Oldfield, 1971). No subject had a history of neurological or 

psychiatric illness, and all reported normal hearing and vision (or corrected to normal). 

Procedure and task 

Subjects listened to each sound  and after a 700 ms intervening period, they were first asked to 

indicate via a 3-alternative-forced-choice button press its category (living, man-made, or unknown) 

and second indicated via a 2-alternative-forced-choice button press if they were able to identify the 

object (yes vs. no). After one second, an image was presented on the screen for 1000ms. This image 

represented or not the same object as the initially presented sound. After 800ms subjects listened to 

the same sound and were asked to answer to the same questions as after the first presentation. 

Subjects were asked to answer each question with the maximum of confidence (the speed of the 

answer was not emphasized, but we limited the time to answer to 5 seconds). During the EEG 

recording, the stimuli were divided into 14 blocks, each block was about 6 minutes long and included 

50 sequences of sound, image and sound presentation. Sounds were randomly selected from the 

complete list of sounds and therefore some sounds were sometimes repeated within each block and 

across blocks. Between each block a break was proposed. In the following, we consider only the first 

part of the experiment; that is to say the initial sound presentation and the behavioral outcome of 

the categorization task only.  

 
  
EEG acquisition and preprocessing 
 

Continuous 160-channel EEG was acquired through a Biosemi system (1024 Hz sampling rate, offline 

band-pass filtered 0.1–40 Hz). Peri-stimulus epochs of continuous EEG (-100 to 400 ms) were 

extracted for each subject and for each living/man-made condition. Trials with blinks or eye 

movements were rejected off-line. An automated artifact rejection criterion of ±100µV was applied 
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at all electrodes, and EEG epochs were also visually evaluated. Data from artifact electrodes from 

each subject and condition were interpolated using three-dimensional splines (Perrin et al., 1987). All 

data were then recalculated against the average reference. On the basis of the behavioral outcome 

for each subject, we separately considered three possible subgroups of trials: those in response to 

sounds that subjects correctly categorized as living or man-made, trials for which subjects could not 

guess (i.e. answered ‘unknown’) and those in response to sounds for which subjects gave a wrong 

answer (i.e. categorize as living a man-made sound or vice versa). Because this trial selection was 

performed for each subject and depending on his/her specific behavioral output, epochs in response 

to different sounds where included in the same subcategories across subjects. Artifact-free trials in 

response to man-made sounds that subjects misjudged as living were relatively fewer than those in 

response to sounds of living items that subjects categorized as man-made. We therefore decided to 

ignore this subgroup of trials in the following analysis. In summary, we considered only two 

subgroups of responses: those in response to sounds whose category was correctly categorized and 

those for which subjects could not say whether the sound was living or man-made (hereafter termed 

uncategorized).  

 

Datasets definition  

For both the uncategorized and correctly categorized stimuli, we first considered two sets of single 

trials, one in response to sounds of living items and one in response to man-made sounds. We used 

part of these  trials for training and testing  the classifier as explained in section 3. In addition, for 

both the uncategorized and correctly categorized sounds, we considered an independent dataset 

(validation dataset) that we used to have a final evaluation of the classification performance (see 

next two sections for details on the number of trials for training/testing and validation). Keeping 

separate the datasets used for optimizing the classifier’s parameters and the one used for estimating 

the classification performance is essential for assessing how well the classifier generalizes to 

previously unseen data (Kriegeskorte et al., 2009). For both categorized and uncategorized cases, we 

randomly selected the trials included in the training/testing dataset and the validation dataset within 

the whole set of artifact-free single trials available. This random selection is fixed once before all the 

analyses.   

As will be clear in the following, we ran the analysis at the group level, finding a common spatio-

temporal pattern across all subjects (for similar approaches see Shinkareva et al 2011). This analysis 

is performed separately for uncategorized and categorized sounds. 

 

Datasets in response to uncategorized sounds 
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Only five of the subjects (one woman) had at least 10 artifact-free trials in response to uncategorized 

sounds for each of the two semantic categories (living and man-made). All the analyses described in 

the following refer therefore to these 5 subjects only. The whole list of uncategorized sounds is 

shown in the Supplemental Material2 (see also behavioral results for the EEG experiment). The 

dataset in response to sounds that subjects could not guess and that we used for training and testing 

the classifier included 50 trials from the living category and 50 trials from the man-made category 

overall. Collapsing data across subjects was necessary to include a sufficient number of trials for the 

classification analysis. The remaining single-trials were used to validate the classification 

performance. Specifically we consider as validation dataset a total of 77 single-trials in response to 

sounds of living items (that were not categorized). These data were extracted from all the 5 subjects 

ranging from 1 to 29 trials from each of them. By contrast the single trials in response to man-made 

sounds that we could use for the validation were too few (14 in total across the 5 subjects). We 

therefore decided to validate the classifier performance on responses to sounds of living items. 

 

Datasets in response to correctly categorized sounds 

For the same cohort of five subjects, we considered a total of 40 single trials for each subject and 

each semantic category for training and testing the classifier. This number of single trials was chosen 

so as to limit the computational time required for training and testing the classification performance 

at the group level (that is to say when collapsing single-trial data across subjects and therefore 

including 200 single-trials per condition).  

In addition, we considered a validation dataset that included a total of 40 trials across subjects for 

each category, living and man-made. 

 

Sound acoustic analysis 

We analyzed the sets of living and man-made sounds whose single-trial EEG responses were included 

in the datasets as described above. The goal was to assess whether the sets of living and man-made 

sounds (the uncategorized and correctly categorized were analyzed separately) differed acoustically.  

For both uncategorized and correctly categorized sounds, we first considered living and man-made 

sounds for each subject separately including only those sounds that were used in the training and 

testing phase. In addition, for the correctly categorized sounds, we considered the set of sounds 

collapsed across subjects whose single-trial EEG responses were included in the validation datasets. 

This analysis was not possible in the case of the uncategorized sounds because the validation 

datasets included only EEG responses to living sounds. 

The acoustic analysis between living and man-made sounds consisted in statistically comparing the 

spectrograms (defined with Matlab’s spectrogram function with no overlapping and zero padding), 
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using a time–frequency bin width of 5ms and 74 Hz. Statistical contrasts entailed a series of 

nonparametric t tests based on a bootstrapping procedure with 5000 iterations per time–frequency 

bin to derive an empirical distribution against which to compare the actual difference between the 

mean spectrograms from each sound category (Knebel et al., 2008; De Lucia et al., 2009, 2010a).  A 

significant difference at a given time–frequency bin was only considered reliable if all eight of its 

immediately adjacent bins also yielded values of p < 0.05 (i.e., a 3x3 bin spatial threshold was 

applied). This constitutes a minimal level of correction for multiple contrasts and time–frequency 

autocorrelation, as we were particularly interested in this analysis being overly sensitive to acoustic 

differences.  

As a result of these analyses, we found minor statistically reliable differences at the single subject 

level for uncategorized sounds (Figure 1, black-framed panels). It is worth noting that each of the ten 

test datasets included single trials belonging to one single subject only. Therefore in the 

training/testing phase, the classifier discriminated between trials in response to living and man-made 

sounds that exhibited minor acoustical differences.   

By contrast we found statistical differences at the single subject level in the case of correctly 

categorized sounds (not shown). Finally there were only minor statistically reliable differences 

between the sets of correctly categorized living and man-made sounds of the validation dataset 

(Figure1, blue-framed panel). 

 

3. Classification procedure 

 

The aim of the study was decoding the semantic category of each sound presented to the subjects 

both when the sound was correctly categorized and when subjects could not indicate the sound’s 

category. Decoding was here based on a classification algorithm that identified at a single-trial level 

the sound’s semantic category. The classification analysis was run separately for correctly 

categorized and uncategorized sounds. 

For each subject and semantic category, we partitioned the training/testing dataset into ten splits. 

Training was performed based on nine splits; the remaining (independent) split was used to test the 

classifier. Training and testing were repeated ten times using different splits and in a way that testing 

was always run on an independent partition of the data. Classification performance was assessed 

based on average classification accuracy (ratio of correctly classified single-trials) across the ten test 

datasets and on the validation dataset. However, only the classification performance obtained on the 

validation dataset is a reliable estimation the classification accuracy. Indeed, this set of trials had not 

been used at any point for training and for selecting the parameters of the classifier. 
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3.1 Method for single-trial classification  

  

Preprocessing  

 

For each experimental condition (living and man-made), we considered  the concatenation of peri-

stimulus EEG epochs (trials). At each time point, we represent the data across the electrode montage 

as a vector of voltage measurements m={m1,m2,…,mN}, where N is the total number of electrodes 

(Figure 2a). We refer to this vector as topography. These trials were pre-processed by normalizing 

each topography m by its total EEG power time point by time point. The aim of this normalization is 

to minimize the difference between voltage topographies due to the strength of the field evoked on 

the scalp (and to emphasize instead differences due to the overall shape of the topography) (Michel 

et al., 2001; Michel et al., 2004). In the following, we refer to m as a generic normalized topography 

at one time point. T indicates the total number of trials in the training dataset for each condition. 

  

3.1.1 Training phase 

Gaussian Mixture Model (GMM) estimation 

 

The first step of our analysis consisted of modeling the statistical distribution of the ensemble of 

topographies in the training dataset (see Tzovara et al. 2011 for more details). At this stage of the 

analysis, each experimental condition (living/man-made) was processed separately and all the 

available topographies were pooled together disregarding the latencies at which they were observed 

and the trial to which they belonged (Figure 2a, right panel).  

We considered a GMM probability distribution in an N-dimensional space (Figure 2a right panel) 

 

 

 

      (1) 

 

where Pk is the kth Gaussian distribution with mean μk and covariance σk, pk is the prior probability of 

the class label k and Q is the total number of Gaussians. In the following, we refer to the means - -  
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of the Gaussians as template maps, and for simplicity we replace the notation   with ” to 

indicate the k-th Gaussian within the GMM.  

The GMM estimation was based on an expectation-maximization procedure (Dempster et al, 1977; 

Bishop, 1995) that iterates the estimation of the model’s parameters (priors, means and covariance 

matrices) in order to minimize the error function, or equivalently maximize the likelihood : 

 (2) 

where the index j spans the total number of topographies in the training dataset, i.e. the total 

number of topographies in one trial multiplied by the total number of trials in the training dataset for 

one condition. The initialization of the expectation-maximization procedure was based on a k-means 

clustering algorithm (Bishop, 1995) that provides a first guess of the means and the covariance 

matrices. The values for the priors, , were obtained by the relative number of topographies for 

each cluster. Due to the limited number of training samples, we reduced the number of free 

parameters by constraining the covariance matrix to be diagonal.  

Model estimation based on expectation-maximization requires knowing in advance the total number 

of Gaussians, Q, in the model (in the example of Figure 2a right panel, Q=3). In the following, we 

explored many possible values of Q for each condition, and we then selected the optimal values 

based on maximizing classification accuracy (see Optimizing the total number of Gaussians). 

Evaluating the posterior probabilities of single-trial ERP data 

Once the GMM models had been estimated, we could assign each topography of the original dataset 

to one of the Gaussians  in the model. This could be done by computing the posterior probabilities 

(Bishop, 1995: p. 23-27) defined as in the following: 

 (3) 
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where  is the unconditional density function, i.e. the density function for m irrespective of the 

Gaussian .   

In order to investigate stimulus-related information, we rearranged the posterior probabilities to 

their original temporal order in the data, providing a new representation of the single-trial ERPs in 

time and across trials (see Figure 1 in Tzovara et al. 2011). For each trial, this rearrangement 

generated a time series of the posterior probability for each template map in the mixture.  

The posterior probabilities across trials typically revealed a pattern of presence of a given template 

map that was structured in time (Figure 2b, Figure 2a-b), where is the topography of t-th trial, at 

time-latency h. This posterior probability was computed at each latency and for each Gaussian   in 

the GMM model for each experimental condition. At this point we could compare the two conditions 

by taking advantage of the model estimated on each of the two conditions, separately. 

 

Identifying discriminative time periods between conditions 

 

In the following and  indicate the topographies of Condition 1 and Condition 2, 

respectively, appearing at the trial t and latency h;  and  refer to two generic Gaussians in the 

GMMs for the two conditions. Based on the two models and datasets, we computed 

and   as shown in Equation3. 

At each time-point h, we considered only one Gaussian per model, i.e. the one that yielded the 

highest posterior probability across trials within all the Q  Gaussians in the model:  

 

 

 (4) 

 

 

 

 

(5) 
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Within all the Gaussians in the two models, we expected that only a subset of them would be 

informative about the difference between the two conditions and possibly only along a certain time 

period (discriminative time period).  

For identifying discriminative periods between single-trials in response to living and man-made 

sounds, we compared time-point by time-point whether the posterior probabilities   and 

 were different between conditions by means of non‐parametric statistical analyses (e.g. 

Kruskal-Wallis test) in the training dataset (see Tzovara et al. 2011 for a similar approach based on 

Bayes Factor). This strategy could reveal one or more continuous time periods of differential activity 

between conditions. We call H the set of time-points over which the two conditions differed (Figure 

2b). This approach estimated discriminative time-periods in a data driven manner without a priori 

selection of the duration of these periods.  

 

3.1.2 Testing phase 

 

Discrimination function and accuracy 

 

During the test phase, we computed the posterior probabilities  and on the 

single trials belonging to the test dataset and along the temporal period H that had been estimated 

in the training phase (Figure2c). The discrimination function for the trial t was defined as: 

 

   

(9) 

 

The idea was to assign a trial from the test dataset to Condition1 if the posterior probability of the 

most likely Gaussian for the first model (Equation 4) was higher than the posterior probability of the 

most likely Gaussian for the second model (Equation 5), and vice versa. 

The classification performance was evaluated by the absolute classification accuracy (percentage of 

correctly classified single trials as living or man-made). We therefore obtained a set of values of 

classification accuracy evaluated on ten independent test datasets.  

 

Optimizing the total number of Gaussians and classification performance 

In order to find the optimum values for the total number of Gaussians, Q, we generated a set of 

models for each condition separately, with each of these two parameters ranging from three to nine. 
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Because we had considered ten splits of the data, for each pair of models we obtained ten values of 

classification accuracy. The best number of Gaussians was determined so as to maximize the mean 

classification accuracy across the ten datasets.  

We report the mean classification accuracy obtained on the test datasets and on the validation 

dataset separately. The classification accuracy obtained on the validation dataset was compared to 

the chance classification performance obtained by randomly shuffling the labels 100 times in the 

training and tests datasets. For each shuffle of the labels, we re-trained the classifier for the 

previously selected parameters (i.e. number of maps for each of the two models) and we evaluated 

its performance on the validation dataset. We carried out a paired statistical comparison (Wilcoxon 

signed-rank test; p < 0.001) between classification performance of the true classifier and the 100 

mean classification results obtained by randomly reshuffling the labels (see Pereira et al., 2009 for 

general guidelines on comparison between classifiers’ performance and chance-level). In practice this 

test entails computing the difference between the values that the true classifier assigns to each 

validation trial (1 if correct, 0 otherwise), and those assigned by the ‘random classifier’. The mean of 

these differences across trials in the validation dataset is tested with a Wilcoxon test to reject the 

null hypothesis that these 100 mean differences have median zero.  

Testing the role of specific temporal period 

The ten-fold training and testing analyses described above could reveal one or more temporal 

periods over which the two conditions significantly differ. In order to establish their contribution to 

the above-chance classification performance we ran a further analysis in the case when more than 

one continuous period of time points was found by the classification algorithm. For each of the 

latencies that we found significant in the previous analysis, we tested whether it was possible to 

decode semantic categories using the posterior probability computed along these periods of time 

only.  As it will be clear in the following, decoding of semantic categories of correctly categorized 

sounds involved two separated time-periods. We therefore tested whether each of them could be 

informative enough for obtaining above-chance classification accuracy in the validation dataset.  

4. Results

4.2 Behavioral results 
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Accuracy and response time 

Subjects accurately categorized most of the sounds. The average percentage (±SEM is indicated for 

all the average percentages) of correctly categorized man-made sounds was 88±1%; 5±1% were 

misjudged as living and 7±1% of the total number of the presented sounds was uncategorized. The 

average percentage of correctly categorized sounds of living items was 72±3%, whereas 

miscategorized sounds were 15±2% and uncategorized was 13±2%.  

Response times to uncategorized sounds were significantly longer than response times of correctly 

categorized ones (t-test; p<0.05) (Table 1).  

Distribution of correctly categorized and uncategorized sounds throughout the experiment 

We analyzed the possible influence of fatigue and/or a priming effect on behavior. We first tested 

whether miscategorization of sounds was due to a fatigue effect by controlling the presentation 

order of sounds that were correctly categorized with respect to uncategorized ones. Presentation 

order (indicated as PO in Tables 2 and 3) was analyzed by assigning an index (from 1 to the total 

number of presented sounds) to each sound along the experiment. We tested statistically whether 

this index of all the correctly categorized sounds included in the analysis was different from that of 

the uncategorized sounds. This test was performed for each category and each subject separately 

(this separation is justified by the same data partition in the single-trial analysis).  We found that 

there was no statistical difference for most of the subjects and the semantic category (Table 2); two 

significant differences were found (first subject man-made category and third subject living category) 

always with the uncategorized sounds occurring on average earlier than the correctly categorized 

one. Therefore, we concluded that we did not have any evidence of a fatigue effect.  

For all the subjects, we found a subset of sounds that were sometimes correctly categorized and 

sometimes uncategorized (indicated as overlapping sounds in Table 3, first and fourth columns). We 

investigated whether this behavioral result was interpretable in terms of a priming effect. Specifically 

we checked if uncategorized sounds were not priming those sounds that were, later in time, correctly 

categorized. Because each sound was presented many times during the course of the experiment, we 

computed the mean index (i.e. mean presentation order) for each of the sounds when they were 

correctly categorized and when they were not. We therefore obtained a set of mean presentation 

order for each of the sounds when they were correctly categorized and when they were not (Table 3, 

second and third columns for living category, fifth and sixth columns for man-made category), 

considering here only those sounds to which subjects did not answer consistently. We finally tested 

statistically whether these mean values differed (paired t-test; p<0.05). We found that this difference 
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was always significant, and we therefore concluded that it was not possible to exclude the presence 

of a priming effect. 

4.2 Classification results 

Uncategorized sounds 

By training and testing across ten splits of the data, we evaluated the discriminative time interval 

between single trials in response to living and man-made sounds (that were all uncategorized) and 

the corresponding classification performance computed as the mean ratio of correctly classified 

single-trials (±SEM is indicated for all the average accuracies). The discriminative time interval 

between living and man-made single trials was found between 116 and 174ms post-stimulus onset 

(thick line in Figure 3ab) as observed in at least 8 out of ten training dataset (Figure4). This 

differential activity was observed in all the ten training datasets (Figure 4), therefore demonstrating a 

persistent and robust effect across subjects.  

The average accuracy across the ten test datasets was 0.62 (±0.05). On a validation dataset (one class 

of single-trials in response to sounds of living items) the classification accuracy was 0.68. This 

accuracy was significantly above chance-level (Wilcoxon signed-rank test; p < 0.001).  

Figure 3 shows the average posterior probability for the living and man-made datasets and the 

corresponding template maps (Figure3a,b). We show here only those posterior probabilities that 

were on average higher than all the others at least at one time point during the discriminative time 

period. The average posterior probabilities are highly structured in both cases during the post-

stimulus period and in comparison to the baseline, with some template maps that remain ‘active’ 

(i.e. higher on average than the others) for up to 50ms. This is the case of the blue-framed template 

maps around 100ms, the red-framed template maps starting at around 200ms and the cyan-framed 

one at the end of the trials in both conditions.  

The discriminative time interval was between 116 and 174ms post-stimulus onset (thick line in Figure 

3ab and Figure4) involved mostly four template maps for the living condition and the red-framed 

map for the man-made condition (Figure 3 ab). A visual inspection of the voltage distributions in each 

of these template maps and the corresponding average posterior probabilities should clarify the role 

of this time-interval in discriminating between the two categories: the red-framed map of the man-

made model shows a frontal positive polarity; in the same interval and for the living model the most 

represented template maps are characterized by different spatial distributions with the exception of 

the red-framed one (similar to the red-framed map of the man-made model). Because of the 

difference in the spatial distributions of most of these maps across models, the difference of the 
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posterior probabilities obtained based by these two models leads to a robust classification between 

living and man-made sounds. From the same figure and following the same reasoning, we can 

observe that other periods are less informative for discriminating living and man-made objects. For 

example we can observe that starting at around 200ms post-stimulus onset, both datasets are on 

average best represented by the red-framed map of both models. This time-period is not 

discriminative because the red-framed maps have a similar spatial distribution on the scalp. 

At the test level (Figure 3c,d), the posterior probability of living and man-made single-trials, 

respectively, offer an intuitive representation of the classification result: a  living sound is 

represented -during the discriminative period (thick line)- by both the green-framed and cyan 

template maps as it is evident when fitting the single-trial related to this sound to the living model 

(Figure 3c); vice versa the same response when fitted to the man-made model is not providing the 

same amount of evidence that the red template map of the man-made model was actually active 

(Figure 3d). An analogous observation can be derived for a man-made sound, that basically does not 

activate any of the template maps shown in panel a (Figure 3e), while it shows a similar pattern of 

red-framed template maps as in panel b when fitted to the man-made model (Figure 3f). 

 

 

Correctly categorized sounds 

 

As we did for the uncategorized sounds dataset, we considered all the single trials collapsed across 

subjects for each of the category living and man-made (±SEM is indicated for all the average 

accuracies). We obtained two intervals of significant difference between 112 and 185ms post-

stimulus onset, and between 270 and 342ms (Figure 5, time intervals evaluated in at least 8 out of 

the training datasets). Mean accuracy across the ten test datasets was 0.55 (±0.02). When classifying 

based on the two time periods separately, mean accuracy -across ten datasets was 0.54 (±0.03) and 

0.58 (±0.03), respectively. On the validation dataset we obtained 0.56 when taking advantage of both 

intervals, and 0.52 and 0.63 when considering separately the first and the second interval, 

respectively. All these three classification accuracies obtained on the validation dataset were 

significantly above chance level.  (Wilcoxon signed-rank test; p < 0.001). 

 

 

5. Discussion 

 

We decoded semantic categories at a single-trial level by identifying modulations of the voltage 

topographies, previously normalized by the strength of their activity (De Lucia et al., 2007; Murray et 
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al., 2009; De Lucia et al. 2010b; Tzovara et al., 2011; Bernasconi et al., 2011). Through multivariate 

decoding, we could establish whether specific differential activity in the EEG response to living and 

man-made sounds can be exploited to accurately decode a sound’s semantic category. We carried 

out this analysis when subjects explicitly and correctly categorized sounds as living or as man-made, 

as well as when they could not provide an answer. We obtained two main findings. First, we showed 

the brain can discriminate semantic categories (living and man-made) at early stages (116ms to 

174ms post-stimulus onset) of sound processing even when it does not transpire behaviorally. 

Second, perceptual decision-making of environmental sounds typically relies on two stages of 

differential processing; during the first of these periods -overlapping with that observed for 

uncategorized sounds- enough evidence was accumulated for decoding sound categories from the 

EEG signal with an above-chance accuracy; the second stage of differential processing occurred after 

the sound ended. The first of these sets of results shows that even when subjects could not 

categorize the sounds, an above-chance decoding accuracy was obtained at early stages of sound 

processing. We interpret this evidence as the effect of a coarse level representation of the semantic 

category that is probably not sufficiently accurate for allowing a confident behavioral response 

during the categorization task. This result is particularly interesting in view of the fact that this early 

differential activity cannot readily be explained in terms of low-level acoustic differences between 

the groups of living and man-made sounds. Indeed comparisons between the spectrograms of the 

living and man-made sounds at the single subject level highlighted only sparse and minor time-

frequency bins exhibiting statistically significant differences (Figure 1). Moreover, because 

uncategorized sounds were different across subjects, possibly undetected low-level differences 

between living and man-made sounds (see Supplemental Material 2) would unlikely occur at the 

same latency for all the subjects. We conclude that decoding at this stage of sound processing is 

based on its semantic content (at least at a gross categorical level).  

Aside from there being a certain degree of semantic representation that underlies the above-chance 

decoding accuracy of uncategorized sounds, it is worth noting that this result is based on time-locked 

differential activity between living and man-made sounds. One would expect that the dynamic 

nature of the presented stimuli would produce a certain jitter in the timing when accumulated 

sensory evidence reached a certain level for decoding the semantic content of the sound. If this were 

the case, our results indicate that for our sets of sounds the limit for the evidence accumulation time 

interval can jitter between 116 and 174ms post-stimulus onset.  

In the case of correctly categorized sounds, we observed two discriminative intervals. The first can be 

interpreted as playing the role of a first level of semantic categorization in a similar way as observed 
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for uncategorized sounds. Indeed, the latencies of this first differential activity for categorized and 

uncategorized sounds were highly overlapping (cf. Figure 4 and Figure 5), despite the fact that these 

two analyses were run independently. When considering the first period of differential activity (112-

185ms post-stimulus onset) between living and man-made sounds, we obtained  a relatively lower 

classification accuracy for correctly categorized sounds in comparison to uncategorized sounds. This 

effect can be explained by a higher degree of heterogeneity of the first of these two groups. Indeed, 

correctly categorized sounds included both sounds whose related object could be later identified and 

those for which subjects could only categorize the sound as man-made or as that of a living item. By 

contrast, the uncategorized sounds were forcibly also unidentified. 

  

The analysis of single trials in response to correctly categorized sounds revealed in addition a 

discriminative time-period after the sound ended (270-342ms post-stimulus onset). Because this 

second component is present only when subjects explicitly categorized the sound as living or man-

made, it is likely representing the stage connecting the perceptual level to the process of executing a 

behavioral response, that is to say directly associated to the decision-making process. The relatively 

early latencies of this differential activity suggest that the present effects were not an artifact of 

motor planning and preparation, further supporting its role as a perceptual decision-making 

component. As for the uncategorized sounds, the comparison between the spectrograms of living 

and man-made sounds lead to minor statistically significant differences. These results support the 

conclusion that the above-chance classification accuracy in decoding single trials in response to living 

and man-made sounds cannot be explained in terms of acoustic differences but rather in relation to 

their semantic content. 

It remains an open question whether it is possible to predict if a specific sound will be correctly 

categorized. In other words, it is presently unclear which features make a sound ultimately be 

correctly categorized. Ability to recognize a sound is certainly a function of the accumulated evidence 

over time, i.e. their duration in time (Bigand et al.; 2011; see also Bestelmeyer et al., 2011). This is 

because all the presented sounds were easily recognized when presented for a longer duration (i.e. 

500ms). However the analysis of subjects’ behavior during the EEG experiment has shown that 

subjects were also influenced by the number of times the same sound was repeated during the 

experiment, at least for part of the presented sounds (cf. Table3 and Supplemental Material2). 

Further investigations and experiments are required to disentangle effects of low-level features of 

the presented sounds and possible priming effects in relation to their impact on subjects’ behavior 
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(see Murray et al 2008 and De Lucia et al. 2010c for priming effects induced by environmental sounds 

repetition).  

Behavioral analyses have also shown that we could exclude that the difference between correctly 

categorized and uncategorized sounds was due to an effect of fatigue. Indeed, we did not find 

evidence of a systematic deterioration of subjects’ ability during the course of the experiment as 

would be expected if fatigue was influencing behavior.  

Comparison to existing literature 

Perceptual decision-making both in the visual and somatosensory domains has emphasized the 

existence of at least two stages in stimulus processing leading to stimulus discrimination; mainly a 

bottom up process followed by higher-level involvement of areas responsible for  perceptual 

decision- making (Salinas et al., 2000; Romo et al., 2003; Philiastides et al., 2006a). Our results 

confirm the existence of at least two stages leading to perceptual decision across sensory modalities. 

In addition we show for the first time that discrimination at early stages of sound processing is not 

related to low-level features of auditory stimuli. Rather, semantic categorization can be decoded at 

these latencies and in the absence of behavioral proficiency.  

Most of the studies focusing on perceptual decision-making are based on sets of stimuli that differ 

with respect to their low-level feature content. Consequently, it was not possible to evaluate 

whether early and time-locked differential activity was related to the specific physical characteristic 

of the presented stimuli or more generally to its related semantic category. This is the case of studies 

looking at perceptual decision-making in the visual domain. Philiastides et al. (Philiastides et al., 

2006a; Philiastides et al., 2006b) found that the N170 component could be used to discriminate face 

versus car stimuli, irrespective of the task difficulty induced by the noise level in the stimuli. Other 

common experimental paradigms in the visual domain, such as those involving the discrimination of 

motion direction also includes differences at the level of physical features of the presented stimuli 

(i.e. Kim and Shadlen, 1999; Bennur and Gold, 2011). Clearly, in both cases the advantage is that it is 

possible to control a priori the noise level, and looking at the dependency of neural activity on the 

degree of task difficulty. By contrast, in our study we could not determine which sounds were more 

difficult to categorize. Our distinction between categorized and uncategorized sounds is based on 

behavior and therefore evaluated a posteriori.  Despite these differences, the latencies of our effects 

are similar to those found in the visual domain with complex stimuli  (Philiastides et al., 2006a); the 

first processing component occurring around 170ms post-stimulus, the second component starting at 

300ms and shifting up to 450ms post-stimulus onset depending on task difficulty.  
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Our results are not readily comparable with the limited extant literature on perceptual decision-

making in the auditory domain. In previous studies subjects were asked to attribute the presented 

stimuli to one of two possible alternative phoneme ‘categories’, independent of the level of noise 

mask (Binder et al. 2004; Kaiser et al. 2006). The two alternative options were well separated in 

terms of their frequency content and therefore likely to be directly related to the quality of sensory 

information. In the current study, we consider environmental sounds that were grouped on the basis 

of behavioral outcome (correctly categorized or uncategorized) with different uncategorized sounds 

for each subject and each living/man-made category. Another important difference with respect to 

previous works is in the nature of the experimental task. In previous studies participants had to 

choose between two possible alternatives after a pair of sounds had been presented in sequence, 

therefore implicitly asking the subject to memorize the sequence before giving an answer. In the 

current study the categorization is based on subjects’ past experience not on the direct memory of 

recent stimuli. 

Multivariate decoding 

Our multivariate decoding approach is based on the modulation of the presence of voltage 

topographies that were previously normalized. This approach is therefore not biased by an a priori 

selection of the electrodes where one would expect to observe an effect and is informative about 

variations in the spatial configurations of the underlying neural sources. Indeed our multivariate 

approach is based on differences in the relative presence of specific voltage configurations that 

reflect specific spatial arrangements of neural generators. Other approaches based on the voltage 

measurement at multiple electrode sites do not consider the voltage topographies as 

multidimensional measurement, and therefore the information about the voltage distribution and its 

neurophysiologic interpretability is not taken into account(i.e. Philiastides et al., 2006). With respect 

to the values of the classification accuracy obtained, these are in line with what has been shown with 

environmental sounds and multivariate decoding in fMRI (Staeren et al. 2009). Using 

electrophysiologic signals, decoding sound categories at the single-trial AEP level has turned out to 

be more challenging than in the visual domain. Simanova et al (Simanova et al, 2010) attempted at 

decoding semantic categories of auditory stimuli at the single-trial level in an experiment in which 

subjects were asked to perform a task irrelevant to the categorization. A multivariate pattern analysis 

based on Bayesian logistic regression performed poorly in comparison to a similar analysis applied to 

visual stimuli; and in about half of the subjects they obtained chance-level classification accuracy. 

Despite that, in a more challenging experimental paradigm, Bernasconi et al. (2011) could show that 
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the same single-trial analysis as applied in the present study lead to an above-chance prediction of 

subjects auditory percepts while listening to acoustically identical auditory stimuli that were 

erroneously perceived as differing in pitch or duration. 

Conclusions 

We have shown that the brain is able to discriminate the semantic category of environmental sounds 

even when this does not transpire behaviorally. Two stages of differential activity over the initial 

400ms post-stimulus onset contribute to perceptual decision-making. An early stage of sound 

processing (at ~116ms) is observed irrespective of whether or not subjects could explicitly categorize 

the sound as belonging to the man-made or to the living semantic category. Correct categorization 

requires a subsequent processing stage (at ~270ms). To the best of our knowledge we provide for 

the first time an insight into brain mechanisms of auditory perceptual decision-making of complex 

environmental stimuli. Moreover, using normalized voltage topographies we could 

neurophysiologically interpret our classification results in terms of changes in the underlying neural 

generators activated in response to sounds belonging to different semantic categories. 

Figure 1. Statistical comparison between spectrograms of living and man-made sounds. For each 

panel we show on the left the p values of the results of this comparison at each time-frequency bin 

(~5ms and ~80Hz); on the right we show in red the bins meeting the following statistical: eight 

spatially contiguous bins exhibit statistically significant results (non-parametric t-test; p<0.05 

equivalent to a cluster-level value of p<0.00625). 

(Black-framed panels) Results of the analyses conducted on the sounds included in the training and 

testing datasets of uncategorized sounds for each subjects separately (numbered from 1 to 5). 

(Blue-framed panel) Results of the comparison between the spectrograms of living and man-made 

sounds that were correctly categorized and whose single-trial EEG responses were included in the 

validation dataset. 

Figure 2. Schematic representation of the single-trial classification. 
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a. (left panel) At each time-point, the topography is represented as a vector in N-dimensional space

(where N=#electrodes). (right panel) At this stage we do not take into account the latency and the 

trial to which it belongs and all the voltage topographies are pooled together in an N-dimensional 

space. Only the semantic category information is kept in this representation. Each dataset is 

modelled as a GMM; in the figure we show two GMMs with three Gaussians in the mixture. 

b. Based on GMM models’ parameters, each topography is assigned a set of posterior probabilities,

the number of which equals that of the Gaussians in the mixture. The set of posterior probabilities 

values are re-arranged time-point by time-point and re-assigned to each of the original trials. Left 

and right panels show the average posterior probabilities across trials for each of the two models and 

datasets, together with the discriminative time-period H where the two conditions are most 

different. 

c. Example of posterior probabilities of a test single-trial. Only those posterior probabilities that

appeared during the discriminative time-period are relevant for the classification. This single-trial is 

classified as belonging to the X condition because the green posterior probability estimated from the 

X model (left panel) is higher than estimated from the Y model (right panel), during the relevant 

time-period. 

Figure 3. Panels a and b. Summary of the template maps and average posterior probabilities 

obtained when training the GMM model separately on the living and man-made datasets (panels a 

and b, respectively). During the discriminative time-period 116-174ms, (see section 4.2) average 

posterior probabilities are plotted in thick lines, highlighting those values of probabilities that were 

used to classify test data as living or as man-made. Color codes between panels a and b should be 

read independently. (i.e. red-framed template map in a relates to red curve in the same panel only; 

the same holds for panel b). 

Panels c and d. Posterior probabilities of the single-trial response to the sound of a living object. 

Panels c and d show the posterior probabilities obtained using the living and the man-made model, 
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respectively (color code in c and d refers to the template maps shown in a and b, respectively). The 

sum of posterior probabilities along the discriminative period is higher in panel c than in panel d, that 

is to say the living sound is correctly recognized by the classified. 

Panels e and f. Posterior probabilities of the single-trial response to the sound of a man-made object. 

Panels c and d show the posterior probabilities obtained using the living and the man-made model 

respectively (color code in e and f refers to the template maps shown in a and b, respectively). The 

sum of posterior probabilities along the discriminative period is higher in panel f than in panel e, that 

is to say the man-made sound is correctly classified. 

Figure4. Time-periods of differences between posterior probabilities assigned to trials of 

uncategorized living and man-made sounds (trials in response to sounds for all subjects). Red 

intervals highlight periods of differential activity between living and man-made trials as identified for 

each training dataset. Differential activity between 116 and 174ms post-stimulus onset is consistently 

observed despite subjects’ heterogeneity. 

Figure5. Time-periods of differences between posterior probabilities assigned to trials of correctly 

categorized living and man-made sounds (trials in response to sounds for all subjects). Red intervals 

highlight periods of differential activity between living and man-made trials as identified for each 

training dataset. Differential activity between 112 and 185ms post-stimulus onset, and between 270 

and 342ms post-stimulus onset is consistently observed despite subjects’ heterogeneity. 
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Table 1 

Response time 

Living sounds Man-made sounds 

Subject number Correctly 

categorized 

Incorrectly 

categorized 

Correctly 

categorized 

Incorrectly 

categorized 

S1 518ms* 811ms 517ms* 1070ms 

S2 559ms* 1302ms 577ms* 1467ms 

S3 690ms* 2775ms 853ms* 2576ms 

S4 793ms* 1867ms 1117ms* 1538ms 

S5 660ms* 1782ms 786ms* 1326ms 

Table1. Response time in milliseconds in response to living and man-made sounds when subjects 

could correctly indicate the sounds categories and when they could not guess. Asterisks denote 

response times to correctly categorized sounds that were significantly faster than those to 

uncategorized ones (t-tests; p<0.05). The difference between these response times was always 

significant for all subjects and for living and man-made sounds. 
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Table 2 

Position order 

Living sounds Man-made sounds 

Subject number Correctly 

categorized 

Incorrectly 

categorized 

Correctly 

categorized 

Incorrectly 

categorized 

S1 337 294 330* 246 

S2 330 328 329 290 

S3 349* 242 327 290 

S4 291 274 275 223 

S5 325 326 331 325 

Table2. Average position index of living sounds (second and third columns for correctly categorized 

and uncategorized ones, respectively) and man-made sounds (fourth and fifth columns for correctly 

categorized and uncategorized ones, respectively) for each of the five subjects. Asterisks indicate 

those position indexes of correctly categorized sounds that were significantly different from the 

uncategorized ones in the same category.  
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Table 3 

Subject 

number 

Living sounds Man-made sounds 

# 

overlapping 

sounds 

Position order 

# 

overlapping 

sounds 

Position order 

Correctly 

categorized 

Ucategorized Correctly 

categorized 

Uncategorized 

S1 13 82 18 13 82 8 

S2 8 82 9 10 107 8 

S3 9 77 13 12 86 7 

S4 16 76 18 11 122 11 

S5 14 61 23 8 101 8 

Table 3. Number of living and man-made sounds to which subjects correctly or incorrectly answered 

depending on presentation order (first and fourth columns for living and man-made sounds, 

respectively). Average position order of these living sounds (second and third columns for correctly 

categorized and uncategorized ones, respectively) and man-made sounds (fifth and sixth columns for 

correctly categorized and uncategorized ones, respectively) for each of the five subjects. All position 

indexes of correctly categorized sounds were significantly later than the uncategorized ones in the 

same category.  
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9. Figure1

http://ees.elsevier.com/ynimg/download.aspx?id=787036&guid=d533f769-a560-4597-951c-daeacbb355f5&scheme=1
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9. Figure2
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9. Figure3
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9. Figure4
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