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Abstract
It is well known that gray matter changes occur in neurodegenerative diseases like Alzheimer’s
(AD) and fronto-temporal dementia (FTD), and several studies have investigated their respective
patterns of atrophy progression. Recent work, however, has revealed that diffusion MRI that is
able to detect white matter integrity changes may be an earlier or more sensitive biomarker in both
diseases. However, studies that examine white matter changes only are limited in that they do not
provide the functional specificity of GM region-based analysis. In this study, we develop a new
metric called the Loss in Connectivity (LoCo) score that gives the amount of structural network
disruption incurred by a gray matter region for a particular pattern of white matter integrity loss.
Leveraging the relative strengths of WM and GM markers, this metric links areas of WM integrity
loss to their connected GM regions as a first step in understanding their functional implications.
The LoCo score is calculated for three groups: 18 AD, 18 FTD, and 19 age-matched normal
controls. We show significant correlations of the LoCo with the respective atrophy patterns in AD
(R = 0.51, p = 2.2 × 10−9) and FTD (R = 0.49, p = 2.5 × 10−8) for a standard 116 region gray
matter atlas. In addition, we demonstrate that the LoCo outperforms a measure of gray matter
atrophy when classifying individuals into AD, FTD, and normal groups.
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1. Introduction
Alzheimer’s disease (AD) has been classically characterized as neuronal death that primarily
affects the cerebral gray matter (GM) (Brun and Englund 1986; Jack et al. 1997; Thompson
et al. 2003; Frisoni et al. 2009). Neuropathological evidence points to a neuronal/synaptic
polioencephalopathy (Braak et al. 2000) with accumulation of beta amyloid and/or tau
protein in the GM resulting in neuron loss and gross atrophy. Recently, sophisticated
algorithms have enabled accurate measurement of baseline and longitudinal atrophy patterns
from structural MRI data (Apostolova et al. 2007; Thompson et al. 2003) via a well-
established pipeline involving segmentation, atlas-based parcellation (Wu et al. 2007), and
volumetric/thickness analysis (e.g. FreeSurfer (Fischl et al. 2002), FSL (Smith et al. 2004)
and SPM (Klauschen et al. 2009)). Areas specifically associated with atrophy under AD
pathology include the hippocampus, amygdala, medial temporal lobe, posterior cingulate
and parietal regions. Functional MRI (fMRI) studies have detected patterns of connectivity
losses, especially in the posterior cingulate cortex and medial prefrontal cortex, even in
amnesiac mild cognitive impairment (a-MCI) before GM atrophy is detectable (Gili et al.
2011). In Chételat et al. (2008), it was shown that hypometabolism largely exceeds GM
atrophy in most regions of the cortex in AD patients. In frontotemporal dementia (FTD),
significant brain atrophy in the frontal and temporal lobes (Avants et al. 2010; Krueger et al.
2011), disruptions in functional activation patterns (Zhou et al. 2010), and changes in
metabolism (Jeong et al. 2005) have been shown in GM. It has also been shown that
different dementias target different dissociated networks in the brain - the posterior temporal
heteromodal network in AD (Buckner et al. 2005; Acosta-Cabronero et al. 2010), and the
orbitofrontal network in FTD (Seeley et al. 2009). The latter study conclusively showed
dissociated targeting and selective vulnerability of certain corticocortical networks in
various neurodegenerative diseases.

Although dementias may have been seen as primarily GM-mediated diseases, it is now well
known that the progression involves white matter (WM) fiber pathways (Villain et al. 2008;
Englund et al. 1988; Kuczynski et al. 2010). Studies of measures of WM integrity such as
fractional anisotropy (FA) measured from diffusion MRI data have shown significant
findings that are sensitive to early changes, sometimes earlier than gross cortical atrophy is
measurable (Douaud et al. 2011; Smith et al. 2010; Gold et al. 2010; Bendlin et al. 2010;
Zhang et al. 2009; Avants et al. 2010). Disease is known to progress along extant fiber
pathways via secondary Wallerian degeneration, disconnection, loss of myelinated axons,
loss of signaling, axonal reaction and post-synaptic dendrite retraction (Seeley et al. 2009).
There is some evidence that misfolded proteins in AD may propagate along WM pathways
and across synapses (Frost and Diamond 2010; Liu et al. 2012). The idea that distal cortical
regions can be affected by atrophy via the WM architecture is sometimes called the
“disconnection” or “diaschisis” hypothesis (Pearson et al. 1985; Villain et al. 2008). Many
new studies have confirmed these observations in both AD and FTD. Loss of WM integrity
resulting from GM atrophy finds support in numerous studies showing strong correlations
between the two in selected isolated GM and WM structures, for instance the relationship
between the hippocampal formation and the cingulum bundle that projects to the posterior
cingulate cortex (Villain et al. 2008; Yasmin et al. 2008; Xie et al. 2005; Acosta-Cabronero
et al. 2010, Zhang et al. 2007). Stricker et al. (2009) reported higher radial diffusivity in late-
myelinating WM tracts, including the inferior longitudinal fasciculum (ILF), splenium,
fornix/stria terminalus and cingulum pathways, and indicated a clear connection with
atrophy in terminating GM structures in the mesial temporal lobe. WM integrity changes
have been shown to occur in FTD patients (Larsson et al. 2004; Yoshiura et al. 2006;
Borroni et al. 2007; Forman et al. 2002; Neumann et al. 2007; Matsuo et al. 2009,
Hornberger et al. 2011) mainly in the frontal and temporal lobes, and are consistent with the
distributions of GM atrophy. One study in particular (Whitwell et al. 2010) showed

Kuceyeski et al. Page 2

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increases in mean diffusivity of the GM regions that were atrophic in FTD, as well as the
tracts that interconnect them. There is even evidence of, in addition to Wallerian
degeneration, primary WM integrity losses in FTD due to mechanisms like tau, TDP, gliosis
etc., that are not related to the topography of GM disease (Agosta et al. 2011). A few studies
have compared the two diseases, each showing a more prominent frontal and temporal WM
integrity loss in FTD than AD (Zhang et al. 2009; Avants et al. 2010).

It is therefore clear that both GM and WM play a role in the disease process in dementia;
however, there has been a relative lack of investigation of the interactions of the two tissue
types together. Acosta-Cabronero et al. (2010) performed tract-based spatial statistics
(TBSS) on DTI data of AD patients and found support for the evolving view that WM
involvement appears as part of the posterior temporal heteromodal network. While their GM
atrophy maps created using VBM appear to be consistent with diffusivity changes in the
projecting fibers, especially the posterior cingulum WM, they did not perform any
correlation analysis to quantitatively establish this observation because there is no overlap
between their WM diffusivity and GM atrophy maps. Specifically, no study has taken into
account the actual WM fiber topology and its relationship to atrophied GM regions on a
whole-brain regionally unbiased basis. While many recent studies have reported correlations
between isolated and somewhat arbitrarily chosen regions in WM and GM (Villain et al.
2008; Yasmin et al. 2008; Xie et al. 2005; Zhang et al. 2007) and have the advantage of
being able to address specific hypotheses, this ad hoc approach is not sufficient. Since the
mapping between the fiber tracts and cortical regions is not one-toone, but many-to-many,
looking at an ad hoc tract-cortical ROI pair cannot provide a complete picture. One
interesting study did utilize a method incorporating global tractography (Bozzali et al. 2011)
called Anatomical Connectivity Mapping (ACM) that compares the number of fiber tracts
(streamlines) per voxel in AD, a-MCI to age-matched normal controls. Contrary to the
negative results they found with FA comparison, Bozzali et al. found areas of both
decreased (in the supramarginal gyrus) and increased (in the putamen) ACM in patients with
AD. ACM of the supramarginal gyrus was also strongly associated with measures of short-
term memory in healthy subjects. While this study shows the promise of using streamlines to
measure anatomical changes due to AD, it utilizes tractography in a patient population with
even noisier diffusion images than normal subjects which can be a problem for already
delicate tracography algorithms. In addition, there is no way to quantify the GM regions
affected by decreased ACM in the way it was presented except by nearest cortical proximity
of the affected voxels.

Consider the study by Villain et al. (2008) that found correlations between structures in the
medial temporal lobe and the cingulate cortex and WM structures connecting them. In a
follow up paper, they showed association between baseline atrophy and hypometabolism in
the selected GM regions and longitudinal atrophy changes in selected WM regions (Villain
et al. 2010). Even though the authors report that hippocampal atrophy and hypometabolism
are locally associated with FA reduction in the uncinate fasciculus and the cingulum bundle,
the global GM-WM connection in AD is not revealed. For example, neuroanatomical studies
suggest the cingulum bundle connects not only to parahippocampal gyrus, enterorhinal
cortex and the hippocampus proper, but also sends long distance projections between
anterior and posterior cingulates, connecting all parts of the limbic system. Similarly, the
uncinate fasciculus connects temporal structures with orbitofrontal structures, apart from
hippocampus and amygdala. Without considering all terminating GM regions and all
connecting fibers between them, it is difficult to reveal the associations of GM and WM
alterations in dementia.

What is needed, therefore, is an approach which can combine the attractive features of WM
measures (i.e. sensitivity) with those of GM measures (i.e. regional and functional
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specificity). Some progress on spatially unbiased whole brain GM and WM analysis has
been made recently. Avants et al. (2010) used sparse canonical correlation analysis to
identify areas of correlated WM integrity changes and GM atrophy in both
neurodegenerative diseases, and found that the affected areas are what would be inferred if
considering structural connectivity information. However, this study does not incorporate
fiber tract (in this article, we use the word tract interchangeably with streamline),
information nor explicitly consider whole brain connectivity information. The question
remains to what extent the reported correlations are due to spatial proximity or the fiber
connectivity architecture. Buckner et al. (2005) report spatially dispersed, intersecting but
distinct maps of amyloid deposition, metabolism (FDG-PET) and atrophy in AD patients,
and default functional (FDG-PET) activity in young adults. A remarkable homology was
found by Seeley et al. (2009) between the pattern of atrophy in AD and the default mode
functional network. All of this evidence points to the need for a distributed whole brain
approach requiring a meaningful integration of the relative strengths of WM and GM
markers.

1.1 Paper Contribution
In this work, we propose a computational methodology that integrates diffusion MRI,
tractography and structural MRI of a cohort of young healthy controls, FTD and AD patients
as well as age-matched normal controls (NC). This fully quantitative and spatially unbiased
approach overcomes numerous deficiencies in current methods, which are either restricted to
ad hoc structures, do not utilize the sensitivity of WM measures or functional specificity of
GM measures, and do not integrate the topology of structural WM fiber connections in the
healthy brain. Our approach exploits the enhanced sensitivity of WM-specific measurements
to obtain a spatially distributed GM-specific measure that is expected to be much more
sensitive and specific than gross measurements of cortical atrophy. Specifically, we propose
a new metric, the Loss in Connectivity (LoCo) that measures GM regions’ connectivity
disruption via WM integrity losses in their connecting fibers, without having to perform
tractography in abnormal cohorts. The two hypotheses tested in this paper are:

1. LoCo is associated with GM atrophy in AD and FTD.

2. Due to differences in sensitivity between WM and GM imaging (diffusion MR
versus structural MR), the LoCo can detect brain changes that are more specific to
AD and FTD than classical measures like GM atrophy.

We must point out that the first hypothesis does not state that LoCo scores correspond
exactly to GM atrophy, because changes that are detectable with diffusion MRI in WM may
not yet be present in MR images used to detect GM atrophy. This could either be because of
the lower sensitivity of the MR imaging or that GM changes associated with primary WM
integrity loss have not yet occurred. We test and validate the first hypothesis by measuring a
moderate, yet significant, statistical correlation between whole brain WM and GM
measurements in both AD and FTD. We test and validate the second hypothesis by showing
that the LoCo scores are a better and more sensitive measure of dementia related changes
than GM atrophy. In comparison to analyzing WM integrity losses only, LoCo scores have
the advantage of linking the WM integrity losses to their connected GM regions as a first
step in understanding their functional implications.

2. Materials and Methods
2.1 “Atlas” Data

This study’s normal young subject data (from here on referred to as “atlas” data) were
collected jointly by Weill Cornell Medical College and the Brain Trauma Foundation.
Fourteen healthy subjects (9 male, 5 female, 23.1 ± 4.7 years) were used to create the
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normative connectivity information in the form of tractograms. The conditions for exclusion
were pregnancy, a history of neurological or psychiatric diagnosis, seizure, or drug or
alcohol abuse. T1-weighted structural and diffusion weighted MR images were collected on
a 3 Tesla GE Signa EXCITE scanner (GE Healthcare, Waukesha, WI, USA). The High
Angular Resolution Diffusion Images (HARDI) data were acquired with 55 isotropically
distributed diffusion-encoding directions at b = 1000 s/mm2 and one at b = 0 s/mm2,
acquired from 72 1.8-mm thick interleaved slices (no slice gap) and 128 × 128 matrix size,
zero-filled during reconstruction to 256 × 256, with a field of view (FOV) of 230 mm2. The
structural scan was an axial 3D inversion recovery fast spoiled gradient recalled echo
(FSPGR) sequence (TE = 1.5 ms, TR = 6.3 ms, TI = 400 ms, flip angle of 15°) with a 256 ×
256 matrix over a 230 mm2 FOV and 156 1.0-mm contiguous partitions.

2.2 AD, FTD, and CN data
This study’s AD, FTD and cognitively normal age-matched cohort (CN) data are the same
as those described in the previous study (Zhang et al. 2009). The groups include 18 FTD
patients (mean age and standard deviation: 62.1 ± 10.7 years) with a Mini-Mental State
Examination (MMSE) (Folstein et al. 1975) score of on average 24.1 ± 4.7, 18 patients with
Alzheimer’s disease (age: 62.8 ± 7.1 years; MMSE: 21.7 ± 5.8) and 19 age-matched
cognitively normal (CN) subjects (age: 61.5 ± 10.6 years; MMSE: 29.5 ± 0.5). The patients
with FTD and Alzheimer’s disease were recruited from the Memory and Aging Center of
the University of California, San Francisco. Conditions for exclusion were a history of brain
trauma, brain tumor, stroke, epilepsy, alcoholism, psychiatric illness and other systemic
diseases that affect brain function. All subjects’ MR scans were used to rule out major
neuropathologies such as tumors, strokes, severe WM disease or in ammation but not for
diagnosis. Written informed consent was given by all subjects or their guardians before
participating in the study, which was approved by the Committees of Human Research at the
University of California at San Francisco.

Information obtained during an extensive clinical history and physical examination was used
in diagnosis. The consensus criteria established by (Neary et al. 1998) was used for the
diagnosis of behavior variant type of FTD. Two FTD patients had concurrent motor neuron-
related symptoms. The National Institute of Neurological and Communicative Disorders and
Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA)
(McKhann et al. 1984) criteria were used for the diagnosis of probable Alzheimer’s disease.
MMSE scores and the Clinical Dementia Rating (CDR) scale (Morris 1993) were used to
measure global cognitive function. These tests were used to characterize the cognitive de
cits of the patients and not for clinical diagnosis. White matter signal hyperintensities
(WMSH) on MRI were identified by an experienced radiologist and classi ed as mild (score
1), moderate (score 2) or severe (score >3), according to the Schelten’s rating scale
(Scheltens et al. 1993).

All scans for the CN, AD and FTD were performed on a 4 Tesla (Bruker/Siemens) MRI
system with a single housing birdcage transmit and eight-channel receive coil. T1-weighted
images were obtained using a 3D volumetric magnetization prepared rapid gradient echo
(MPRAGE) sequence with TR/TE/TI = 2300/3/950 ms, 7-degree flip angle, 1.0 × 1.0 × 1.0
mm3 resolution, and 157 continuous sagittal slices. T2-weighted images were acquired with
a variable flip (VFL) angle turbo spin-echo sequence with TR/TE = 4000/30 ms, and had the
same resolution matrix and field of view of MPRAGE. In addition, FLAIR (fluid attenuated
inversion recovery) images with timing TR/TE/TI = 5000/355/1900 ms were acquired. T2-
weighted and FLAIR images were used for registration and evaluation of visual WMSH.
The diffusion scans were based on a dual spin-echo echo-planar imaging (EPI) sequence
supplemented with parallel imaging acceleration (GRAPPA) (Griswold et al., 2002) with a
factor 2 to reduce susceptibility distortions. The TR/TE was 6000/77 ms, eld of view 256 ×
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224 mm2, and the matrix size was 128 × 112 mm2, yielding 2 mm × 2 mm in-plane
resolution with 40 continuous 3 mm slices. One reference image (b = 0) and six diffusion-
weighted images (b = 800 s/mm2) were acquired. To increase the signal-to-noise ratio, four
DTI scans were performed and averaged after motion correction.

2.3 Image Analysis of “Atlas” data
To obtain normative tractograms, the “atlas” images were processed by first parcellating the
GM into 116 different regions on the subjects’ T1 scans and then performing tractography.
Briefly, the surface voxels of the parcellated cortical and subcortical structures were used to
seed the tracts. Proposed and validated in Iturria-Medina et al. (2005), the tractography
algorithm implemented here incorporates tissue classification probability and ODF
information in a Bayesian manner. A tract terminated when the algorithm reached the
boundary of an image volume, the edge of a gray matter region, a voxel not in the gray or
white matter masks, or when the angle between subsequent steps exceeded π/3. This
analysis was done using Statistical Parametric Mapping (SPM), (Friston et al. 2006) a
software package within Matlab R2009a (Natick, MA, The Mathworks Inc.), and the
Individual Based Atlas (IBASPM) toolbox (Alemán-Gómez, et al. 2005) within SPM.
Further details of the image processing and tractography method are given in (Kuceyeski et
al. 2011).

2.4 LoCo calculation using AD, FTD and CN data
As described in detail in (Zhang et al. 2009), maps of FA, longitudinal diffusivity (LD) and
radial diffusivity (RD) were computed using Volume-one and dTV software (Masutani et al.
2003). LD is the magnitude of the largest eigenvalue of the tensor and RD is the average of
the other two eigenvalues. DTI b0 images were spatially normalized to an EPI template in
MNI space with SPM’s normalize function that computes and implements a 12-parameter
non-linear transformation. This transformation was then applied to the FA, RD and LD maps
and group-wise comparisons of AD vs. CN and FTD vs. CN were performed, resulting in
two sets of three t-maps. It must be emphasized that only the age-matched normal controls
(NC), and not the “atlas” data, were used to calculate the group-wise (t-map) differences in
WM integrity measures for the AD and FTD groups. The t-maps and the mean FA volume
(calculated using only NC) in standardized space are used in the following procedure
(summarized in Figure 1):

1. The mean FA volume in standardized space is coregistered to an “atlas”
individual’s FA map using SPM’s 12-parameter non-affine registration, and that
same transformation is applied to the other two sets of three t-maps (FA, RD, and
LD).

2. The t-maps are now intersected with that individual “atlas” WM mask (generated in
SPM) to ensure the comparisons are only taken for voxels in that tissue class. The
t-maps are thresholded utilizing a significance level of p = 0.05 (adjustment for
multiple comparisons is performed using voxel-wise False Discovery Rate (FDR)
method (Genovese et al. 2002)) to find areas of significant WM integrity loss. The
union of the three binary masks is taken, resulting in a WM “injury” mask in the
space of the “atlas” individual.

3. In the “atlas” tractogram, the tracts passing through WM “injury” mask were
recorded, along with their connecting GM regions.

4. The Loss in Connectivity (LoCo) (Kuceyeski and Raj 2011) was calculated for
each GM region. The LoCo is defined for each GM region and gives the percent of
tracts going through “injured” regions out of total that are connected to that GM
region; note that scores closer to 1 indicate greater connectivity disruption.
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Steps 1–4 are repeated for each of the 14 “atlas” subjects, and the mean vector of LoCo
scores is found by taking the standard average over these values. To clarify, the WM injury
mask includes voxels with at least one of the diffusion summary statistics (FA, RD and LD)
significantly different from the age-matched normal controls. This union operation results in
an all-inclusive “worst case” scenario of WM injury that will, if anything, overestimate the
amount of connectivity disruption. Since we use a stringent requirement for identifying
significant differences per voxel, the method should be identifying areas with true
underlying physiological changes.

To find the WM injury masks, we compared the AD/FTD data against age-matched normal
controls (NC), all of which are acquired at the same DTI acquisition and field strength. The
“atlas” and NC data do come from scanners with different field strengths (3T vs. 4T), but
the only time this could be an issue is in Step 1 during the coregistration of the two groups’
FA maps. We visually inspected these results which was quite good, so conclude that any
differences due to field strength were minor enough to be overcome by SPM’s coregistration
routine.

Note that the process described above is not specific to the individual; it gives LoCo scores
for AD and FTD group differences. To get a LoCo score for an individual, this exact process
was repeated for each NC, AD, and FTD subject by replacing the group-wise t-map with the
individual’s z-scores of WM integrity statistics (using the NC mean and standard deviation
maps for normalization).

GM atrophy can mimic WM integrity losses, particularly in regions at the WM/GM
interface. To prevent confounds of GM atrophy, we created an aged WM mask by including
only those voxels that had an FA of greater than 0.1 in the mean age-matched normal
controls’ FA map. After we coregistered the aged brains to the “atlas” data, we then only
considered those voxels that were also in the WM mask of that “atlas” image. If anything,
this process is conservative because taking only those voxels in the “atlas” WM mask will
exclude WM voxels at the WM-GM boundary that should otherwise be included in the aged
group.

In addition to the LoCo calculation, more standard metrics of GM and WM involvement
were used. The T1 images from the AD/FTD/CN group were normalized to MNI space and
the cortices parcellated into 116 regions using the same process as the “atlas” data
(IBASPM). GM volume and was then measured by counting the number of voxels assigned
to each region and dividing by the sum of all those voxels to normalize for head size.
Whole-brain WM integrity metrics were calculated from diffusion images by taking the
average z-score of WM integrity FA, LD and RD over each of 106 superficial and deep WM
regions in JHU-MNI-ss atlas, or “Eve” atlas (Oishi et al. 2009).

2.5 Classification Methodology
One very basic characteristic that a metric of disease should have is that it differentiates
between various disease states and the normal populations. Participants are classified via
linear discriminant analysis (Krzanowski 1988) into AD, FTD and NC groups by the jack-
knife or leave-one-out process, wherein each subject is classified using the remaining data
(Raj et al. 2010). To test the quality of classification, we calculate the classification rate
(percent of correctly classified individuals).

Since there are 116 values for the LoCo and each GM region metric (one for every ROI), it
is desirable to perform dimensionality reduction on the data for better classification. We
chose to use the standard singular value decomposition (SVD), a process that is very similar
to Principal Component Analysis. The SVD is used to project the data into a smaller number
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of dimensions that maximizes the data’s variance. We performed several unsupervised
reductions and chose the optimal number of dimensions for each metric to be the one that
gave the maximum classification rate.

3. Results
3.1 Group-wise Analysis

First, we evaluated the reproducibility of the LoCo for each of 116 GM regions across the 14
“atlas” individuals for the AD and FTD WM injury maps. Figure B.1 in Appendix B shows
the boxplots for the LoCo scores. Generally, there are not many outliers (plotted with a
circle) and the standard deviations increase with larger means. The variability of the LoCo is
different in the two diseases for different lobes (AD – higher variation in occipital, parietal
and temporal, FTD – higher variation in frontal, subcortical). In a more quantitative analysis,
Spearman’s correlation coefficient of the LoCo was calculated between each pair of the 14
“atlas” subjects to check for agreement. All correlations for the LoCo derived from the AD
injury map were significant at a level of 0.005 (Bonferroni corrected for multiple
comparisons) and the coefficients had a mean of 0.75 and a standard deviation of 0.13. In
the case of the FTD, all correlations but one (significant at a level of 0.05) were significant
at a level of 0.005 (Bonferroni corrected for multiple comparisons), and the coefficients had
a mean of 0.85 and a standard deviation of 0.16. Due to the high correlation of the LoCo
metrics across “atlas” individuals, we conclude that the amount of individual variability
present in the normal tractograms does not greatly influence the results.

Figure 2 displays the cortical regions with the color of the region indicating its LoCo (dark -
low, light – high). We inspected this map for agreement with GM regions known to be
involved in the degenerative process of AD. The GM regions most classically associated
with AD, the hippocampi, were in the top 15% most affected. The bilateral posterior
cingulate structures, thalami, and many temporal (inferior and middle) structures were also
in the top 20%, see Appendix A for an ordered list. Many structures normally associated
with the default mode network were affected, i.e. the cuneus, precuneus, and other parietal
regions. In addition to the agreement of involved regions with known pathology, cortical
structures that are uninvolved in AD had low LoCo. The motor cortex was relatively spared
and the cerebellum was not at all affected, in accordance with clinical observations of the
progression of the disease. There was some disagreement with known pathology, however;
in particular the right angular gyrus had low AD LoCo scores, even though it is known that
this region is normally atrophied in AD and is in the top 20% of the atrophied regions in this
cohort. The occipital regions had high LoCo scores for AD and are not generally affected in
the disease. However, the bilateral superior occipital and right middle occipital were in the
top 20% most atrophied regions in this group of AD subjects.

The LoCo in the FTD cohort also agrees generally with what is known about the pattern of
the disease, see Figure 3. The areas with the highest 20% LoCo scores were those
subcortical and medial frontal cortices such as the bilateral globus pallidus, caudate,
putamen, inferior, medial and superior orbito-frontal gyri, anterior cingulates and thalami.
Many of those regions with high LoCo have been implicated in FTD by both glucose and
GM atrophy studies. In particular, (Jeong et al. 2005) noted significant hypometabolism via
FTG-PET in prefrontal areas, cingulate gyri, anterior temporal and left inferior parietal
regions and trends for hypometabolism in the bilateral insula and uncus, left putamen and
globus pallidus, and medial thalamic structures. The temporal lobes and some parts of the
frontal lobes that are usually associated with FTD, especially in the dorso-lateral pre-frontal
cortex (DLPFC), do not have high LoCo scores. However, it must be noted that in this
cohort of 18 FTD patients the temporal and DLPFC regions do not show high levels of
atrophy (see Appendix B). Only the left middle and superior temporal poles were in the top
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20% most atrophied regions, and the inferior frontal triangularis and operculum (the regions
in the atlas that best overlap with DLPFC) are not very atrophied. Therefore, while in
disagreement with classically associated GM regions in FTD, the LoCo results reflect the
atrophy pattern in this sample. It must be noted that the cohort of 18 FTD patients were the
clinical subtypes of behavioral variant FTD (bvFTD), which features orbitobasal, medial,
and dorsolateral frontal involvements. It is reasonable to see minimal temporal lobe changes
because patients with semantic dementia (SD), also known as temporal FTD, were not
included in this group. Finally, it is interesting to note that the LoCo scores in the FTD
population are around 10 times greater than that of the AD population. This agrees with
previous studies (Zhang et al. 2009; Zhang et al. 2011; Krueger et al. 2011; Avants et al.
2010) that demonstrate larger volumes of tissue with significant WM integrity loss in FTD
when compared to AD.

In a more quantitative validation study, Spearman’s correlation coefficient was calculated
between the LoCo and t-scores measuring GM atrophy in the 116 different GM regions. The
non-parametric rank correlation was used because the LoCo scores are not Gaussian, and
have many values near zero. There was a highly significant correlation (after Bonferroni
correction) for both the AD group (R = 0.51, p = 2.2 × 10−9) and FTD group (R = 0.49, p =
2.5 × 10−8), as shown in Figure 4. The cross-disease correlations (of AD’s LoCo and FTD’s
GM atrophy and vice versa) were either non-significant or had lower R values. There was a
significant correlation of AD LoCo and FTD atrophy; however, this is not surprising as the
AD and FTD atrophy are actually correlated themselves (Pearson’s r = 0.63, p = 2.14 ×
10−14). There exists inherent noise in both the LoCo and GM atrophy measurements that can
be smoothed out by averaging the values of the 116-regions over the lobe to which they
belong. In Figure B.3, we show the scatter plots and corresponding Spearman’s correlation
for the two groups’ metrics (AD: R = 0.71, p = 0.07; FTD: R = 0.94, p = 0.008). We see a
much more visually convincing correlation in the upper left and bottom right plots, even if
the correlation is not statistically significant for AD. This is most likely a result of the small
number of points in the analysis. The reproducibility of the correlation results per lobe also
provides evidence that the LoCo scores are not biased by the choice of this particular 116-
region GM atlas.

3.2 Individual LoCo Analysis
The results of the classification into NC, AD, and FTD using LoCo, MMSE, GM atrophy,
three WM metrics (z-scores of average FA, RD and LD over the 106 region WM atlas), and
a “Combined” measure are shown in Figure 5. The Combined measure, a concatenation of
the highest performing WM integrity statistic (RD) and GM atrophy, was created to test if
the incorporation of measures of the two tissue types would be any better than each measure
alone. In Figure 5, the colors in each row are that patient’s classification using the various
metrics (columns). We see that the classification results are not consistent across the various
metrics, which is unsurprising. Each metric capture a different physiological quantity, and
thus the results will inherently differ in the quality of classification. The first column
corresponds to the true diagnosis of that patient (dark – CN, medium – AD, light – FTD).
We see that the LoCo, WM integrity measures of RD and LD, and Combined score have
very similar overall classification rates that are 8–13% higher than the GM atrophy and 25–
30% higher than the MMSE classification rates (see Table 1). The LoCo and RD metrics
also had the highest values of sensitivity and specificity for the three groups, as indicated in
Table 1 with gray shading. These results demonstrate the superiority of the diffusion-derived
metrics in discerning between disease states. It must also be noted that while the LoCo, RD
and LD metrics had similar classification rates, the LoCo did so with a half to a quarter of
the number of dimensions (# eigenvectors), speaking to the robustness of the metric. It is
also interesting to note that the Combined score does not perform any better than the WM
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integrity statistics alone, indicating that the errors in GM atrophy measurements are so large
that they do not add anything informative to the WM integrity statistics for classification.

4. Discussion and Conclusions
We proposed a new automatic, whole brain, spatially unbiased computational methodology
that integrates diffusion and structural MRI and tractography. Maps of WM integrity loss in
disease are combined with whole brain tractography in healthy individuals to obtain
associated connectivity disruptions of GM, called the LoCo score. We showed that LoCo is
a sensitive biomarker of dementias and it is correlated to observed GM atrophy from
morphometric MRI analysis in this cohort. The LoCo combined the higher sensitivity of
WM biomarkers like FA, RD and LD with the spatial and functional specificity of GM-
based biomarkers like cortical volume and thickness. These results represent one of the first
attempts to link WM integrity loss in dementia patients to their connected GM regions using
tractograms constructed in young healthy controls. The LoCo gives a measure of the amount
of WM connectivity disruption for each GM region within the whole-brain network, as a
first step in understanding the functional implications of WM injury.

The results are promising in that GM regions identified by LoCo generally agree with
clinical knowledge of the pathology of both AD (hippocampi, temporal, and posterior
cingulate structures) and FTD (orbito-frontal, anterior cingulate, and subcortical structures).
There was some disagreement, however; in particular the right angular gyrus had low LoCo
scores for AD, even though this region is known to be atrophied in AD and was shown to be
atrophied in this cohort. In addition, occipital regions that are not generally affected in AD
had high LoCo scores. In FTD, low LoCo scores were found in the temporal lobes and
DLPFC which agreed with the atrophy patterns found in this cohort but not with general
knowledge of the pathology of FTD. This could be due to the fact that only the clinical
subtypes of bvFTD were included in this study, which have minimal temporal involvement
when compared to other sub-types such as SD. The diagnosis of FTD was done using the
widely-accepted Neary criteria (Neary et al. 1998) that without histopathological evidence
has an error rate of up to 30% (Forman et al. 2006), which could add noise to the atrophy
measurements. It could also be possible that the patients had not progressed into the later
stages of their disease so the atrophy is not as detectable with the relatively low sensitivity
of the structural MR. It is to be expected that these sources of error, natural population
variability and measurement limitations prevent a perfect match between LoCo and GM
atrophy. Even with these few disagreements, the LoCo of GM regions is correlated with
actual observed atrophy in AD and FTD patients in this cohort, and it is the among the best
disease classifiers in the various metrics of GM atrophy, WM integrity loss, and MMSE
scores.

The classification rates found here for the WM based metrics are comparable to other
attempts using multivariate imaging measures. It was shown in de Leon et al. 2005 that two
CSF biomarkers combined with hippocampal atrophy measurements resulted in about a 90%
diagnostic accuracy of MCI versus normal elderly at both baseline and follow-up
evaluations. In a series of more recent whole-brain based studies, the SPARE-AD (Spatial
Pattern of Abnormalities for Recognition of Early AD) measure differentiated between
converters and non-converters from MCI to AD (Misra et al. 2009) and elderly normal to
MCI (Davatzikos et al. 2009), and a differentiated between AD and FTD patients at a rate of
84% (Davatzikos et al. 2008). In another imaging based study, Boccardi et al. 2003 showed
93% specificity and 90% specificity in classifying FTD from AD by using a measure of
hemispheric asymmetry in brain atrophy.
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The LoCo scores did not outperform the other WM integrity statistics in differentiating
between diseases. However, it must be noted that comparison with WM measures like FA is
likely to be facile, because both our LoCo and FA are essentially derived from the same
information (but LoCo adds cortical region specificity to this information). It would be
indeed be surprising if the LoCo measure was able to greatly outperform WM measures in
classifier tasks. In actuality, the right comparison of our classification results is with purely
GM measures like atrophy, which the LoCo outperformed. In any case, it must be
emphasized our goal in this study was not the classification itself. Our goal here was to
demonstrate how to use normal tractograms to predict GM connectivity changes due to WM
losses. Knowing which GM areas are likely to be compromised because of a specific WM
lesion can inform the patient’s type of cognitive or physical disabilities that only looking at
the location of a WM lesion on a parcellated atlas does not provide. In AD in particular,
where it has been shown that misfolded proteins can propagate across a synapse, knowing
the topology of the brain network at a fiber-wise level can help in prediction the progression
of disease.

To determine the WM injury mask, we imposed a somewhat strict requirement, i.e. that the
diffusion summary statistics be significantly different from normal after FDR correction for
multiple comparisons. Because the t-scores were very high, we can assume that the
underlying physiology has been severely compromised and therefore connectivity disruption
has occurred. It is our hypothesis that there is an association between WM damage and
changes in the connecting GM region; however we do not assume that the anatomic
endpoint of GM involvement has occurred yet or is necessarily measurable by morphometric
tools. Our correlation results suggest that there is indeed an association between WM
damage and GM atrophy in our data, but we are not in a position to speculate on the possible
mechanisms thereof.

4.1 Limitations and Future Work
Normalizing images to a common space is a difficult issue, especially when dealing with
individual WM streamlines that are quite small where relatively large errors may be
introduced. Future studies will be done on accurately normalizing tractograms into a
common space (MNI) and minimizing error in the process, so that the calculation of the
LoCo scores is much easier and the variability of the individual tractograms maintained.
This amalgamation of normal tracts will be made publicly available. It will enable the user
to provide a mask of WM injury that has been coregistered to MNI space, and the output
will be LoCo measures as well as a list of changes that particular pattern of WM injury
would illicit in the overall brain network, i.e. efficiency, characteristic path length, degree,
etc. This tool would allow investigation of alterations in brain connectivity in various
disease states without having to perform tractography in patients with abnormal WM
integrity, a well-known and difficult problem. Potential applications of this tool include
stroke, tumor, trauma, Multiple Sclerosis and other demyelinating diseases.

It may be that the choice of GM atlas caused bias in the results, a concern that was
somewhat assuaged by analyzing the correlation results of atrophy and LoCo scores by lobe
and seeing even stronger correlations. We plan to incorporate into the tool many different
GM atlases so that the sensitivity of the results to this choice can be analyzed.

There are many ways to determine if the WM tract is in fact injured, and the approach here
could be modified to account for not just a binary injured/not injured status. Instead, one
could require that a certain minimum length of the tract be in an “injured” region before it is
in fact considered compromised. We could also create a WM mask that is continuous and
not binary, where each voxel captures the amount of deviation from normal that particular
voxel’s diffusion summary statistics are.
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We showed that individual variability among the “atlas” individuals does not have a large
influence on the results by demonstrating a high correlation of the AD/FTD LoCos
calculated from different “atlas” data. We believe that any variations that are present could
be further mitigated by increasing the sample size of the “atlas” group, which we also plan
to do in the future.

Our moderate sample size compared to the number of statistical comparisons we perform
raises the issue of sampling error and overfitting. The question of overfitting to the given
data is not an insignificant one, and it is imposible to know the extent of this confounding
factor as there is no way to infer the underlying population distribution. Therefore,
confidence in the generalization of the results should be cautioned. We do have some
encouraging signs, however, that these subjects are indeed representative of the population
as a whole, evidenced by the observation that the LoCo scores agreed for the most part with
the general pathology of the two disease populations. In addition, the leave-one-out cross
validation helped to minimize the effect of overfitting in the three-way classification. In an
attempt to further minimize its effects, we will perform the same analysis on a larger set of
AD and FTD subjects in the future, i.e. with ADNI 2 data that will contain diffusion imaging
(Weiner et al. 2012).

Tractography is an imperfect tool at the present, especially in dealing with partial volume
effects and crossing and kissing fibers. Probabilistic tractography, in particular, has the
drawback of assigning higher probabilities to shorter fibers and WM that is adjacent to GM
regions may have a larger number of tracts. Alternatively, many U-fibers may be invisible to
diffusion MRI due to limited spatial and angular resolution. These two issues may partially
cancel each other, but currently no quantification exists of their joint effects. The
advancement of tractography and imaging techniques should remove many, if not all, of
these concerns. It must be noted that this paper is not proposing an alternative method for
tractography, but merely its use for important clinical and exploratory analyses.

While a state-of-the-art coregistration tool was used, there still could be problems with
coregistering the WM integrity templates to the “atlas” space, especially due to the age
differences in the two groups. Coregistering individual brains that have anatomical
abnormalities to a common space is a well-known and difficult problem. It is particularly
difficult when working with atrophied or resected brains, and this specific issue is not
investigated in the proposed work. There are tools available to minimize coregistration
errors, including the new DARTEL registration tool in SPM. For example, it was shown in
Pereira et al. (2010) that DARTEL combined with preprocessing steps of skull-stripping and
bias correction resulted in good registration of atrophied brains in AD, Semantic Dementia,
and FTD. This method will be used in future studies requiring coregistration.

While the current analysis does not answer the question of a causal or temporal relationship
between GM and WM damage, it represents one step in a future longitudinal study using
this methodology that may be able to discern the details of such a relationship. Knowing the
progression of degeneration in the brain cortico-cortical network may lead to more accurate
early detection as well as an increased precision in tracking of the disease. It may provide
useful information to physicians for better prognosis, treatment and assessment of
Alzheimer’s disease and Fronto-temporal dementia.
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Appendix A: LoCos for AD and FTD

GM Regions (AD) LoCo (AD) GM Region (FTD) LoCo (FTD)

Occipital_Inf_L 0.0443 Pallidum_R 0.2518

Temporal_Inf_L 0.0427 Caudate_L 0.2028

Cingulum_Post_L 0.0421 Putamen_L 0.1668

Occipital_Mid_L 0.0323 Caudate_R 0.1630

Temporal_Mid_L 0.0281 Putamen_R 0.1624

Precuneus_L 0.0274 Thalamus_R 0.1456

Fusiform_L 0.0264 Insula_R 0.1374

Occipital_Sup_L 0.0224 Insula_L 0.1349

Angular_L 0.0213 Pallidum_L 0.1238

Thalamus_L 0.0204 Cingulum_Ant_L 0.1198

Cuneus_L 0.0201 Olfactory_L 0.1184

Calcarine_L 0.0193 Frontal_Sup_Orb_L 0.1164

Hippocampus_L 0.0193 Rectus_L 0.1145

Temporal_Inf_R 0.0189 Frontal_Inf_Orb_L 0.1108

SupraMarginal_L 0.0163 Cingulum_Ant_R 0.1084

Occipital_Inf_R 0.0162 Frontal_Mid_Orb_R 0.1052

Hippocampus_R 0.0148 Frontal_Sup_Orb_R 0.1051

Caudate_L 0.0143 Rolandic_Oper_R 0.0992

Cingulum_Mid_L 0.0142 Frontal_Inf_Orb_R 0.0986

Putamen_L 0.0138 Frontal_Mid_Orb_L 0.0966

Cingulum_Post_R 0.0136 Thalamus_L 0.0916

Fusiform_R 0.0124 Rectus_R 0.0857

Thalamus_R 0.0124 Frontal_Mid_Orb_R 0.0801

Postcentral_L 0.0117 Frontal_Inf_Oper_R 0.0775
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GM Regions (AD) LoCo (AD) GM Region (FTD) LoCo (FTD)

Rolandic_Oper_L 0.0107 Hippocampus_L 0.0748

Parietal_Inf_L 0.0100 Frontal_Mid_Orb_L 0.0717

Occipital_Mid_R 0.0098 Frontal_Sup_L 0.0694

Lingual_L 0.0091 Olfactory_R 0.0686

Insula_L 0.0091 Frontal_Sup_Medial_L 0.0651

Temporal_Mid_R 0.0083 Frontal_Inf_Oper_L 0.0637

Temporal_Sup_L 0.0079 Hippocampus_R 0.0631

ParaHippocampal_L 0.0079 Temporal_Inf_L 0.0631

Cingulum_Ant_R 0.0076 Frontal_Inf_Tri_R 0.0619

Precentral_L 0.0075 Rolandic_Oper_L 0.0604

Caudate_R 0.0075 Frontal_Sup_R 0.0600

Frontal_Inf_Oper_L 0.0074 Frontal_Inf_Tri_L 0.0550

Parietal_Sup_L 0.0072 Cingulum_Mid_L 0.0528

Paracentral_Robule_L 0.0068 Frontal_Mid_R 0.0521

Cingulum_Ant_L 0.0068 Temporal_Inf_R 0.0507

Pallidum_L 0.0062 Frontal_Sup_Medial_R 0.0491

Cingulum_Mid_R 0.0061 Precentral_R 0.0466

Precuneus_R 0.0058 Frontal_Mid_L 0.0437

Frontal_Mid_L 0.0056 Fusiform_L 0.0436

Frontal_Mid_Orb_L 0.0055 Cingulum_Mid_R 0.0435

Frontal_Mid_Orb_R 0.0055 Cingulum_Post_L 0.0432

Precentral_R 0.0054 Heschl_R 0.0431

Olfactory_L 0.0052 Amygdala_L 0.0425

Frontal_Sup_L 0.0050 Amygdala_R 0.0384

Angular_R 0.0048 Postcentral_R 0.0359

Postcentral_R 0.0048 Temporal_Mid_L 0.0335

Pallidum_R 0.0048 ParaHippocampal_L 0.0327

Frontal_Inf_Orb_R 0.0047 Precentral_L 0.0326

Heschl_L 0.0047 Cingulum_Post_R 0.0310

Putamen_R 0.0045 Fusiform_R 0.0296

Frontal_Mid_Orb_R 0.0045 Supp_Motor_Area_L 0.0291

Frontal_Sup_R 0.0044 SupraMarginal_L 0.0281

Cerebelum_Crus1_L 0.0044 Temporal_Sup_R 0.0269

Frontal_Sup_Orb_R 0.0043 Temporal_Mid_R 0.0260

Olfactory_R 0.0042 SupraMarginal_R 0.0241

Cerebelum_6_L 0.0041 Postcentral_L 0.0240

Frontal_Inf_Orb_L 0.0039 Heschl_L 0.0237

Rectus_R 0.0035 Occipital_Inf_L 0.0233

Frontal_Inf_Tri_L 0.0034 Supp_Motor_Area_R 0.0231

Amygdala_L 0.0032 Occipital_Mid_L 0.0193

Parietal_Inf_R 0.0031 ParaHippocampal_R 0.0183

ParaHippocampal_R 0.0030 Temporal_Sup_L 0.0171
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GM Regions (AD) LoCo (AD) GM Region (FTD) LoCo (FTD)

Supp_Motor_Area_R 0.0030 Calcarine_L 0.0154

Lingual_R 0.0028 Temporal_Pole_Sup_R 0.0138

Calcarine_R 0.0027 Angular_L 0.0123

Insula_R 0.0027 Temporal_Pole_Mid_L 0.0118

Supp_Motor_Area_L 0.0026 Lingual_L 0.0117

Frontal_Sup_Medial_R 0.0025 Precuneus_L 0.0116

Amygdala_R 0.0025 Occipital_Inf_R 0.0111

Occipital_Sup_R 0.0024 Occipital_Sup_L 0.0107

Paracentral_Robule_R 0.0024 Temporal_Pole_Sup_L 0.0096

Frontal_Mid_R 0.0024 Precuneus_R 0.0089

Temporal_Sup_R 0.0021 Cuneus_L 0.0088

Cuneus_R 0.0020 Parietal_Inf_R 0.0086

SupraMarginal_R 0.0018 Calcarine_R 0.0082

Cerebelum_Crus1_R 0.0017 Occipital_Mid_R 0.0082

Frontal_Inf_Tri_R 0.0016 Vermis_1_R 0.0080

Heschl_R 0.0015 Cuneus_R 0.0069

Rolandic_Oper_R 0.0014 Temporal_Pole_Mid_R 0.0068

Parietal_Sup_R 0.0013 Lingual_R 0.0058

Frontal_Sup_Orb_L 0.0013 Cerebelum_3_L 0.0054

Cerebelum_6_R 0.0011 Parietal_Inf_L 0.0053

Frontal_Sup_Medial_L 0.0011 Cerebelum_4_5_L 0.0049

Frontal_Mid_Orb_L 0.0010 Cerebelum_3_R 0.0048

Temporal_Pole_Mid_L 0.0010 Cerebelum_6_R 0.0041

Temporal_Pole_Sup_R 0.0009 Angular_R 0.0036

Frontal_Inf_Oper_R 0.0007 Paracentral_Robule_R 0.0035

Cerebelum_4_5_L 0.0004 Cerebelum_10_R 0.0035

Temporal_Pole_Sup_L 0.0004 Cerebelum_7b_R 0.0033

Rectus_L 0.0004 Cerebelum_Crus1_L 0.0031

Cerebelum_7b_R 0.0004 Cerebelum_6_L 0.0029

Vermis_4_5 0.0004 Cerebelum_9_R 0.0028

Cerebelum_8_R 0.0003 Cerebelum_8_R 0.0028

Cerebelum_4_5_R 0.0003 Occipital_Sup_R 0.0026

Temporal_Pole_Mid_R 0.0002 Vermis_4_5 0.0025

Cerebelum_Crus2_R 0.0001 Cerebelum_Crus1_R 0.0022

Cerebelum_8_L 0.0001 Vermis_6 0.0020

Cerebelum_3_L 0.0001 Vermis_10 0.0020

Cerebelum_Crus2_L 0.0001 Cerebelum_Crus2_R 0.0020

Cerebelum_10_L 0.0000 Paracentral_Robule_L 0.0019

Cerebelum_7b_L 0.0000 Cerebelum_4_5_R 0.0017

Cerebelum_9_R 0.0000 Parietal_Sup_L 0.0016

Cerebelum_3_R 0.0000 Vermis_8 0.0010

Cerebelum_9_L 0.0000 Vermis_3 0.0009
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GM Regions (AD) LoCo (AD) GM Region (FTD) LoCo (FTD)

Cerebelum_10_R 0.0000 Cerebelum_Crus2_L 0.0009

Vermis_1_L 0.0000 Cerebelum_8_L 0.0007

Vermis_3 0.0000 Parietal_Sup_R 0.0006

Vermis_6 0.0000 Vermis_9 0.0006

Vermis_7 0.0000 Cerebelum_10_L 0.0003

Vermis_8 0.0000 Cerebelum_7b_L 0.0002

Vermis_9 0.0000 Cerebelum_9_L 0.0002

Vermis_10 0.0000 Vermis_7 0.0000

Appendix B

Figure B.1.
Figure B.1 shows the boxplots of the various labeled regions’ LoCo scores for the groupwise
AD (top) and FTD (bottom) injury maps across the 14 “atlas” tractograms. Each boxplot
shows the mean (black bar), 25th and 75th percentiles (bottom and top edge of colored box),
range (colored lines extending from box), and any outliers (colored circles). Each lobe is
plotted in a different color. It must be noted that the scale of the AD and FTD results are
quite different, with the maximal value in the AD figure at 0.14 and the maximal value in
the FTD plot at 0.6.
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Figure B.2.
Figure B.2 shows the boxplots of the various labeled regions’ GM atrophy scores (z-scores
of volume, normalized by the CN group) for the AD (top) and FTD (bottom). Positive
values correspond to atrophy. Each boxplot shows the mean (black bar), 25th and 75th

percentiles (bottom and top edge of colored box), range (colored lines extending from box),
and any outliers (colored circles). Each lobe is plotted in a different color.

Figure B.3.
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Figure B.3 shows a scatter plot of the Loss in Connectivity (LoCo) score (averaged over
each lobe) versus the GM regions’ atrophy (averaged over each lobe) for the following pairs
of metrics - top left: AD atrophy vs. AD LoCo, top right: FTD atrophy vs. AD LoCo, bottom
left: AD atrophy vs. FTD LoCo, and bottom right FTD atrophy vs. FTD LoCo. Spearman’s
correlation coefficient and the corresponding p-values appear in the boxes in the figures.
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Figure 1.
The process to calculate the Loss in Connectivity (LoCo), i.e. the percent of WM tracts out
of the total connecting to a GM region in a normal control that pass through voxels
identified in a WM “injury” map.
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Figure 2.
The GM regions and their LoCo scores for AD patients. *Colorbar: indicates changes from 0
(dark red) to 0.02 (light yellow), note that the few regions with a LoCo higher than 0.02 are
grouped into the lightest yellow. The GM regions generally associated with AD
(hippocampus, temporal and parietal lobes, cingulate structures) display high LoCo. (Left to
Right): lateral views left & right, medial views, left & right.
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Figure 3.
The GM regions and their LoCo scores for FTD patients. *Colorbar: indicates changes from
0 (dark red) to 0.16 (light yellow), note that the few regions with a LoCo higher than 0.16
are grouped into the lightest yellow. The GM regions with high LoCo agree with known
FTD pathology: the fronto-orbital, anterior cingulate structures, and some temporal.
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Figure 4.
A scatter plot of the Loss in Connectivity (LoCo) score versus GM atrophy in the 116 GM
regions for the following pairs of metrics - top left: AD atrophy vs. AD LoCo, top right:
FTD atrophy vs. AD LoCo, bottom left: AD atrophy vs. FTD LoCo, and bottom right FTD
atrophy vs. FTD LoCo. Spearman’s correlation coefficient and the corresponding p-values
appear in the boxes in the figures.
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Figure 5.
The classification results for each metric (LoCo, MMSE, GM atrophy, three WM imaging
metrics, and the GM-WM Combined measure). The colors in each row and column are that
patient’s (row) classification using the various metrics (columns). The first column
corresponds to the true diagnosis of that patient (dark – CN, medium – AD, light – FTD).
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