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Abstract
Resting state functional connectivity MRI (rsfc-MRI) reveals a wealth of information about the
functional organization of the brain, but poses unique challenges for quantitative image analysis,
mostly related to the large number of voxels with low signal-to-noise ratios. In this study, we
tested the idea of using a prior spatial parcellation of the entire brain into various structural units,
to perform an analysis on a structure-by-structure, rather than voxel-by-voxel, basis. This analysis,
based upon atlas parcels, potentially offers enhanced SNR and reproducibility, and can be used as
a common anatomical framework for cross-modality and cross-subject quantitative analysis. We
used Large Deformation Diffeomorphic Metric Mapping (LDDMM) and a deformable brain atlas
to parcel each brain into 185 regions. To investigate the precision of the cross-subject analysis, we
computed inter-parcel correlations in 20 participants, each of whom were scanned twice, as well
as the consistency of the connectivity patterns inter- and intra-subject, and the intersession
reproducibility. We report significant inter-parcel correlations consistent with previous findings,
and high test-retest reliability, an important consideration when the goal is to compare clinical
populations. As an example of the cross-modality analysis, correlation with anatomical
connectivity is also examined.
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Introduction
Spontaneous low-frequency fluctuations in blood oxygenation level-dependent (BOLD)
signal display spatial distributions concordant with known functional areas and networks
(Biswal et al., 1995; De Luca et al., 2006; Fox et al., 2005; Greicius et al., 2003; Hampson et
al., 2002; Hampson et al., 2004; Lowe, Mock, Sorenson 1998), suggesting that they may
reflect fluctuations in ongoing neuronal activity, rather than mere physiological noise. Seed-
based connectivity (SBC) (Biswal et al., 1995) and independent component analysis (ICA)
(Calhoun et al., 2001a; Calhoun et al., 2001b) have been used to characterize the intrinsic
connectivity networks (ICNs) observable while participants are “resting” (Damoiseaux et
al., 2006; De Luca et al., 2006; van de Ven et al., 2004). Compared to task-activation fMRI
studies, the “resting state” reduces demands on participant compliance. Importantly, the ICN
maps appear to match task activation networks (Smith et al., 2009) and the spatial
distribution of abnormalities seen in some pathological conditions (Greicius et al., 2004;
Luo et al., 2011; Seeley et al., 2009; Sheline et al., 2010; Song et al., 2011).

While the resting state functional connectivity MRI (rsfc-MRI) reveals information about
the functional organization, it also poses unique challenges for image analysis, mostly
related to low signal-to-noise ratio (SNR) and the large number of voxels. Even with 3mm
isotropic voxel resolution, there are more than 60,000 voxels in a typical brain and,
consequently, almost 1,800,000,000 potential inter-voxel correlations. While this provides a
large amount of spatial information, the signal from each voxel is noisy, and statistical
analysis is challenging. A common approach to ameliorate this problem is to perform spatial
smoothing, which, however, increases partial volume effects. In the original fMRI data, the
complex cortical anatomy was not quite resolved. After smoothing, information from the
CSF, white matter, and adjacent (spatially close but anatomically distant) cortex becomes
further mixed. Recently, an alternative approach has been reported in which brains are
parceled into structural units prior to the connectivity analysis (Achard et al., 2006; Eickhoff
et al., 2005; Hagmann et al., 2008; He et al., 2009; Tzourio-Mazoyer et al., 2002; Wang et
al., 2009). Particularly, an approach to parcel the entire brain using a deformable atlas is
called atlas-based analysis (ABA)(Lancaster et al., 2000; Maldjian et al., 2003; Tzourio-
Mazoyer et al., 2002). In this ABA, the automated parcellation works as an anatomical filter,
reducing the dimensionality of the data from hundreds of thousands of voxels to hundreds of
regions.

There are two main motivations to test the ABA as a promising tool. First, if one wants to
use rs-fMRI as a diagnostic tool or biomarker, a simple quantitative approach with a high
level test-retest reproducibility and small cross-subject variability is essential. The huge
reduction of the dimensionality from dozens of thousands of voxels to mere few hundred
structures would make the seed-based correlation (SBC) analysis much more
straightforward. Second, it allows us to perform multi-modal analysis within the same
anatomical framework, such as tissue atrophy (morphology), relaxation parameters (e.g. T1,
T2, MTR), diffusion properties (FA, MD, axial and parallel diffusivity), and anatomical
connectivity by tractography.

In this study, we parceled the brain into 185 structures, which can reduce the multi-modal
measurements into 185-element vectors for each scalar measurement (e.g. volumes, T2, FA,
MD, etc) and 185×184 matrices for anatomical and functional connectivity. Based on this
parcellation, we first investigated the reproducibility of the parcel-to-parcel functional
correlation using data from 20 normal participants each of whom were scanned twice. We
report significant inter-parcel correlations consistent with previous findings, and a high test-
retest reliability, an important consideration for application in clinical populations. The idea
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of multi-modal analysis was then demonstrated by integrating the population-based
anatomical and functional connectivity analyses.

Methods
Data acquisition and co-registration

Twenty healthy volunteers with no history of neurological conditions (10 M/10 F, 22–61
years old, mean: 31 years old) participated in this study. Local Institutional Review Board
approval and written, informed consent were obtained prior to examination. This is the same
data used by Landman et al., 2011(Landman et al., 2011), where details of the protocol can
be found. Subjects were scanned twice using a 3T MR scanner (Achieva, Philips Healthcare,
Best, The Netherlands). Anatomical images were acquired using a 3D MPRAGE sequence
with a 1.0×1.0×1.2 mm3 resolution. For resting state functional MRI, we used a sequence
identical to that used for BOLD functional MRI studies of task activation (a 2D EPI
sequence with fat suppression and SENSE partially parallel image acceleration to obtain a
3×3 mm (80 by 80 voxels) in-plane resolution in thirty-seven 3 mm transverse slices with a
1 mm slice gap. The rs-fMRIs were slice-time-corrected to adjust for differences in the
acquisition time between slices, realigned to the first image using rigid body registration to
adjust for motion, and then co-registered to the MPRAGE using SPM5 rigid body
transformation (www.fil.ion.ucl.ac.uk/spm).

LDDMM-based Parcellation
We used a single-subject template segmented into 176 3D parcels (Mori et al., 2008; Oishi
et al., 2008). As shown in Fig. 1, each participant's MPRAGE, co-registered with their rsfc-
MRI data, was skull-stripped and normalized to the template, using a 12-parameter linear
algorithm (AIR, (Woods et al., 1998)) and then LDDMM (Miller et al., 2005). Using the
deformation fields from LDDMM and the inverse linear matrix, we then warped the
parcellation map from the template to each subject's space, using the software DiffeoMap
(www.mristudio.org). The details of the LDDMM operation are described elsewhere
(Ceritoglu et al., 2009; Oishi et al., 2008). For each participant, peripheral white matter and
cortical grey matter were separated using Statistical Parametric Mapping (SPM)
segmentation. As a result, we obtained a matrix of 185 regions by 210 time points for each
participant, in each session.

Nuisance Removal and Filtering
One of the primary sources of artifacts in functional connectivity is due to correlation of
signals from non-neuronal physiological activity, such as respiration and cardiac pulsation.
We used a recently described approach, COMPCOR (Behzadi et al., 2007), to minimize
these effects. COMPCOR uses signal from the deep white matter and ventricles to estimate
these artifacts and then remove them from grey matter time courses, and has been shown to
match the performance of approaches requiring respiratory and cardiac monitoring data
(Glover, Li, Ress 2000). The principal components that explained 80% of the variance
derived from the time courses of 11 parcels defined as ventricles, 34 parcels defined as
“deep white matter,” and of a ROI defining the whole brain along with realignment
parameters, were used as the “nuisance parameters” to regress and remove the nuisance
from the other parcel time courses. Finally, a time-domain band-pass filter (0.01 – 0.1 Hz)
was applied.

Parcellation-based analysis
From the 40 matrices (20 participants × 2 sessions) containing the parcel time courses for
each individual (185 parcels × 210 time points), we calculated the matrices of inter-parcel
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correlation coefficients (r). The inter-parcel r-matrices were used to study parcel-to-parcel
correlations and the inter- and intra-subject variability (or reproducibility), as shown in the
Results section. We also used hierarchical clustering to cluster parcels according the
similarities of their inter-parcel correlation pattern.

Results
Examples of time-domain data and parcel-to-parcel correlation

Fig. 2 shows time domain data and correlation plots for selected pairs of parcels. In Fig. 2A
and 2B, examples of correlations between the left and right motor cortices, and the white
matter immediately beneath them, are shown. The motor cortex parcels show high
correlation (r = 0.70) between the two hemispheres, while the white matter beneath the
motor cortex does not (r = 0.17). Some pairs of parcels showed negative correlations, as
shown in Fig. 2C.

Connectivity patterns and correlation strength
In Fig. 3, several examples of spatial correlation patterns are shown (average of all 20
subjects × 2 sessions). For a given parcel of interest (POI), parcels with high correlations (r<
−0.3 or r>0.3) were color-coded according to their correlation coefficient. In general, a given
POI had a high correlation with the contralateral (or homotopic) parcel, and with adjacent
parcels. There were cases, however, where high correlations were found with distant
ipsilateral parcels (e.g., left angular and left middle frontal gyrus, r=0.62). Most white matter
parcels, as well as the ventricles, remained uncorrelated. Figure 4 shows the degree of
correlation among all 46 cortical parcels hierarchically clustered. Again, strong correlations
with homotopic and adjacent parcels are evident, while some high correlations with distant
parcels in the ipsilateral hemisphere can also be found. Reproducible negative correlation
patterns can also be seen.

Reproducibility measures—The parcel-to-parcel correlation patterns in a single subject
(two trials; Fig. 4A and 4B), as well as the group average results shown in Fig. 4C, give a
qualitative view of the test-retest and cross-subject consistency of our parcellation-based
analysis. The strength of the intra- and inter-subject correlation varies depending on the
areas. For example, the homotopic correlations tend to be strong; for r>0.3 (Fig. 3), the
average r of the symmetric cortical areas (n=23) was 0.67 and the r standard deviation was
0.11. The average of intra-subject r difference between the two repetitions was also 0.11.
These numbers for the correlations between neighbors and distant parcels were
0.45/0.14/0.16 and 0.35/0.14/0.16. The negative correlations tended to be weaker:
−0.31/0.06/0.17. The detailed information about the specific correlation coefficients can be
found in the supplemental material.

While this approach can provide information for inter-parcel correlation, another interesting
question is the consistency of the global connectivity pattern shown in Fig. 4. To calculate
the consistency of these correlation patterns across subjects, we converted the matrices of
46×45 r-values, as shown in Fig. 4, into 2,070-element vectors, and investigated the Pearson
correlations between such vectors inter- and intra-subjects. The intra-subject consistency of
the cortical correlation patterns was, on average, r=0.71+/−0.11, while the corresponding
inter-subject consistency was r=0.57+/−0.085. The mean intersession reliability, calculated
by the intraclass correlation coefficient (ICC), was 0.35+/−0.18, with the ICC values normal
distributed. Two % of the connection had excellent reliability (ICC: 0.75–1); 8% had good
(ICC: 0.6–0.75); 30% had fair (ICC: 0.4–0.6); 29% had low (ICC: 0.2–0.4); and 31% had
poor reliability (ICC: 0–0.2). Positive and negative parcel-to-parcel correlations were
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significantly but weakly correlated with their reliability ICC indices (r=0.01, p=0.03; and
r=0.13, p=0.002, respectively).

Multi-modal analysis: Combination with anatomical connectivity studies—In
our past publication, we applied the same brain parcellation scheme to diffusion tensor
images (DTI) data and performed a population-based tractography study, in which tracts
were exhaustively searched between the 46 cortical parcels (Zhang et al., 2010). It is
straightforward to identify a pair of parcels with high functional connectivity (rsfc-MRI) and
high probability of anatomical connection (DTI-tractography with 100% population
probability, meaning identifiable in all tested subjects). An example of such an analysis is
shown in Fig. 5, in which the functional and anatomical connectivity information is
integrated for the left superior parietal gyrus (SPG). In this figure, the trajectories of the
tracts with 100% population-probability are shown between two parcels with high functional
correlation. If parcel-pairs are categorized into two classes based on tractography, one with
100% identifiable tracts and the other with 0% probability, the average rsfc-MRI
correlations (r) of these two classes are 0.4±0.18 and 0.1±0.08, respectively.

Discussion
In this study, we reduced data dimensionality of rs-fMRI data from voxels to structure-based
parcels and performed a parcel-by-parcel functional connectivity analysis. While this
approach could potentially be applied to task-activation fMRI studies, rsfc-MRI is a natural
application for the parcel-by-parcel approach, because connectivity analysis intrinsically
involves the square of the number of the voxels, which usually requires spatial
dimensionality reduction. A widely used strategy to tackle the problem of dimensionality in
functional connectivity is to employ spatially independent component analysis (ICA)
(Calhoun et al., 2001a; Calhoun et al., 2001b; McKeown et al., 1998; van de Ven et al.,
2004), which yields a set of networks each comprising a collection of voxels with similar
time courses. While this approach has been widely used for revealing functional brain
networks without requiring a priori temporal or spatial assumptions, the interpretation and
quantification of ICA results can be challenging. In clinical research, where the differences
among groups are important, the question may arise as to whether all groups' spatial
distribution of the networks is sufficiently similar as to not violate the assumptions behind
the analysis.

We employed SBC based on whole brain parcellation as an alternative approach to reduce
spatial dimensionality. Our current brain atlas parcels the brain into 185 structures; this can
be considered structure-specific spatial filtering, as voxels that belong to the same structures
are grouped into parcels. In fMRI studies, one of the central questions is to identify voxels
that are associated with a specific brain functions. On the other hand, in the parcel-based
approach, brain structures are defined and voxels are clustered a priori. This relegates one of
the most important roles of fMRI study, but in return it potentially offers enhanced SNR and
reproducibility. This could be an important tradeoff if one wants to use fMRI as a tool to
characterize clinical populations. After the brain is parceled, the data dimensionality is
reduced to a 185×184 matrix. This allows rapid and quantitative calculation of inter-parcel
temporal correlation, such as that shown in Figures 2, 3, and 4. The inter-parcel grey matter
spatial correlation pattern shown in Fig. 4 can be treated as a connectivity signature of each
individual or group of subjects. This connectivity signature can be readily submitted to
statistical analyses if one has data from two populations. It would, thus, be of great interest
to see how this pattern changes in pathological conditions.

To use this approach to investigate a pathological condition, the reproducibility of the
measurements should first be determined. Based on the data from 20 normal subjects, we
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could investigate both test-retest reproducibility and cross-individual variability. As
mentioned in the Results and showed in the Supplemental Material, the intra-subject
correlations were, as expected, higher than the inter-subject correlations, and both global and
regional (parcel-by-parcel) correlations revealed high intra- and inter-individual consistency.
Functional networks have been found to be robust using seed-based correlations (Shehzad et
al., 2009), ICA (Zuo et al., 2010) and graph theoretical approaches (Wang et al., 2011)
within (Anderson et al., 2011) and across subjects (Damoiseaux et al., 2006; Shehzad et al.,
2009). Our ICCs were slightly higher than those found in previous studies and, recently, by
Wang et al. (Wang et al., 2011), when comparing the test-retest reliability of functional
connectivity for 3 atlases: Anatomical Automatic Labeling atlas (AAL), Harvard-Oxford
atlas (HOA) and Dosenbach's 160 spheres. We found poor to low ICCs in 60% of the
connections (against 70–80% reported by Wang et al.) and fair to excellent ICCs in 40% of
the connections (against 20–30% reported by Wang et al). In agreement with this previous
study, we found weak but significant correlations between the strength of positive and
negative connections and their reliability, while Wang et al. did not find significant
correlations between ICCs and negative connections using AAL atlas. This indicates that the
reliability of functional connectivity was partly determined by their strength, but the
functional connectivity strength has limited predictive ability to their reliability. The power
analysis can be performed based on this information, but the power is dependent on specific
combinations of the parcels. For example, on average, a 10% reduction in the correlation
among the 23 pairs of homotopic parcels, which are in general strongly correlated, can be
statistically detected with 46 samples.

Our reliability across scans was higher than that described by Honey et al., 2009 (Honey et
al., 2009), probably because of the increased SNR provided by our method. However, we
found the same phenomenon they observed regarding the strength and variability of the
correlations: pairs of parcels spatially close or with evidence of structural connection
(“neighbors” or homotopic parcels) exhibit less variability and higher correlations than pairs
of parcels spatially distant or with no evidence of structural connections. As shown in Fig. 4,
our ABA pointed to the same “small world architecture” previously described by voxel-
based and simulation studies, in which neighboring regions show stronger connections than
regions that lie further apart (Bullmore and Sporns 2009). Nevertheless, as in previous
studies, the inter-parcel analysis demonstrated correlations that could not be purely
anatomical or distance-determined, because some spatially remote regions, such as the
frontal and angular gyrus, showed strong correlation (Fig. 3 and 4).

We also found negative-correlated parcels, consistent with earlier reports. Although the
meaning and mechanisms of anti-correlated networks are still under investigation, reports of
anti-correlation of “task-positive” areas and the default mode network are widespread
(Anderson et al., 2010; Fransson 2006; Lin et al., 2011). As shown in Fig. 4D, the groups of
parcels we found at four-level clustering are spatially similar to those initially described by
Fox et al. (Fox et al., 2005) in humans and by Honey et al. (Honey et al., 2007) in macaques
and computational simulations: the red (occipital: visual region) and orange clusters (parietal
and temporal superior: motor and sensorial regions) involve areas consistently activated in
cognitive tasks, while the green and blue parcels (frontal medial, temporal inferior, cingulate
and pre-cuneus: cognitive, memory, emotional, and behavioral regions), with an opposite
pattern of correlation (Fig. 4C), are similar to the “task-negative” networks.

A variety of atlases have been used to automatically parcel the cortex, such as AAL, HOA,
WFU_PickAtlas, Talairach, MNI-structural, Jülich histological, Allen Institute atlas, etc.
Compared with those, advantages of our atlas include that it parcels the entire 3D brain
volume, which allows, for example, to confirm the regional specificity of cortico-cortical
correlation by examining the connectivity of the white matter beneath the cortex of interest,
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as shown in Fig. 2; to use the parcels to correct physiological nuisances; to scrutiny possible
connectivity patterns in the deep gray matter; and to make exploratory analysis in the whole
brain. Indeed, one of the most exciting extensions of our method is to provide a common
platform to integrate multimodal data and to perform both anatomical and functional
connectivity analysis (Fig. 5). Multiple imaging modalities, including T1-based
morphometry, DTI, rs-fMRI, MR Spectroscopy, PET, etc, can be analyzed and correlated
among the modalities, across subjects, or to clinical data, once the ABA allows the
incorporation of all image-based information into the same anatomical space (Fig 6). For
individuals with dementia or neurodevelopmental conditions, for example, one can
investigate atrophy and MR parameter abnormalities (e.g. T2, FA, MD, etc) of about two
hundred structures (Faria et al., 2010; Faria et al., 2011; Oishi et al., 2009) and directly
correlate the functional profiles with fMRI data.

Although our parcellation-based approach has yielded a promising method for
dimensionality reduction, it has a few drawbacks. One of the most important questions is
how the brain is parcelled. It has been shown (Achard et al., 2006; He et al., 2009; Wang et
al., 2009) that the topological organization of brain networks estimated from rsfc-MRI data
is affected by the choice of parcellation strategy. If one parcel contains two areas within it
with different time-dependent characteristics, the averaging of these areas would lead to
information degeneration. For instance, the temporoparietal junction can be divided into
three distinct subregions based on their structural and functional connectivity (Mars et al.,
2011): a dorsal area that overlaps with the middle part of the inferior parietal lobule and is
concerned with directing attention based on current goals and preexisting top-down
information (Fox et al., 2006); and two ventral areas which can be distinguished on the basis
of their participating in different cortical networks involving ventral prefrontal cortex /
anterior insula, concerned with reorienting of attention in response to behaviorally relevant
events from the environment (Corbetta and Shulman 2002), and anterior medial prefrontal
cortex. Likewise, axonal tracings in macaque monkeys revealed distinct patterns of
anatomical connectivity for three subdivisions of the precuneus (Buckwalter et al., 2008;
Colby et al., 1988; Leichnetz 2001; Morecraft et al., 2004; Pandya and Seltzer 1982). Zhang
et all. (Zhang and Li 2011) showed that these subdivisions have distinct patterns of rsfc-
MRI, can be grouped under different networks, and are involved on different functions.
These examples, in addition to showing a certain level of disagreement between “broad”
anatomical definitions and “fine” functional connectivity patterns, reinforce that the
combination of multiple imaging modalities, such as rsfc-MRI and DTI/tractography, can
contribute to the refinement of the mapping of brain connections.

Our current atlas is based purely on anatomical information, which could differ from
functional information. In addition, some of the parcels in our atlas are large (more than
60,000 mm3) where no consistent anatomical clues allow further division. Craddock et al.
(Craddock et al., 2011) evaluated the suitability of the parcellation atlas against four ROI
atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic
Anatomical Labeling) and a random parcellation approach. They observed that ROI size and
hence the number of ROIs in a parcellation had the greatest impact on their suitability for
FC analysis. With 200 or fewer ROIs anatomically homologous, parcellations offer
increased interpretability while those containing higher numbers of ROIs most accurately
represent connectivety patterns present at the voxel scale. They proposed a data-driven
method for generating an ROI atlas by parcellating whole brain rsfc-MRI data into spatially
coherent regions of homogeneous connectivity. Hence, refinement of the atlas (by dividing
large parcels into subparcels) may be important for its application to rsfc-MRI; reciprocally,
subparcellation of the atlas based on resting-state functional connectivity may enhance more
broadly the power of ABA of multimodal MRI data.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic representation of the normalization procedure. An atlas containing hundreds of
structures manually defined is mapped to each subject brain using a linear algorithm (AIR)
and LDDMM. The parcellation and MPRAGE-based tissue segmentation can be overlaid on
the fMRIs. Averaging voxel values within each parcel results in a matrix of 210 time points
× 185 parcels, for each run in each subject, that can be used to study inter-parcel, inter-run,
and inter-subject correlations.
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Figure 2.
Time courses and correlation patterns between parcels. High correlation coefficients were
observed between homotopic cortical parcels (A), while the white matter beneath these
parcels had only very weak correlation (B). Some negative correlations were observed (C).
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Figure 3.
Average of inter-parcels correlation among the 20 participants scanned twice, color-coded
by the correlation coefficient, r; parcels with r<−0.3 or r>0.3 are colored. Each row of
images shows parcels correlated with the labeled parcel. Generalizing, adjacent and
contralateral parcels are generally correlated, although r can be high between distant parcels
(such as between the medium frontal and angular gyrus at left). Negative correlations
occurred mostly with distant parcels.
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Figure 4.
Inter-cortical parcel correlations in one participant (first session, A, and second session, B),
and in the average of 20 subjects (C), grouped by hierarchical clustering. Note that the
pattern obtained in the group average is reproducible in the individual. At left, the parcels
are color-coded according the lobe they belong to, indicating that the clustering is partially
spatially related. At right, the dendrogram is color-coded according to the grouping found at
four-level clustering, and these clusters are anatomically overlaid at the template brain used
(D). Again, it evidences a tendency to “small world architecture” and “anti-correlated”
patterns. This is a preliminary illustration of how this approach can be developed to
investigate possible parcel-based networks. Abbreviations: R: right; L: left; PrCu: Pre-
cuneus; Cu: cuneus; SFG, MFG, and IFG: superior, middle and inferior frontal gyrus,
respectively; Cing: cingulum, STG, MTG, and ITG: superior, middle and inferior temporal
gyrus, respectively; AG: angular gyrus; MFOG, LFOG: middle and lateral fronto-orbital
gyrus, respectively; RG: retus gyrus; SPG: superior parietal gyrus; PoCG, PrCG: post and
pre central gyrus, respectively; SMG: supra marginal gyrus; Ins: Insula; SOG, MOG, and
IOG: superior, middle and inferior occipital gyrus, respectively; Fu: fusiform gyrus; LG:
lingual gyrus.
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Figure 5.
An example of the multi-modal analysis in which DTI-based anatomical connectivity
information is combined with the rs-fMRI data. The left superior parietal gyrus (SPG) is the
“seed” and regions correlated with this area by r>0.3 (absolute value) are color-coded. Since
DTI and rs-fMRI are co-registered, we can use rs-fMRI information to investigate white
matter connections among regions functionally correlated. Both the short cortico-cortical
fibers and the long inter-hemispheric association fibers (between left and right SPG) were
automatically traced (following the protocol described by Zhang et al. (Zhang et al., 2010)
according the same parcellation map used for the rs-fMRI analysis.
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Figure 6.
Schematic example illustrating how the atlas-based analysis can unify the multi-modal
imaging quantification. T1-WI, DTI, rs-fMRI, MR Spectroscopy (MRS), and other imaging
modalities not represented here (such as T2-WI, Susceptibility-WI, Magnetization transfer
images, PET, etc..) can be parceled into hundreds of structures biological meaningful and
the various image parameters can be quantified. Therefore, it is possible to characterize each
subject by a matrix of regions by anatomic features that carries complementary information
in different image domains. This multi-modal quantification at the structural basis enables
comparisons at group and/or individual level, facilitates longitudinal analysis, and makes
easier and more object the search of anatomo-functional correlations. The tables contain a
subsample of quantitative data from subjects included in this study (normal adults). SFL =
superior frontal lobe, CingL = Cingulum left, PrCuL= Pre Cuneus left. Volume is in mm3;
MD is in mm/s2(e10−4); metabolites (Cr, Cho, NAA) are concentrations in mM; the rsfc-
MRI correlation vector represents the vector of correlations of a given region of interest with
all the other regions defined in the parcellation map; GE (global efficiency), LE (local
efficiency), PL (path length) and CC (cluster coefficient) are derived from graph analysis of
rsfc-MRI.
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