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Abstract

Most statistical analyses of fMRI data assume that the nature, timing and duration of the

psychological processes being studied are known. However, often it is hard to specify this

information a priori. In this work we introduce a data-driven technique for partitioning the

experimental time course into distinct temporal intervals with different multivariate functional

connectivity patterns between a set of regions of interest (ROIs). The technique, called Dynamic

Connectivity Regression (DCR), detects temporal change points in functional connectivity and

estimates a graph, or set of relationships between ROIs, for data in the temporal partition that falls

between pairs of change points. Hence, DCR allows for estimation of both the time of change in

connectivity and the connectivity graph for each partition, without requiring prior knowledge of

the nature of the experimental design. Permutation and bootstrapping methods are used to perform

inference on the change points. The method is applied to various simulated data sets as well as to

an fMRI data set from a study (N=26) of a state anxiety induction using a socially evaluative threat

challenge. The results illustrate the method’s ability to observe how the networks between

different brain regions changed with subjects’ emotional state.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) data has been extensively used to study the

neural basis of perception, cognition, and emotion. Traditionally, these studies have focused
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on locating brain regions showing task-related changes in neural activity, for example,

greater activity during an experimental task than during a baseline state (Lindquist, 2008).

The voxel-wise general linear model (GLM) (Worsley and Friston, 1995) has become the

standard approach for analyzing such data. However, since a significant amount of neural

processing is performed by integrated networks consisting of multiple brain regions, a

complete understanding of brain function should also include the study of interactions

between distinct brain regions. An active area of neuroimaging research involves examining

the undirected association, or functional connectivity, between two or more spatially remote

brain regions (Biswal et al., 1995; Friston et al., 1993). Functional connectivity analyses

allow for the characterization of interregional neural interactions during certain cognitive or

motor tasks, or alternatively from brain activity during resting state experiments. Properly

applied, they allow for the creation of maps of distinct spatial distributions of temporally

correlated brain regions, called functional networks, and provide means for studying the

mechanisms by which experimental manipulations, brain activity, and psychological/

physiological outcomes affect one another.

The simplest approach to functional connectivity analyses simply compares the correlation

between regions of interest, or between a “seed” region and other voxels throughout the

brain. Alternative approaches include using multivariate methods, such as Principal

Components Analysis (PCA) (Andersen, Gash and Avison, 1999) and Independent

Components Analysis (ICA) (Calhoun et al., 2001b; McKeown et al., 1998), to identify task

related patterns of brain activation without making any a priori assumptions about its form.

In contrast, partial least squares (PLS; McIntosh et al., 1996; Krishnan et al., 2010) attempts

to identify common patterns between brain activity and behavioral measures or experimental

design.

Another approach is to simply estimate the covariance, or correlation matrix, between

predefined regions of interest (ROIs). However, the process of estimating the covariance

matrix can at times be difficult (Stein, 1956; Pourahmadi, 2011), due to the positive definite

constraint on the matrix and the high-dimensional nature of the data. Dempster (1972)

simplified the estimation procedure using the idea of covariance selection, which sets certain

elements of the precision matrix (the inverse covariance matrix) to zero. Here a zero element

can be interpreted as conditional independence between the corresponding variables, or

ROIs, thus indicating a lack of functional connectivity between regions.

The graphical lasso, or glasso (Friedman et al., 2007), is a technique used for estimating a

sparse precision matrix that uses an l1-constraint (constraint on the absolute values of the

elements of the precision matrix) to force many of the elements to zero, in a similar manner

as the standard lasso forces regression coefficients to zero. Varoquaux et al. (2010) recently

applied an extension of these techniques to fMRI data where they estimate sparse precision

matrices for a group of subjects under the assumption that they have the same structure for

all individuals in the group. In other words, the zero elements of the matrix are assumed to

be fixed across all subjects.

The covariance estimation procedures discussed above are typically applied to steady-state

time series data, where the experimental condition does not vary over the course of the
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experiment. However, under certain circumstances the dynamic manner in which ROIs

interact with one another during the course of the experiment is of primary interest. For

example, PPI (psychophysiological interactions; Friston et al., 1997) is a technique that

investigates whether the correlation between two brain regions differs depending on

psychological context, that is, whether a significant interaction exists between the

psychological state and the functional coupling between two brain regions. Another recent

example is statistical parametric network analysis (Ginestet and Simmons, 2011), which

allows researchers to study the dynamics of functional networks under different levels of

cognitive demand.

While addressing the dynamic nature of functional connectivity, both of these techniques

assume that the timing of the various contexts is known. However, it is often difficult to

specify the nature, timing and duration of the psychological processes being studied a priori.

Hence, an important extension would be to introduce methods that can detect changes in

connectivity, regardless of the nature of the experimental design. To address this issue

Bassett et al. (2010) explored the dynamic organizational (modularity) changes of graphs for

human learning using predefined data windows spanning multiple temporal scales (e.g.

days, hours and minutes) during motor learning. Here the width of the window is chosen by

the researcher prior to analysis, where it would ideally be determined from the data itself.

In this paper, we take a different approach and consider a novel data-driven technique for

partitioning the experimental time course into distinct intervals based on the underlying

functional connectivity patterns between ROIs. The technique, called Dynamic Connectivity

Regression (DCR), detects temporal change points in functional connectivity and estimates a

graph, or series of relationships between brain regions, for data in the temporal partition that

falls between pairs of change points. Similar to Varoquaux et al. (2010) it is assumed that

within each partition the graph structure is the same across subjects. An illustration of DCR

can be seen in Figure 1A, which depicts two change points, denoted τ1 and τ2. At these

change points, the functional connectivity between ROIs is altered due to shifts in behavior,

cognitive state, or other neurobiological processes. DCR allows us to not only detect these

change points, but also estimate an undirected graph using the data within each partition,

thereby allowing us to dynamically measure the functional connectivity between the ROIs.

These temporal partitions can be expressed equivalently as a regression tree (see Figure 1B)

with a graph estimated at each terminal node.

DCR shares similarities to the Graph Valued Regression (GVR) technique introduced by Liu

et al. (2010a). In both methods, the dependency structure of a random variable Y (e.g., a set

of brain regions) is assessed conditional on another variable X (e.g., time or some

characteristic of the subjects), and it is of interest to study the dependency structure of Y
given X. The main differences between methods lie in the potential locations of the splits (or

change points) and the applied penalization method. DCR is more flexible in that splits are

permitted to occur anywhere along the time course, whereas GVR only considers dyadic

splits (i.e. halves, quarters, eighths, etc.). The criterion for model selection used by DCR and

GVR are Bayesian Information Criteria (BIC) and risk, respectively. Finally, both

techniques share similarities to classification and regression trees (CART; Breiman et al.,
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1984) insofar as they build a regression tree on the space of covariates, but unlike CART, at

each node of the tree a graph is estimated using glasso.

This paper is organized as follows. We begin by introducing the theoretical foundation of

DCR and a greedy partitioning algorithm for estimating the model parameters. Next we

introduce inferential procedures, based on the bootstrap, for determining statistically

significant change points. Finally, we apply the method to a number of simulated data sets,

as well as to an fMRI data set from a study of state anxiety, induced using a socially

evaluative threat (SET) challenge. The results display DCR’s power and capability to serve

as a useful tool in the high dimensional image setting.

METHODS

Background

The goal of dynamic connectivity regression (DCR) is to detect temporal change points in

functional connectivity and estimate a graph, or set of relationships between ROIs, for data

in the temporal partition that falls between each pair of change points. Throughout this

paper, we assume that Y is a p-dimensional Gaussian random vector where each element

represents one of p pre-defined regions of interest (ROIs). Before introducing DCR we

briefly discuss some of the theoretical building blocks required for the development of the

method. These include topics such as graphical models, the graphical lasso and regression

trees.

Graphical Models—The DCR technique builds upon the extensive literature on graphical

models (Whittaker, 1990; Edwards, 1995; Cox and Wermuth, 1996). Within this framework,

graphical models display the dependency structure of a random vector Y (e.g., a set of p pre-

defined brain regions) using a graph G. Graphs are mathematical structures that can be used

to model pair-wise relationships between variables. They consist of a set of vertices V and

corresponding edges E that connect pairs of vertices. A graph G=(V, E) may be defined as

either undirected or directed with respect to how the edges connect one vertex to another.

Directed graphs infer directionality between variables while undirected graphs do not, and in

the present work we focus exclusively on the latter. Here each vertex represents a random

variable, or ROI, and edges encode dependencies between the variables. In the fMRI setting,

a missing edge indicates a lack of functional connectivity between corresponding regions.

A graph of Y can alternatively be represented using the precision matrix (inverse covariance

matrix) of Y, with the elements of the matrix corresponding to edge weights. Here a missing

edge between two vertices in the graph indicates conditional independence between the

variables, giving rise to a zero element in the precision matrix. Throughout this paper we

will be interested in modeling dependencies between regions through the precision matrix.

Graphical LASSO (GLASSO)—The Least Absolute Shrinkage and Selection Operator

(lasso) (Tibshirani, 1996) is a shrinkage and selection method for linear regression. It

minimizes the usual sum of squared errors with a bound on the sum of the absolute values of

the regression coefficients. It is a method of selecting a sparse number of predictors in the

usual linear regression setting by shrinking many of the β coefficients to zero.
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The graphical lasso, or glasso (Friedman et al., 2007), is an extension of this thinking to the

realm of graphs. Suppose Y is a p-dimensional Gaussian random vector with mean and

covariance matrix Σ. If the ijth component of the precision matrix Ω=Σ−1 is zero, then

variables i and j are said to be conditionally independent, given the other variables, and no

edge is included in the graph between the variables. The glasso is a method of estimating

sparse graphs G=(V, E) by applying an l1-penalty to the elements of the precision matrix.

Similar to the lasso technique, the glasso shrinks elements of Ω to zero, corresponding to

missing edges in the graph. A sparse estimate of Ω is obtained by minimizing the penalized

log likelihood

(1)

where Ω is any positive definite matrix, S is the sample covariance matrix, ||Ω||1 is the

element-wise l1-norm of Ω, and λ is a tuning parameter. An efficient algorithm has been

developed (Friedman et al. 2007) for finding Ω̂ that estimates a single row (and column) of

Ω in each iteration by solving a lasso regression.

Regression Trees—Regression trees are a simple, but powerful, method for performing

nonparametric regression. They are easy to compute, require virtually no assumptions, and

are simple to interpret. The idea is to partition the space of explanatory variables into

homogenous segments within which the response is modeled locally. For a single

explanatory variable, its range is partitioned into segments and within each segment a local

regression function is fit. For two or more explanatory variables, the covariate space is

instead partitioned into rectangular regions. Typically the local regression function on each

partition is assumed to be constant and estimated by taking the mean of the response

variables whose explanatory variables lie inside the partition.

Partitioning of covariate space is performed recursively by repeatedly selecting the most

relevant explanatory variable and using it to split the data into groups. Within each partition,

the process is repeated until the resulting groupings are homogenous. This allows us to

divide the covariate space χ into disjointed homogenous sets χ1,…, χm. Recursive

partitioning models are often called trees as the sequence of partitions can be represented

using a tree-like structure (see Figure 1) where each terminal node, or leaf, of the tree

represents a cell of the partition with a constant response associated with it. This

representation is useful as it can help make the results more interpretable. The most

commonly used recursive partitioning technique is classification and regression trees

(CART; Breiman et al. 1984), which is a non-parametric decision tree learning method that

produces either classification (the predicted outcome is the class to which the data belongs)

or regression trees (the predicted outcome can be considered a real number).

Dynamic Connectivity Regression (DCR)

In Dynamic Connectivity Regression (DCR), as well as having the random variable Y,

another variable X (e.g. time) is also available. The goal is now to estimate G(x), the graph

of Y conditioned on the covariate X taking some value x. The space of the covariate X is

divided into finitely many homogenous partitions and within each, the glasso is used to
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estimate a partition-specific sparse graph. The partitions are found in a similar manner as in

regression trees, with split points chosen based on whether they give rise to a reduction of

the Bayesian information criteria (BIC). However, while techniques such as CART estimate

the mean within each partition element, DCR instead estimates an undirected graph.

The general setup of the DCR method is as follows. Suppose {(x1, y1),…, (xT, yT)} is an

independent identically distributed (i.i.d.) sample from the joint distribution of (X, Y) where

X is a d-dimensional and Y a p-dimensional random vector (e.g., corresponding to p ROIs).

It is assumed that

where μ(x) is a p-dimensional vector-valued mean function and Σ(x) is a p×p matrix-valued

covariance function. An assumption of the method is that for each x, Ω(x) = Σ(x)−1 is a

sparse matrix with many zero elements, indicating conditional independence between

variables (regions). This assumption reflects our belief that the brain networks are sparse,

with relatively few edges between regions. The goal is to find a sparse inverse covariance

matrix, Ω̂, to estimate Ω(x) for any x in the domain of X denoted χ. In this work we assume

that X is the 1-dimensional variable time and the domain of X is given by χ = [0,T].

However, in practice X can be any d-dimensional vector consisting of either subject-

attributes or task-related information.

Assume we have a partition Π = {χ1,…, χm} on that splits the domain into homogenous

segments. For example, if X represents time, then χ1 = [0, τ1], χ2 = [τ1, τ2], …, χm =

[τm−1,T] for some values of 0 < τ1 ≤ τ2 ≤ ....≤ τm−1 < T. Figure 1 shows an example with

m=3 partitions. Here the time points τ1 and τ2 represent boundaries between partitions. If

each partition is homogenous, then these points represent change points in the behavior of

the response variable Y. For each partition χj, the sample mean is estimated by taking the

average value of y whose x value lies in the partition, i.e.

(2)

The glasso is then used to estimate a sparse precision matrix. In other words, suppose Σ̂
χj is

the sample covariance matrix for the partition element χj given by

(3)

Then the estimator Ω̂
χj is found by optimizing
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(4)

where λ is a tuning parameter. In empirical work, the full regularization path of λ values is

run and the optimal value is chosen based on the BIC (see Appendix A). Large values of λ

yield a very sparse graph while λ=0 results in a “full” covariance matrix or graph. To reduce

the bias of the glasso and improve the model selection performance when estimating graphs,

it can be shown (Liu et al., 2010b) that it is best to first estimate the sparse precision matrix

using l1-regularization and thereafter refit the model without the regularization but keeping

the zero elements in the matrix fixed.

DCR Algorithm

In this section we describe a greedy partitioning scheme for estimating the DCR model

parameters. In particular we are interested in determining the split points, or change points,

and corresponding partition specific graphs. In the description below we assume the input

data is from a single subject. Hence, Y is a T×p matrix where T is the experimental time and

p the number of ROIs. Similarly, X is a vector of time ranging from 1 to T. For multi-subject

analyses, the same algorithm can be used with subjects stacked in a similar manner as in

Group ICA (Calhoun et al., 2001). Here the N individual subjects data are stacked to make

an NT×p matrix corresponding to Y and their time courses concatenated to make a vector of

length NT corresponding to X. The resulting data is similar in nature to panel data

commonly seen in the econometrics literature.

Throughout, we make use of the Bayesian information criterion (BIC) which is a model

selection criterion based on combining the likelihood function with a penalty term that

guards against over-fitting (see Appendix A). Hence, it balances the dual needs of adequate

model fit and model parsimony. Alternative penalization criteria (e.g., AIC) were also

tested, but the combination of glasso and BIC provided the best performance.

Our greedy partitioning scheme begins by calculating the sample mean and sample

covariance for the entire data set using Eqs. (2) and (3), respectively. Estimates of the

precision matrix are then obtained for the full path of possible λ values using Eq. (4). As

mentioned above, large values of λ give rise to sparse graphs while small values give rise to

denser graphs (i.e. containing more edges). The value of λ that minimizes the BIC is chosen,

thus identifying non-zero edges, and the model is refit without the l1-constraint while

keeping the zero elements in the matrix fixed to reduce bias and improve the model selection

performance. The minimum BIC score for the entire data set is recorded, providing a

baseline in which to evaluate subsequent splits of the domain of X.

Upon completion of this step, the data is partitioned into two parts; a left subset consisting of

time points {1:Δ} and a right subset consisting of {Δ+1:T}, where T represents the length of

the experimental time course. Note Δ is usually chosen to be between 10–20 time points to

ensure that there is enough data to provide reliable estimates of the sample means and

sample covariance matrices. The choice of Δ is of particular importance as it also represents

the minimum possible distance between adjacent change points and its value can be adjusted
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depending on the existence of a priori knowledge about the spacing of changes in functional

connectivity. The sample mean and covariance matrices for both subsets are calculated

separately using Eqs. (2) and (3), respectively. The full path of possible λ values for the

glasso is run on both subsets and the final values of λ and the corresponding precision

matrices are chosen using BIC. Each model is then refit, as above, keeping the zero elements

in the precision matrix fixed, and the combined BIC scores for the two subsets are recorded.

This procedure is repeated along the entire time path, with the data partitioned into two

subsets with split points ranging from Δ+1 to T−Δ+1. The partition with the smallest

combined BIC score is chosen and, if its value is less than the BIC score for the entire data

set, the corresponding split point is used to partition the data, thus identifying the first

change point.

The DCR procedure continues by recursively applying the same method to each individual

partition element until they can no longer be split any further. In other words, if the first split

occurs at time point ρ, the procedure is repeated for both the data set consisting of time

points {1:ρ} and the one consisting of time points {ρ+1:T}. The procedure is repeated until

no further splits reduce the BIC score. After completion, the DCR algorithm will have split

into connected partitions χ1,.....χm (e.g., [0, τ1], [τ1, τ2], … [τm−1, T]) and within each

partition χj glasso is used to estimate a graph Ĝj, which consists of the nodes (ROIs) and

edges/connections between them. The step-by-step description of the DCR algorithm can be

found in Appendix B.

Inference

In this section we discuss a series of inferential procedures that can be used in conjunction

with DCR. Throughout, our focus will be on performing inference about whether or not a

detected change point is significant. Since a change point is defined as a splitting time where

partitioning the data set results in a decrease in BIC, we base inference on creating

confidence bounds for the BIC reduction at each possible change point.

A random permutation procedure—To determine whether significant change points

exist, confidence bounds for the BIC reduction at each non-zero splitting time are created

using a simple permutation test procedure. The procedure is based on the assumption that

the underlying data are independent (i.e. no significant splits exist), and thus can be

permuted across time without decreasing evidence of a split. The procedure starts by using

DCR to determine a candidate split, which we denote ρ. To test whether or not it is

significant, the data is repeatedly permuted across time. For each permutation the data is

split into two parts, one consisting of time points {1:ρ} and the other consisting of {ρ+1:T}.

The combined BIC score from each subset is subtracted from the BIC of the entire permuted

data set and the results are combined across permutations to create a permutation

distribution. The entire procedure is repeated for each possible splitting time.

The (1−α/2) and α/2 quantiles of the permutation distribution for each non-zero splitting

time can be plotted and interpreted as 100(1− α)% confidence bounds. For a candidate

splitting time ρ, if the value of the BIC reduction for the original data is not extreme relative

to confidence bounds based on random permutations of the data, then there is no evidence of
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a difference between the original data and the random permutations. Hence, the splitting

time is not significant and the connectivity or undirected graph remains unchanged. On the

other hand, if the reduction is more extreme, we conclude there is a significant splitting time

at ρ with a subsequent change in connectivity.

Block and Stationary Bootstrap—The permutation procedure described above

provides a quick and clean method for computing confidence bounds for the BIC reduction

at each non-zero splitting time ρ under the assumption of independence. However, if there is

a serial dependence structure present in the data, it fails to take this into account, thereby

providing incorrect estimates of the confidence bounds. Two methods that are mindful of the

dependency structure are the block bootstrap and the stationary bootstrap. While the

ordinary nonparametric bootstrap assumes the data are uncorrelated and resamples the entire

data set, the block bootstrap introduced by Carlstein (1986), assumes the data are stationary.

Here successive time points are assumed to be correlated, but observations “far apart” are

assumed to be uncorrelated. The method therefore divides the time series into blocks and

resamples these blocks with replacement to create a pseudo time series. The main idea

underlying this approach is that by resampling sufficiently long blocks, the dependency

structure of the original time series is preserved. Many variants of this method exist,

including the idea of using overlapping blocks introduced by Künsch (1989).

The stationary bootstrap is a resampling scheme introduced by Politis and Romano (1994).

It is an adaptation of the block bootstrap that allows for randomly varying block sizes. For

any strictly stationary time series (Yt) the stationary bootstrap procedure consists of

generating pseudo-samples Y1
*,….., YT

* from the sample Y1,….., YT by taking the first T

elements from YK1,…,YK1+L1−1,…YKN+LN−1 where (Ki) is an i.i.d sequence of random

variables uniformly distributed on {1,….T} and (Li) is an i.i.d. sequence of geometrically

distributed random variables with P(L1 = k) = q(1−q)k−1, k=1,2,…., for some q = qn ∈ (0,1).

Note that the mean block size is ξ =1/q, where the choice of ξ in the stationary bootstrap is

similar to the choice of block length in the block bootstrap.

Both the block and stationary bootstrap confidence bounds are created in a similar manner

as the permutation confidence bounds discussed above. For each non-zero splitting time, the

(1−α/2) and α/2 quantiles of the empirical distribution of the bootstrapped replicates of BIC

reduction are plotted and interpreted as 100(1−α)% confidence bounds. For a potential

splitting time ρ, if the BIC reduction for the original data is more extreme (either larger or

smaller) than the 100(1−α)% confidence bounds computed using repeated bootstrap

replicates, we conclude there is a significant splitting time at ρ, indicating a change in

connectivity.

Networks and Undirected Graphs

Once the significant splitting times have been found, the data is divided into partitions

defined by the splits. For each partition, the sample mean and sparse precision matrix are

calculated using equations (2) and (3), respectively. Using the full path of λ values, the

edges in the undirected graph are chosen based on the value that minimizes the BIC. It is

necessary to carry out these extra calculations as the actual partitioning is not finalized until
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after inference is performed. For example, the first split, or connectivity change point,

partitions the data into two data sets and the λ values associated with this split assumes there

are no further splits. If additional splits exist, the λ value associated with the partition is no

longer valid as it is based on data no longer included in the partition.

Simulations

To assess the performance of the DCR method, a series of simulation studies were

performed. The first two simulations illustrate the application of the DCR estimation

procedure to single-subject i.i.d. data (i.e. null data). The next ten simulations illustrate the

application of the DCR estimation procedure to both multi-subject null data and multi-

subject simulated Vector Autoregressive (VAR) data (Zellner, 1962; Hamilton, 1995). The

latter is an econometric model, generalizing the univariate AR model, commonly used to

capture the evolution and the interdependencies between multiple time series. It has the

property of autocorrelation in the individual time series, as well as cross correlation between

time series, and is thus representative of the properties underlying fMRI data.

The objective of each simulation is to find the connectivity change points and estimate

functional connectivity within each resulting partition. The value of Δ is chosen to be 10

time points to ensure that there is enough data to provide reliable estimates of the sample

means and sample covariance matrices. However, we found that altering this value had

minimal impact on the results. Permutation and bootstrapping procedures are used to

perform meaningful inference procedures. For the stationary bootstrap, ξ=1/0.05 is used

which corresponds to a mean block size of 50, 30, and 10 for the simulated data sets

composed of 1000, 600 and 200 time points, respectively. This block size was chosen

empirically, but investigations (not presented here) showed its value had minimal impact on

the results. As an alternative, one could choose the mean block size by calculating the

sample autocorrelation function (ACF) of the data and observing the dependency structure.

Table I summarizes how the data is generated in each simulation. Here N, T and p represents

the number of subjects, the length of the time series, and the number of included regions,

respectively. The information in the Mean change and Spikes columns indicate whether

mean changes or spikes were included in the simulation, their magnitude and at what time

point they occurred. The ROI connectivity column indicates which ROIs were functionally

connected during each partition. For the VAR simulations, the dependency between ROIs

was similar for each subject with a mean correlation of approximately 0.6. In each case, the

rest of the ROIs were made up of i.i.d. Gaussian noise indicating a lack of functional

connectivity.

For Simulation 7, each subject has 5 random spikes of magnitude 4 added to their ROI time

series. For Simulation 8, the strength of the dependency, or connection between the ROIs

specified, differs across subjects. For certain subjects, the dependency is strong (mean

correlation ~ 0.7) while for others it is weak (mean correlation ~ 0.3). Also 5 subjects are

simply i.i.d. Gaussian noise. For Simulation 11, half the subjects have a different

connectivity change point compared to the other half, that is, the same connectivity patterns

are consistent across subjects but appear at different time points. Finally, Simulation 12 is

repeated 100 times to verify the consistency of the results. For each simulation the red
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triangles represent the .975 and .025 empirical quantiles of the BIC reduction for 1,000

stationary bootstrap replications of the data for each non-zero split unless otherwise stated.

Experimental Data

The data was taken from an anxiety-inducing experiment (Wager et al., 2009a&b; Lindquist

and McKeague, 2009). The task was a variant of a well-studied laboratory paradigm for

eliciting social threat, in which participants must give a speech under evaluative pressure.

The design was an off–on–off design, with an anxiety-provoking speech preparation task

occurring between lower anxiety resting periods. Participants were informed that they were

to be given 2 min to prepare a 7 min speech, and that the topic would be revealed to them

during scanning. They were told that after the scanning session they would deliver the

speech to a panel of expert judges, though there was “a small chance” they would be

randomly selected not to give the speech. After the start of fMRI acquisition, participants

viewed a fixation cross for 2 min (resting baseline). At the end of this period, participants

viewed an instruction slide for 15 s that described the speech topic, which was “why you are

a good friend”. The slide instructed participants to be sure to prepare enough for the entire 7

min period. After 2 min of silent preparation, another instruction screen appeared (a relief

instruction, 15 s duration) that informed participants that they would not have to give the

speech. An additional 2 min period of resting baseline completed the functional run.

Data was acquired and preprocessed as described in previous work (Wager et al. 2009a).

During the course of the experiment a series of 215 images were acquired (TR= 2 s). In

order to create ROIs, time series were averaged across the entire region. Two separate data

sets were extracted from the experiment: the first consisting of 4 ROIs and heart rate for

N=23 subjects (Figure 10A) and the second consisting of 5 ROIs (Figure 11A) for N=26

subjects. The discrepancy between the numbers of subjects was due to the fact that heart rate

measurements were not available for 3 subjects. The regions in the first data set were chosen

due to the fact that they showed a significant relationship to heart rate in an independent data

set. The temporal resolution of the heart rate was 1 second compared to 2 seconds for the

fMRI data. Hence, the heart rate was down-sampled by taking every other measurement.

The regions in the second data set were chosen because they each showed the presence of at

least one significant change in mean intensity in a previous analysis (Lindquist et al., 2007).

The regions included the visual cortex, bilateral superior temporal sulcus, ventral striatum,

and ventromedial PFC.

For both data sets, subjects were stacked in a similar manner as Group ICA (Calhoun et al.,

2001) before applying the DCR procedure. The order of the subjects in the stacking did not

affect the results. The value of Δ was chosen to be 8 time points as this coincided with the

shortest expected distance between change points. Permutation and stationary bootstrapping

methods were carried out in order to perform meaningful inference procedures. Throughout

we based inference on creating 99% confidence bounds for the BIC reduction at each

possible change point. For the stationary bootstrap, ξ=1/0.05 was used which corresponded

to a mean block size of 20. Similar results were obtained by using a mean block size of 10.

The DCR approach was used to test whether stressor onset was associated with changes in a)
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the connectivity between the brain regions and heart rate and b) the connectivity among the

brain regions in the two data sets, respectively.

RESULTS

Simulations

Simulation 1—Figure 2A shows the splitting times (in TRs) plotted against the BIC

reduction for the single-subject i.i.d. data set. From the plot it is evident that there is positive

BIC reduction for the data. Confidence bounds for the BIC reduction are produced using the

permutation method. The superimposed red triangles represent the .975 and .025 empirical

quantiles of the BIC reduction for 1000 permutations of the data. Note that the actual BIC

reductions are comfortably within the bounds produced by the random permutations for all

the splitting times. As there is no significant BIC reduction for any splitting time using the

permutation procedure, the networks in the undirected graph or the connectivity between

ROIs remain unchanged throughout the entire time course. Figure 2B shows the connectivity

between the ROIs using data from the entire time course. As the data is white noise, the

DCR technique correctly finds no connectivity between the ROIs.

Simulation 2—Figure 2C shows the splitting times plotted against the BIC reduction for

the same single-subject i.i.d data set in Simulation 1 but with a mean change included. (If

permutation confidence bounds are created there are significant splits present that do not

coincide with the mean changes. This is discussed in more detail below.) The two significant

splits are at time points 200 and 400 which correspond directly to the change in means.

However, the presence of mean changes in the data does not pose a problem as a change in

mean should have no direct effect on the change in connectivity between the ROIs. Figure

2D shows the undirected graphs for the splitting times of this data set. The data is white

noise and the DCR method correctly finds no connectivity between the ROIs for each

partition. Hence, the DCR method can also be used to find changes in the mean while

retaining the connectivity pattern between ROIs across partitions.

Simulation 3—Similar results are found for the multi-subject i.i.d. data set shown in

Figure 3A. As there is no positive BIC reduction, signifying no connectivity change points, a

permutation procedure is not necessary. As the data is white noise, the DCR technique

correctly finds no connectivity between the ROIs (Figure 3B).

Simulation 4—Figure 3C shows the splitting times plotted against the BIC reduction for

the same multi-subject i.i.d data set in Simulation 3 but with a mean change included. The

two significant splits are at time points 299 and 700 which correspond directly to the change

in means. The DCR correctly finds no connectivity between the ROIs for each partition

(Figure 3D).

Simulation 5—Figure 4A shows the splitting times plotted against the BIC reduction. The

superimposed red triangles represent the .975 and .025 empirical quantiles of the BIC

reduction based on 1,000 permutation replicates of the data for each non-zero split. Notice

that the actual BIC reductions are not within the confidence bounds for three splitting times.

The reason for this is that this resampling scheme does not take the serial dependence
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inherent in the data into consideration and estimates incorrect bounds. Figures 4B shows the

splitting times plotted against BIC reduction for the same data except this time the red

triangles superimposed represent the .975 and .025 empirical quantiles of the BIC reduction

based on 1,000 stationary bootstrap replicates of the data for each non-zero split. As

expected, the actual BIC reductions are comfortably within the bounds produced by this

approach for all the splitting times except for the specified connectivity change point at time

500.

Figure 4C shows the undirected graphs for the connectivity change points specified in

Figures 4B. The strength of connection between the regions or vertices is directly related to

the thickness of the edges, that is, the thicker the edge the stronger the connection. In each

case, the DCR method correctly identifies the splitting times and the networks in the

undirected graphs.

Simulation 6—This simulation study shows how the DCR method is affected by mean

changes in the presence of connectivity change points. Figure 4D shows the splitting times

plotted against the BIC reduction for this simulation. The significant splits occur at time

points 200, 250, 400 and 450 which coincide directly with the connectivity and mean change

points. The undirected graphs for this simulation are shown in Figure 4E. The DCR

correctly finds the connectivity between ROIs 8 and 15 for the first 200 time points. It also

correctly identifies the connectivity between ROI 2, 6 and 13 for time points 201–400. That

is, the connectivity remains constant for time points 201–400 even though there is a mean

change point found at time point 250. This shows the robustness of the DCR technique to

changes in mean response. The DCR method again correctly identifies the connectivity

between ROI 3 and 8 for time points 401–600 even though there is another mean change at

time point 450.

Simulation 7—A common artifact in neuroimaging time series data is the presence of

spikes. The results shown in Figure 5 illustrate that the correct splitting times and

connectivity networks are found, and that no significant splitting times are found

corresponding to the spikes.

Simulation 8—In the previous simulations all the multi-subject VAR simulations had

similar dependencies between each pair of connectivity change points for each subject. In

this simulation the strength of the dependency, or connection between the ROIs, is different

for each subject. Figure 6A shows the splitting times against BIC reductions for this data set.

The DCR method correctly identifies the connectivity change points. The correct networks

are also found for subjects with significant networks, as shown in the undirected graphs in

Figure 6B. Another two simulations with a similar setup were also carried out. Instead of

having 10 subjects with similar dependency and connectivity change points, and 5 subjects

consisting of Gaussian noise (a 10/5 split), a 1/14 split and a 5/10 split was also run. In the

case of the 1/14 split, no significant splits were found while in the case of the 5/10 split, both

the correct splits and undirected graphs were found. However, the magnitude of the BIC

reduction was decreased, indicating reduced power to detect change points.

Cribben et al. Page 13

Neuroimage. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Simulation 9—This simulated data set corresponds roughly to the number of subjects and

data points present in the experimental data set discussed in the next section. Figure 7A

shows the splitting times plotted against the BIC reduction. The actual BIC reductions are

comfortably within the bounds produced by the stationary bootstrap resampling for all the

splitting times except for the specified connectivity change point at time point 100. Figure

7B shows the corresponding undirected graphs for the connectivity change points. The DCR

method correctly identifies the splitting time and the networks in the undirected graphs.

Simulation 10—Again, this simulated data corresponds to the number of subjects and data

points found in our experimental data set. Figure 7C shows the splitting times plotted against

the BIC reduction. Significant splits occur at time points 60, 72, 130 and 150 which coincide

directly with the connectivity changes. The undirected graphs for this simulation are shown

in Figure 7D. The DCR correctly finds the connectivity structure for all partitions including

the partition based on only 12 time points (60–72), illustrating the glasso technique’s ability

to efficiently handle even very small amounts of data.

Simulation 11—The use of multiple subjects in neuroimaging is difficult and challenging

due to inter-subject variability. The DCR describes subject-level brain connectivity by

imposing a common structure on the graphical model in the population. In this simulation

subjects are separated into two groups with different connectivity change points, that is, the

same ROIs are functionally related for all subjects but at different time points. Figure 8A

shows the splitting times and their respective BIC reductions for this data set. The DCR

method correctly finds the change points for both groups. Figure 8B shows the undirected

graphs for each of the time regions specified by the connectivity change points.

Interestingly, the DCR method finds the combined connections for all subjects at each time

point. For the first 200 time points, the connections (between ROIs 2 and 14) are the same

for all 20 subjects. At time point 200, the first 10 subjects have a connectivity change (from

ROIs 2 and 14 to ROIs 3, 9, and 18), while the other 10 subjects remain unchanged until

time 301 after which all 20 subjects have the same connectivity pattern (between ROIs 3, 9,

and 18). At time 500, the first 10 subjects have another connectivity change (from ROIs 3, 9

and 18 to ROIs 2, 6, 13, and 19) while the other 10 remain unchanged until time point 601

after which the connectivity pattern is the same for all 20 subjects.

Simulation 12—The previous simulations have only considered a single iteration. Here we

repeat a multi-subject VAR simulation 100 times and study how often our method is able to

detect the correct connectivity change points and undirected graphs. The results show that in

every case, the correct splitting times were found but that there were 4 false positives

overall. However, for each false positive, the correct undirected graphs are found both

before and after. Figure 9A shows the percentage of times the correct networks in the

undirected graphs were found. The DCR finds 92.9% of the networks in 100 simulations.

Figure 9B presents the details of the number of false positive edges for the 100 simulations

for each partition. Note that the number of possible edges in 100 simulations is 100*190

(100*(19+18+…+1)) and the total number of possible edge combinations is 220, so the

number of false positive edges is very small. In fact, the DCR method averages less than 1

false positive per partition with a very small partial correlation.
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The same set of VAR simulations were run on single subject data and similar results were

obtained. In each case the correct connectivity change points were found, although more

false positive connections were identified in the undirected graphs. In general, the results

from the multi-subject setting are stronger and more robust due to the increased amount of

data.

Experimental Data

Figure 10B shows the splitting times (in TRs) plotted against the BIC reduction for the fMRI

data set composed of 4 ROIs and heart rate data. The actual BIC reductions are comfortably

within the bands produced for almost all the splitting times except at time points 62 and 133.

At time point 60 (120 seconds), the first visual cue specifying the topic of the speech was

shown and the first splitting time is related to the corresponding change to a state of

increased anxiety. At time point 130 (260 seconds), the second visual cue stating that the

participants would in fact not have to give the presentation was revealed and the second

splitting time is related to the corresponding change in brain connectivity.

The undirected graphs for each partition can be seen in Figure 10C. From the graphs it is

evident that heart rate is not connected to any ROI during the first partition. However,

during the second partition, when the speech topic is presented and the participants begin to

silently prepare their speech, there is a positive connection between HR and the VMPFC (1)

and a negative connection between DLPFC (2) and HR. In the third partition, when the

participants relax, the connection between HR and VMPFC (1) disappears and the

connection between DLPFC (2) and HR becomes positive. These results are consistent with

findings in Wager et al. (2009a).

The splitting times (in TRs) for the 5-ROI data set can be seen in Figure 11B. The actual

BIC reductions are comfortably within the bounds for almost all splitting times except at

time points 11, 60, 72, 103, 136, 160 and 188. At time point 60 (120 seconds), the first

visual cue specifying the topic of the speech was presented and the large BIC reduction is

related to the corresponding change in brain connectivity. At time point 67.5 (135 seconds),

the visual cue informing the participant of the speech topic was removed, and participants

began silently preparing their speeches, leading to a state change at time 72. At time point

130 (260 seconds), the second visual cue stating that the participants would in fact not have

to give the presentation was revealed and the corresponding change point is related to a

change away from a state of heightened anxiety. The other change points may be due to the

different modes of anxiety as subjects silently prepare their speech.

The undirected graphs for each partition can be seen in Figure 11C. Of particular note is the

fact that after reading and processing the speech instruction, the connectivity between the

MPFC (5) and the ventral striatum (3) becomes negative and the connectivity between

MPFC (5) and superior temporal sulci (4) strengthens. This period corresponds to the

reading and interpretation of instructions, which causes the onset of anxiety. MPFC (5) has

previously been shown to be a key region in tracking anxiety and heart-rate responses

throughout the duration of the stressor; the fact that it maintains strong connectivity with

bilateral superior temporal sulcus (4) during this stressful time supports this interpretation.
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DISCUSSION

In this work, we introduce Dynamic Connectivity Regression (DCR), a new approach for

splitting the experimental time course in a functional neuroimaging experiment into

partitions based on functional connectivity changes between ROIs. The novelty of this

technique lies in its dynamic nature. It finds the connectivity change points for both single

and multi-subject data sets and then plots the graphical model between each pair of change

points. The method assumes that the graphical model is sparse. The greedy partitioning

algorithm used in the method is computationally attractive as it combines classical greedy

algorithms for decision trees with recent advances in l1-regularization techniques for graph

selection.

DCR can be applied directly to data from ROI studies or to temporal components obtained

from a PCA or ICA analysis. It does not require prior knowledge of the nature of the

experimental design and may be particularly appropriate for studies when it is not possible

to replicate experimental manipulations within subjects. These include studies of emotional

responses, “ecologically valid” tasks, changes in state-related activity evoked by learning, or

studies of tonic increases following solutions to “insight” problem solving tasks.

The simulations indicate that the DCR method is sensitive to both changes in mean activity

and spikes, as well as changes in functional connectivity. Hence, this technique is also useful

for detecting changes in mean activation level within the regions. If such changes are

suspected in the data set, a mean change detection technique (e.g. Lindquist et al., 2007;

Robinson et al., 2010) could be utilized. If a change point is found using both types of

methods it can be assumed to be a mean change point and removed. The connectivity

between ROIs can then be calculated assuming a partition does not occur at this time point.

The simulations also show that the addition of noise and weaker signals do not adversely

affect the results.

To date, DCR has been run on data sets with up to 40 regions. In theory it should scale up to

handle data sets with more ROIs. However, of course, the inclusion of more ROIs would

inevitably lead to larger computation time, especially with regard to the non-parametric

inference procedures. Thus, it may become burdensome if the number of ROIs were in the

order of hundreds.

The choice of Δ in DCR is of particular importance as it represents the minimum possible

distance between adjacent change points. Ideally, we want to make Δ as large as possible to

ensure that there is enough data to provide reliable estimates of the sample means and

sample covariance matrices. However, the choice of Δ places an upper bound on the number

of change points that can be found using our method, with small values allowing for more

change points. Hence, we want to make Δ as small as possible to ensure that we find all

possible change points. Ultimately, its value can be adjusted depending on the existence of a

priori knowledge about the spacing of changes in functional connectivity. In our application,

we choose Δ to be 8 time points because this coincided with the timing of the smallest

known change in the experimental paradigm (the visual instruction). We would not
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recommend using this method without further modifications if one believed that the distance

between state changes was less than Δ.

A serious challenge in using multi-subject data is the existence of subject-to-subject

variability (Van Horn et al., 2008). DCR assumes that the undirected graph, or precision

matrices, in a group of subjects share the same structure but contribute to it individually.

This allows for situations where brain regions are functionally related only for a certain

group of subjects, and where regions might be related at different times for different

subjects. Simulations indicate that DCR performs very well in both settings, as it

consistently finds the correct connectivity change points and identifies the correct combined

networks. As an alternative, one could fit each subject separately and thereby avoid making

this assumption altogether.

Permutation and stationary bootstrap inferential procedures were introduced for use with

DCR, with a particular focus on determining whether or not a change point was significant.

From the results of the simulations it is clear that the stationary bootstrap is preferable as it

adjusts for the temporal dependency structure inherent in fMRI time series. Note also that by

resampling blocks of null data using the stationary bootstrap the resulting replicated time

series is again identically distributed. Thus, it has no problems dealing with the i.i.d. noise

setting. In addition to inference on the change points, it would also be interesting to obtain

confidence bounds on the connectivity parameters (i.e. the entries of the precision matrix) of

the graphs estimated in each partition. Similarly, one may also be interested in quantifying

the uncertainty associated with the estimated change-points. However, we leave both issues

for later work.

In sum, DCR is a new technique for estimating functional connectivity that is capable of

handling the artifacts and autocorrelated noise present in typical fMRI data. Its dynamic

data-driven approach makes it ideally suited for analyzing data from experiments where the

nature, timing and duration of the psychological processes being studied are not known

beforehand. Hence, we believe it has the potential to become an important tool for analyzing

data from emotion, stress or resting state studies.
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APPENDIX

A. Bayesian Information Criterion (BIC)

Let Π = {χ,....χm} denote the partition of χ and let I(·) represent an indicator function. The

piecewise constant mean and precision functions are denoted by

and

where μχj is a 1-dimensional vector-valued mean function and Ωχj is a p×p precision matrix

for the partition element χj.

Given an induced partition Π and corresponding mean and precision functions μ(x) and Ω(x),

the Bayesian Information Criterion (BIC) is defined as follows
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where T is the number of data points or the number of observations, k is the number of free

parameters to be estimated and L is the maximized value of the likelihood function for the

estimated model.

B. DCR Algorithm

The algorithm for performing DCR is set up as follows:

1. Consider the full data set. Calculate the sample mean and covariance matrix using

equations (2) and (3), respectively. Obtain an estimate of Ω(x) = Σ(x)−1 for each

value of λ using equation (4).

2. Choose the value of λ and hence the estimate of Ω(x), that minimizes the BIC.

3. Refit the model without the lasso penalty term (i.e. the l1-constraint) keeping the

zero elements in the matrix fixed and record the minimum BIC.

4. Partition the data into two parts: a left subset consisting of time points {1:γ} and a

right subset consisting of {γ+1:T} where γ=Δ. Repeat Steps (1)–(3) for both data

sets and sum the BIC scores from the two partition elements. Repeat this procedure

for γ values from Δ+1 to T−Δ+1.

5. If the sum of the combined BIC scores for any two subsets is less than the BIC of

the entire data set computed in (2), the time point with the largest decrease is

selected as the splitting time point, thus partitioning the data into two segments.

6. Apply Steps (1)–(5) recursively to each partition until no partition element can be

further split into smaller elements.
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Figure 1.
A toy example. (A) Two change points (denoted τ1 and τ2) exist where the functional

connectivity between the 4 ROIs changes behavior. DCR allows us to not only detect the

change points, but also estimates an undirected graph which measures the functional

connectivity between the ROIs. Equivalently, the temporal partitions can be expressed as a

regression tree (B) with a graph estimated at each terminal node.
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Figure 2.
(A) The splitting times plotted against BIC reduction for the single-subject i.i.d data set

(Simulation 1). The red triangles represent the .975 and .025 empirical quantiles of the BIC

reduction for 1,000 permutations of the data for each non-zero split. (B) The corresponding

undirected graph for the single-subject i.i.d data set. (C) – (D) Same results for the single-

subject i.i.d data set with a mean change (Simulation 2).
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Figure 3.
(A) The splitting times plotted against BIC reduction for the multi-subject i.i.d data set

(Simulation 3) with confidence bounds computed using the permutation procedure. (B) The

corresponding undirected graph for the multi-subject i.i.d data set. (C) – (D) Same results for

the multi-subject i.i.d data set with a mean change (Simulation 4).
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Figure 4.
(A) The splitting times plotted against BIC reduction for the multi-subject VAR data set

with one connectivity change point (Simulation 5) with confidence bounds computed using

the permutation procedure. (B) The same results with bounds computed using the stationary

bootstrap procedure. (C) The corresponding undirected graphs for the multi-subject VAR

data set based on change points in (B). (D) The splitting times plotted against BIC reduction

for the multi-subject VAR data set with a mean change (Simulation 6) with bounds

computed using the stationary bootstrap procedure. (E) The corresponding undirected graphs

for the multi-subject VAR data set with a mean change.

Cribben et al. Page 24

Neuroimage. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
(A) The splitting times plotted against BIC reduction for the multi-subject VAR data set

with spikes (Simulation 7) with confidence bounds computed using the stationary bootstrap

procedure. (B) The corresponding undirected graphs.
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Figure 6.
(A) The splitting times plotted against BIC reduction for the multi-subject VAR data set

(Simulation 8) with confidence bounds computed using the stationary bootstrap procedure.

(B) The corresponding undirected graphs.
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Figure 7.
(A) The splitting times plotted against BIC reduction for the multi-subject VAR data set

(Simulation 9) with confidence bounds computed using the stationary bootstrap procedure.

(B) The corresponding undirected graphs. (C) The splitting times plotted against BIC

reduction for the multi-subject VAR data set (Simulation 10) with confidence bounds

computed using the stationary bootstrap procedure. (D) The corresponding undirected

graphs.
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Figure 8.
(A) The splitting times plotted against BIC reduction for the multi-subject VAR data set

(Simulation 11) with bounds computed using stationary bootstrap procedure. (B) The

corresponding undirected graphs.
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Figure 9.
The results of Simulation 10. (A) The percentage of times a correct connection between

ROIs was detected in the 100 repetitions. (B) The number of false positive edges found in

each partition with the average partial correlation of each false positive.
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Figure 10.
(A) The 4-ROI and heart rate data set - the regions are: (1) VMPFC, (2) DLPFC, (3)

Striatum. (B) The splitting times plotted against BIC reduction for the 4-ROI and heart rate

data set with 99% confidence bounds computed using the stationary bootstrap. (C) The

corresponding undirected graphs. Black lines indicate a positive relationship between

connected regions, while green lines indicate a negative relationship. The thickness of the

lines corresponds to the strength of the relationship.
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Figure 11.
(A) The 5-ROI data set - the regions are: (1) Visual cortex, (2) Superior temporal sulci, (3)

Ventral striatum, (4) Superior temporal sulci and (5) Ventromedial PFC. (B) The splitting

times plotted against BIC reduction with 99% confidence bounds computed using the

stationary bootstrap. (C) The corresponding undirected graphs. Black lines indicate a

positive relationship between connected regions, while green lines indicate a negative

relationship. The thickness of the lines corresponds to the strength of the relationship.
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