1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

NATIG,

o
HE

s sy,
Y

10

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Neuroimage. 2012 August 15; 62(2): 852-855. doi:10.1016/j.neuroimage.2012.03.016.

Multivariate pattern analysis of fMRI: The early beginnings

James. V. Haxby
Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, Center for Mind/Brain
Sciences, University of Trento, Italy

Abstract

In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex
that introduced a new method for fMRI analysis, which subsequently came to be called
multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze
neural responses as patterns of activity that reflect the varying brain states that a cortical field or
system can produce. This paper recounts the circumstances and events that led to the original
study and later developments and innovations that have greatly expanded this approach to fMRI
data analysis, leading to its widespread application.
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Multivariate pattern analysis (MVPA) of fMRI data has proven to be more sensitive and
more informative about the functional organization of cortex than is univariate analysis with
the general linear model (GLM). MVPA refers to a set of methods that analyze neural
responses as patterns of activity, thus affording investigation of the varying brain states that
a cortical field or system can produce, thus increasing the amount of information that can be
decoded from brain activity, in contrast to simpler univariate measures that indicate the
extent to which a cortical field or system is globally engaged. We first devised a prototype
MVPA method in the course of investigation of the functional architecture for face and
object recognition in ventral temporal cortex (Haxby et al., 2001). The results of this study
demonstrated the basic concept and power of MVPA. Initially, however, the paper attracted
attention primarily for its neuroscientific content, namely as a strong argument for
distributed representation of high-level visual percepts that stood in contrast to modular
accounts (Kanwisher et al. 1997). Recognition of the significance of the methodological
innovation was slower. The initial disinclination of others to use MVPA in fMRI research
was due, in part, to unfamiliarity and the perceived complexity of these methods. MVPA
does not provide simple answers to the kinds of questions people were asking — Where is the
motion area? Where is the face (or place or body parts) area? Where is the numbers area?
and so forth; and partly because they addressed questions that people hadn’t thought of
investigating — What are the varying brain states in an area and how do they encode different
types of information? These methods were not simply another method to answer the same
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questions but, rather, challenged cognitive neuroscientists to consider a different model of
cortical organization.

In 1991 and 1994, working with Cheryl Grady, Barry Horwitz, Leslie Ungerleider, Mort
Mishkin, and Stanley Rapoport, we published two positron emission tomography (PET)
studies on the division of visual processing in the human brain into the ventral object vision
pathway and the dorsal spatial vision pathway (Haxby et al. 1991, 1994). We had chosen a
face-matching task as our proxy for object vision in the ventral pathway. Without fail,
wherever we presented these data, we were asked why we had made this decision, given the
neuropsychological, developmental, and behavioral evidence that face processing has a
special status that is distinct from processing of other objects.

In the meantime, | had moved from the National Institute on Aging to the National Institute
of Mental Health (down two floors) where | developed an independent cognitive
neuroscience research program working with Leslie Ungerleider and Alex Martin. With our
entry into fMRI research, one of my first goals was to address whether face and object
perception activate the same or different cortical regions. As we were still puzzling over our
initial results, others published reports on a specialized area in the fusiform gyrus that
responded more during face perception tasks than during perception of other objects (Puce et
al. 1996; McCarthy et al. 1997; Kanwisher et al. 1997). We decided to conduct two further
experiments — one looking at the effect of face inversion (Haxby et al. 1999) and the other
looking at whether two different categories of objects evoked equivalent patterns of
response in the non-face-selective cortex (Ishai et al. 1999). The results of both studies
confirmed the existence of a patch of fusiform cortex that responded more to faces than to
other stimuli but led us to doubt the interpretation that this region is specialized for face
processing and nothing else. As | analyzed the results of the face inversion paper, | also
devised a new method of correlating patterns of response to different conditions, which
became the basis for our paper in 2001 that introduced MVPA (Haxby et al. 2001).

The principal finding from these two studies that made us doubt that the face area was
specialized for face perception and nothing else, and that face processing was restricted to
the face area, came from our analysis of responses to faces, houses, and chairs, relative to a
no stimulus baseline, in ventral temporal cortex (Haxby et al. 1999, Figure 2; Ishai et al.
1999, Figure 3). The voxels in the face area clearly showed significant responses to the non-
preferred categories. Similarly, chair-selective voxels and house-selective voxels also
showed positive, and usually significant, responses to non-preferred categories (with the
exception of a negligible response to faces in medial fusiform house-selective voxels). The
strong modularity hypothesis, and the logic of univariate analysis of contrasts in
neuroimaging, implied that these weaker, albeit significant, brain responses played no role in
representation. In essence, they are discarded because they indicate that the stimulus is a
suboptimal fit for the function in those cortical fields. This seemed improbable to us on two
counts. First, discarding information in submaximal responses seemed suboptimal and
conflicted with methods for analyzing population response representations. Second, the
proposal that every possible face, animal, and object category has a specialized region or set
of neurons dedicated to its representation didn’t seem possible. There are too many ways
that faces and objects can be categorized. Moreover, category-dedicated systems do not
capture the relationships, or similarities, among categories. Instead, it seemed more probable
that the weak responses play an important role in representation, implying that face and
object categories are encoded as patterns of neural activity, rather than as peak responses in
category-specific modules, and that these patterns involve neural populations that play a role
in the representation of multiple categories.
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We set out to test this hypothesis and began collecting data in 1998 on neural responses to
eight categories of objects, animals, and faces — human faces, cats, chairs, shoes, scissors,
bottles, houses, and phase-scrambled images. The broad outlines of the project were clear
from the beginning but working out the details of the analysis took a lot of time. We
hypothesized that each category would evoke a distinct pattern of response in ventral
temporal cortex. We hypothesized further that these distinctive patterns would not be
restricted to category-selective regions, such as the FFA and PPA, leading to the prediction
that distinctive patterns could be detected if such regions were excluded from the analysis.
We also hypothesized that neural activity patterns within category-selective regions would
carry information that discriminates between categories other than those regions’ preferred
stimuli. The analytic approach would be based on the pattern correlation method that | had
devised for our paper on face inversion (Haxby et al. 1999). In hindsight, the project was
straightforward from the beginning and was completed mostly as planned. At the time, | felt
as if | were groping around in the dark working out how to actually execute these analyses.
My next-door neighbor at NIH, Alex Martin, thought that | would never emerge from these
labors.

The idea was straightforward and based on a concept from conventional statistics, namely
split-sample cross-validation. If a given stimulus category evoked a distinct pattern of
activity, then independent observations of the response to that category should be more
similar to each other than to responses to different categories. Correlation of patterns was the
chosen measure of similarity, and I made independent observations by dividing the data for
each subject into two halves — even-numbered and odd-numbered runs. Thus, | predicted
that within-category correlations would be higher than between-category correlations. The
subsidiary hypotheses were to be tested in two further analyses. In the first, | identified the
voxels that responded maximally to each category and eliminated those voxels for each
possible pair of categories when comparing within- and between-category correlations for
that pair. In the second, | identified the FFA and PPA and tested for category-specific
patterns for all categories within those areas.

In retrospect, it is hard to remember why devising and executing the analysis took so long.
Working with fMRI analysis systems that were designed for univariate analyses, primarily
AFNI (Cox) and, to a lesser extent, our own home-grown FIDAP (Functional Imaging Data
Analysis Program, written by José Maisog in my group, and decommissioned years ago) and
UNIX programming, each step was constructed using tools not designed for this application.
For example, the correlations were all calculated using a little-known function in AFNI,
3ddot, that calculated one correlation at a time.

At the time, | was unaware of other pattern classification methods from machine learning.
The relevance and utility of these methods was demonstrated through collaborations with
colleagues who reanalyzed my data using neural net classifiers (Hanson et al. 2004) and
linear discriminant analysis (LDA) (O’Toole et al. 2005) and through subsequent papers
from groups that analyzed similar datasets collected independently, most prominently Cox
& Savoy’s (2003) application of support vector machines (SVM). Tom Mitchell later
dignified the split-sample, correlation-based method, which | had devised based on
conventional statistics, by giving it a respectable machine learning pattern classifier name,
calling it a “‘one-nearest neighbor’ classifier using a correlation-based distance measure
(correlation-based 1NN). Curiously, this method is still used in many reports (e.g. Peelen et
al. 2010), presumably because of its conceptual simplicity and straightforward
interpretation. It also proved to be surprisingly sensitive, although we have found that other
classifiers, in particular SVM (e.g. Connolly et al. in press; Haxby et al. 2011), consistently
outperform correlation-based 1NN. Later, my colleague at Princeton, Ken Norman, took to
calling this approach ‘multivoxel pattern analysis’ (MVPA), which we subsequently
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changed to ‘multivariate pattern analysis’, to acknowledge, with no need for a new acronym,
its application to feature sets other than voxels.

The general adoption of MVVPA gained momentum very slowly. | believe that three factors
underlay this inertia. First and foremost, it was unclear what the results of an MVPA
classification analysis meant in terms of neural representation. Second, it seemed
complicated and software for implementation was not available. Third, MVVPA analyses
typically were done separately for each individual because the pattern structure that carries
subtle distinctions appeared to be based on fine-grained topographies that did not align well
across brains based on anatomy. Consequently, the cortical topographic features that carry
these subtle distinctions were unspecified and somewhat mysterious.

Enthusiasm for MVPA ticked up significantly with two reports that appeared back-to-back
in Nature Neuroscience in 2005 (Kamitani & Tong, 2005; Haynes & Rees, 2005), both of
which showed that MVPA could be applied to a visual feature with a well-understood neural
basis, namely edge orientation. Kamitani & Tong (2005) and later papers from Haynes’
group showed further that MVVPA could decode cognitive states, such as the target of
selective attention (Kamitani & Tong, 2005), and the intention to perform one task rather
than another (Haynes et al. 2007). Shortly thereafter, a series of review papers began to
appear that presented the principles of MVPA in a clear and accessible manner, further
demystifying the basis of this new analytic approach (Haynes & Rees, 2006; Norman et al.
2006; O’Toole et al. 2007; Mur et al. 2009; Pereira et al. 2009; Tong and Pratt, 2012).

A parallel development was the realization that multivariate response patterns also could be
analyzed in terms of strength of similarities among response patterns, rather than simply as
binary distinctions, affording analysis of the structure of representational spaces. This work
actually began with an underappreciated paper by Edelman et al. (1998). Reanalyses of our
data by Steve Hanson and his colleagues (2004) and Alice O’Toole and her colleagues
(2005) revealed similarity structures that conformed to intuitions about semantic
relationships — namely, a major distinction between animate and inanimate objects and a
secondary distinction between houses and small inanimate objects. This approach was
amplified greatly in a landmark study by Kiani et al. (2007) of similarity structure in the
population responses of large numbers of single cells in monkey IT cortex, followed by a
second landmark study (Kriegeskorte et al. 2008a), which showed that the similarity
structure in monkey IT cortex (from Kiani et al.’s single unit data) and human VT cortex
(using fMRI) are remarkably similar, characterized by major distinctions between animate
and inanimate stimuli and, within the animate domain, between faces and bodies. In a later
study, Connolly et al. (in press) found even more structure in the representation of animate
entities in human VT cortex, with a similarity structure that embodies semantic relationships
among classes of animal species, similar to what Kiani et al. (2007) had found in monkey IT
population responses. Kriegeskorte (2008b) has proposed that analysis of similarity structure
could provide a common basis for comparing representational spaces across multiple
neuroscience approaches, such as fMRI, single unit physiology, computational models, and
stimulus models, and gave this approach a new name, ‘representational similarity analysis’
or RSA, which has stuck.

Meanwhile, another new approach showed that multivoxel responses to new stimuli could
be predicted based on high-dimensional feature models of stimuli (Kay et al. 2008; Mitchell
et al. 2008; Naselaris et al. 2009; Nishimoto et al. 2011). These methods make the
relationships between stimulus attributes and response patterns explicit, bringing us closer to
understanding how patterns of activity in fMRI data and stimulus representation are related.
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MVPA is more complicated than conventional univariate analysis, and this complexity has
been a major barrier for many. Good software is now readily available, however, that makes
MVPA more accessible to investigators. When | was at Princeton, a graduate student in Ken
Norman’s laboratory, Greg Detre, took on the project of developing an MVVPA toolbox using
Matlab (the Princeton MVPA toolbox (http://code.google.com/p/princeton-mvpa-toolbox/).
Around the same time, Michael Hanke, who at the time was a graduate student studying
with Stefan Pollman at the University of Magdeburg, came to Princeton to learn MVPA in
my laboratory. Michael Hanke turned out to be a brilliant software developer and a fervent
advocate of free and open-source software (FOSS). He decided to develop PYMVPA, a
Python-based MVPA toolbox, in collaboration with Yaroslav Halchenko
(www.pymvpa.org) (Hanke et al. 2009), who was working with Steve Hanson at Rutgers
University. By using Python, this toolbox incorporates software from a vast library of
machine learning algorithms.

Another source of wariness about MVVPA came from its reliance on fine-scale topographic
features to detect subtle distinctions between patterns. These fine-scale features cannot be
aligned well across brains based on anatomy. Consequently, MVPA generally builds
classifier models for an individual subject based on that subjects’ own data. As a result, the
population response topographies that carry fine distinctions are difficult to characterize and
appear idiosyncratic. Ten years after our 2001 paper, we published a paper that, we believe,
solves this problem (Haxby et al. 2011). In this report, we presented a new method,
hyperalignment, that enabled us to derive common models of cortical representational
spaces that capture all of the information for MVP classification in a set of a few dozen basis
functions. These basis functions have stimulus tuning functions that are common across
brains and model individual voxel tuning functions as weighted sums. These basis functions
also are associated with individual-specific pattern basis functions that model individual
cortical response patterns as weighted sums. These models thus account for the fine-scale
topographies that underlie the sensitivity of MVVPA in a straightforward linear model and
show that these topographies have a basis that is common across individuals.

Ten years after our paper that introduced MVPA in 2001, the methods have become vastly
more sophisticated, software has been developed that make implementation with
standardized algorithms widely accessible, and the conceptual foundations have been
clarified and amplified. The methods are more complicated than those of conventional
univariate analysis, requiring more sophistication and computational knowledge on the part
of its users. MVPA, however, allows one to investigate questions about the how information
is encoded in patterns of neural activity, rather than simpler questions about where functions
simply are performed. Many investigators are now finding that the scientific payoff justifies
the effort necessary to use these methods effectively. Now that this approach has engaged a
large community of sophisticated investigators, the rate of development and innovation is, if
anything, accelerating.

References

Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO, Wu Y-C, Abdi H, Haxby JV. The
representation of biological classes in the human brain. J Neurosci. 2012; 32:2608-2618. [PubMed:
22357845]

Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and
classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage. 2003; 19:261—
270. [PubMed: 12814577]

Edelman S, Grill-Spector K, Kushnir T, Malach R. Toward direct visualization of the internal shape
space by fMRI. Psychobiol. 1998; 26:309-321.

Neuroimage. Author manuscript; available in PMC 2013 August 15.


http://code.google.com/p/princeton-mvpa-toolbox/

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Haxby

Page 6

Hanke M, Halchenko YO, Sederberg PB, Hanson SJ, Haxby JV, Pollman S. PyMVPA: A Python
toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics. 2009; 7:37-53. [PubMed:
19184561]

Hanson SJ, Toshihiko M, Haxby JV. Combinatorial codes in ventral temporal lobe for object
recognition: Haxby (2001) revisited: Is there a “face” area. Neuroimage. 2004; 23:156-167.
[PubMed: 15325362]

Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro
MB, Rapoport Sl. Dissociation of object and spatial visual processing pathways in human
extrastriate cortex. Proc Natl Acad Sci, USA. 1991; 88:1621-1625. [PubMed: 2000370]

Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL. The functional organization
of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. J
Neurosci. 1994; 14:6336-6353. [PubMed: 7965040]

Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A. The effect of face
inversion on activity in human neural systems for face and object perception. Neuron. 1999;
22:189-199. [PubMed: 10027301]

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping
representations of faces and objects in ventral temporal cortex. Science. 2001; 293:2425-2430.
[PubMed: 11577229]

Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR, Gobbini MI, Hanke M, Ramadge
PJ. A common, high-dimensional model of the representational space in human ventral temporal
cortex. Neuron. 2011; 72:404-416. [PubMed: 22017997]

Haynes JD, Rees G. Predicting the orientation of invisible stimuli from activity in primary visual
cortex. Nature Neurosci. 2005; 8:686—691. [PubMed: 15852013]

Haynes JD, Rees G. Decoding mental states from brain activity in humans. Nature Rev Neurosci.
2006; 7:523-534. [PubMed: 16791142]

Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. Reading hidden intentions in the
human brain. Curr Biol. 2007; 17:323-328. [PubMed: 17291759]

Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV. Distributed representation of objects in
the human ventral visual pathway. Proc Natl Acad Sci, USA. 1999; 96:9379-9384. [PubMed:
10430951]

Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nature
Neurosci. 2005; 8:679-685. [PubMed: 15852014]

Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex
specialized for face perception. J Neurosci. 1997; 17:4302-4311. [PubMed: 9151747]

Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images from human brain activity.
Nature. 2008; 452:352—-355. [PubMed: 18322462]

Kiani R, Esteky H, Mirpour K, Tanaka K. Object category structure in response patterns of neuronal
population in monkey inferior temporal cortex. J Neurophysiol. 2007; 97:4296-4309. [PubMed:
17428910]

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA. Matching
categorical object representations in inferior temporal cortex of man and monkey. Neuron. 20083;
60:1126-1141. [PubMed: 19109916]

Kriegeskorte N, Mur M, Bandettini P. Representational similarity analysis - connecting the branches of
systems neuroscience. Front Syst Neurosci. 2008b; 2:4. [PubMed: 19104670]

McCarthy G, Puce A, Gore JC, Allison T. Face-specific processing in the human fusiform gyrus. J
Cogn Neurosci. 1997; 9:605-610.

Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL, Mason RA, Just MA. Predicting
human brain activity associated with the meanings of nouns. Science. 2008; 320:1191-1195.
[PubMed: 18511683]

Mur M, Bandettini PA, Kriegeskorte N. Revealing representational content with pattern-information
fMR: an introductory guide, Soc. Cog Neurosci. 2009; 4:101-1009.

Nishimoto S, Vu AT, Naselaris T, Bejamini Y, Yu B, Gallant JL. Reconstructing visual experience
from brain activity evoked by natural movies. Curr Biol. 2011; 21:1-6. [PubMed: 21129968]

Neuroimage. Author manuscript; available in PMC 2013 August 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Haxby

Page 7

Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL. Bayesian reconstruction of natural images
from human brain activity. Neuron. 2009; 63:902-915. [PubMed: 19778517]

Norman KA, Polyn SM, Detre GJ, Haxby JV. Beyond mind- reading: multi-voxel pattern analysis of
fMRI data. Trends Cogn Sci. 2006; 10:424-430. [PubMed: 16899397]

O’Toole AJ, Jiang F, Abdi H, Haxby JV. Partially distributed representations of objects and faces in
ventral temporal cortex. J Cogn Neurosci. 2005; 17:580-590. [PubMed: 15829079]

O’Toole AJ, Jiang F, Abdi H, Pénard N, Dunlop JP, Parent MA. Theoretical, statistical, and practical
perspectives on pattern-based classification approaches to the analysis of functional neuroimaging
data. J Cogn Neurosci. 2007; 19:1735-1752. [PubMed: 17958478]

Peelen MV, Atkinson AP, Vuilleumier P. Supramodal representations of perceived emotions in the
human brain. J Neurosci. 2010; 30:10127-10134. [PubMed: 20668196]

Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview.
Neuroimage. 2009; 45(Suppl 1):S199-209. [PubMed: 19070668]

Puce A, Allison T, Asgari M, Gore JC, McCarthy G. Differential sensitivity of human visual cortex to
faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci. 2006;
16:5205-5215. [PubMed: 8756449]

Tong F, Pratte MS. Decoding patterns of human brain activity. Ann Rev Psychol. 2012; 63:483-509.
[PubMed: 21943172]

Neuroimage. Author manuscript; available in PMC 2013 August 15.



