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Abstract

I provide a selective review of the literature on the multiple testing problem in fMRI.

By drawing connections with the older modalities, PET in particular, and how software

implementations have tracked (or lagged) behind theoretical developments, my narrative

aims to give the methodological researcher a historical perspective on this important aspect

of fMRI data analysis.
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1 Introduction

In the whimsically titled letter “Holmes & Watson reply to Sherlock” (Holmes et al., 1998) my

colleagues and I made a serious critique of Halber et al. (1997), a paper evaluating thresholding

methods for PET activation data. The paper directly compared a nonparametric permutation

method (named “Sherlock”), which provided familywise-error corrected inferences, to uncor-

rected P <0.05 inference, finding that the latter method was to be preferred for its power. In

a response to our letter, the paper’s authors’ defended the uncorrected approach as the (then)

default setting in the SPM1 software and claimed that it had been used in “approximately 1,200

publications”.

Over a decade later, and one “Voodoo correlations” (Vul et al., 2009) imbroglio and post-

mortem ichthyological fMRI study (Bennett et al., 2011) later, it seems everyone agrees that

(a) correcting inferences for the search over the brain is essential and (b) such corrections are

not consistently utilized in fMRI. Hopefully some historical perspective can strengthen the

discipline’s resolve to uphold good statistical practice.

What follows is a highly selective review of the literature on the multiple testing problem in

fMRI and its antecedents (PET & M/EEG). I have tried to capture the major landmark publica-

tions, and while this selection is inevitably quirky and personal, I hope it will provide a useful

perspective in this important aspect of fMRI data analysis. See Holmes (1994, Chapter 3) and

Petersson et al. (1999) for more careful and detailed reviews of early work in this area.

2 The Problem

Whether studying brain structure or brain function, using MRI, PET or M/EEG modalities,

the end result of an experiment is typically a set of statistic values (e.g. T or F values) that

comprise an image. This “image” may be a 2D surface, a 3D volume, or even a 4D movie of

statistics over time. Call T = {Ti} the statistic image, with Ti the value at voxel i. Before even

mentioning “multiple testing” we must define the objects under inference. There are in fact a

variety of ways of summarizing a statistic image, including voxel-wise, cluster-wise, peak-wise

1http://www.fil.ion.ucl.ac.uk/spm
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and others.

2.1 Assessing statistic images: Voxels, clusters & peaks

Voxel-wise inference uses a threshold u and classifies voxel i as “active” if Ti ≥ u; inference

is made on each voxel individually. Cluster-wise inference uses a cluster-forming threshold

arc to define blobs, i.e. contiguous suprathreshold regions. If S is the size of a cluster, cluster

inference consists of retaining all clusters with S ≥ k for some cluster size threshold k. For

voxel-wise inference, when Ti ≥ u we can make a statement about the signal at voxel i. For

cluster-wise inference, when S ≥ k we’re making a statement about random set, the collection

of voxels in the cluster. With replication of our experiment, voxel i still means the same thing,

but a cluster will comprise different voxels if it exists at all.

So what exactly is the interpretation of a significant cluster? I usually answer “that one

or more voxels within that cluster have evidence against the null” (Poldrack et al., 2011);

that is, the test can localize the effect to somewhere within the cluster2. This lack of precise

spatial specificity is a shortcoming, but voxel-wise inference has its critics too. Friston &

colleagues have argued against voxel-wise inference (Chumbley & Friston, 2009; Chumbley

et al., 2010), saying that for smoothed data a voxel is ill-defined, and only topological quantities

are interpretable, like peaks (local maxima) or clusters. As peaks, like clusters, are randomly

located, and as voxels have reasonable finite support in practice, I counter that voxel-wise

inference remains a useful approach.

Peak-wise inference is based only on local maximum above a given screening threshold up.

Peak-wise is not the same as voxel-wise inference3 and the inference will depend on the chosen

up threshold. Finally, set-wise methods, based on just the count of clusters, and other omnibus

measures can be defined, but they do not have any localizing power.

2This said, I know of no formal proof that cluster inference has such strong control of Familywise error. I will

make ample use of footnotes to make such pedantic comments.
3Jumping ahead, FWE-corrected peak-wise P-values equal FWE-corrected voxel-wise P-values at the peaks.

This is because FWE is determined by the distribution of the maximal statistic, and the maximum voxel-wise is

the maximum peak-wise.
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2.2 Statistics, P’s & corrected P’s

Once a method for assessing the statistic image is chosen, a test statistic needs to be defined.

For voxel-wise or peak-wise inference, the statistic value is obvious (just the value of T at the

voxel, or the peak), and for cluster-wise inference this is naturally the number of voxels in the

clusters (though there are other ways; see below). Based on a test statistic an uncorrected P-

value P can be defined. For example, suppose we are performing voxel-wise inference; for a

randomly (or a priori) selected voxel i, the P-value Pi is the chance of observing a test statistic

Ti as or more extreme, assuming that the null hypothesis is true. For voxel-wise statistic Ti this

is a trivial computation, even possible with a table in the back of a textbook. For a peak value

or cluster size, however, no standard results are available. Before reviewing the tools imagers

used to find uncorrected P-values, let me first introduce an even greater challenge, the multiple

testing problem.

Whether voxel-wise or cluster-wise, there is a huge multiplicity. Searching over 100,000

voxels in the brain we expect to find 5,000 Pi’s smaller than 0.05. Likewise, searching over 100

clusters will on average produce 5 uncorrected cluster P-values less than 0.05. To account for

the multiplicity, we have to define a measure of error when searching the brain. The standard

measure is the Familywise Error Rate (FWE), the chance of one or more false positives (Nichols

& Hayasaka, 2003). FWE is the quantity controlled by the well-known Bonferroni procedure,

and while it is a sensible measure of false positives, many find it lacks power4.

The False Discovery Rate (FDR) is a more lenient measure of false positive risk, defined as

the expected proportion of false positives among detections (Benjamini & Hochberg, 1995)5.

My colleagues and I (Genovese et al., 2002) introduced FDR to functional neuroimaging, and

I see its wide embrace as a sign of how hungry users were for calibrated multiple testing pro-

cedures that are more powerful than FWE.

Another less-used alternative to FWE is the expected number of false positives (Bullmore

et al., 1996). This measure is used in the CamBA software6 to control the expected number of

4People often say “FWE is conservative”, but that’s like saying a meter is too short. FWE is just a measure of

false positive risk, a stringent one.
5The work was circulating in statistics circles well before 1995; see Benjamini (2010) for some history.
6http://www-bmu.psychiatry.cam.ac.uk/software/
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false positive clusters at just below 1.0.

For either FWE or FDR, you can define corrected P-values for a particular Ti (or peak value

or cluster size): The smallest FWE (or FDR) α level that will just reject the null hypothesis for

Ti.

And what about poor old uncorrected P < 0.001, with perhaps some cluster threshold like

S > 10 voxels? In principal, the false positive risk of any fixed heuristic could be validated

with a sufficient amount of real null data, and then the heuristic could safely applied to data with

the very same characteristics. But if any aspect of the data changes, say different voxels sizes,

different smoothing kernels, number of slices or orientation (which will affect to analysis mask

size), then the false positive risk will vary in some undetermined way. Hence, best practice

(Poldrack et al., 2008) and the need for reproducible science dictates multiple-testing corrected

inferences that have the same interpretation for all data.

2.3 A preview of solutions

The crux of methodological research in neuroimaging inference has been how to find corrected

P-values, or, equivalently, thresholds on test statistics that control a specified error rate. Before

a historical tour of this research, it’s helpful to lay out the three broad types of approaches

that have been used. The best known (if least understood) approach is Random Field Theory

(RFT). In rough terms, RFT uses the smoothness of the image noise to predict the behavior

of extreme values of voxel-, peak- and cluster-wise statistics. The underlying theory is elegant

and has connections to topology but requires that, in addition to the usual Gaussian assumption,

the image data behave like a continuous random process. The other frequently used approach

is Monte Carlo (MC). By estimating basic features of the data under the null hypothesis, like

image smoothness, MC repeatedly simulates null replicates of the data. The observed test

statistics (peak, cluster, whatever) can then be compared to the simulated null distributions,

creating P-values. Just like RFT, Gaussianity has to be assumed and the smoothness has to be

estimated, but MC doesn’t depend on the accuracy of RFT approximations. Finally, there is

the permutation test. Using the data itself, empirical null distributions are created by permut-

ing (or otherwise altering) the data under the null hypothesis. This approach has the weakest
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assumptions and is growing in use, but has limitations, in particular in dealing with time series

autocorrelation and general experimental designs.

3 A Tour of Solutions

3.1 Early Days

Many “fMRI inference methods” are generic procedure developed first for PET. Hence we start

with seminal work by Fox & Mintun (1989), who showed that non-quantitative H15
2 O PET7

could be used to map brain function. As part of that paper they proposed “Change Distribution

Analysis” to determine if there were any effects in the image. The used the distribution of all

local extrema, that is, the value of local maxima for Ti > 0 and all local minima for Ti < 0 (no

screening threshold up). Defining global skew and kurtosis statistics on the distribution of peak

values, and using conventional standard errors8 they produced an omnibus test for activation in

the brain.

3.2 Random Field Theory

Change Distribution Analysis lacked any localization power, and of course there was a need

for methods that would assign significance locally, to each voxel, while still controlling FWE.

Friston et al. (1991) solved this problem using general theory of Gaussian processes, working

in 2D and assuming equal smoothness in X & Y directions. Shortly afterwards, Worsley et al.

(1992) produced a more general 3D solution that would define a class of methods: Random

Field Theory. By drawing a connection between the voxel-wise FWE and the expected Euler

characteristic, Worsley created inferences that accounted for both the volume and smoothness

of the search region. He created the notion of a Resolution Element, or RESEL, a virtual voxel

with dimensions equal to FWHMx × FWHMy × FWHMz
9.

7Quantitative PET required blood-draws and difficult-to-fit compartmental models
8Peak statistics are reasonably assumed independent
9Contrary to intuition and some publications that I shall refrain from citing, a RFT voxel-wise P-value cannot

be seen as a Bonferroni correction based on the number of RESELs. See Eqns. 30 & 31 of Nichols & Hayasaka
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In the PET data Worsley & colleagues were using, there seemed to be no evidence for spa-

tially varying variance. Hence the initial 1992 work assumed the variance estimate could be

pooled over the entire brain, producing a Z statistic image. Others groups found PET data to

have spatially varying standard-deviation, and in particular Friston et al. (1991) used a voxel-

wise variance estimate, the resulting T image were Gaussianized to apply the Z results. Wors-

ley & coauthors soon generalized his results to account for voxel-wise variance estimation, for

T , and F images (Worsley et al., 1993; Worsley, 1994), though these results didn’t make their

way into Friston’s SPM until “SPM99” and FSL10 still uses the Gaussianization. See Table

1 for a tale how Worsley & Friston came to be collaborators after this potentially fractious

beginning.

3.3 Monte Carlo

Voxel-wise thresholding couldn’t detect low-intensity, spatially extended effects. In lieu of

theoretical results, a Monte Carlo simulation approach was proposed first for PET (Poline &

Mazoyer, 1993; Roland et al., 1993) and then for fMRI (Forman et al., 1995). Using an estimate

of the smoothness of the data, simulated statistic images under the null hypothesis generate an

empirical estimate of the maximum cluster size, from which cluster size statistics can be con-

verted to FWE-corrected P-values. This approach is still used today in the AFNI11 software’s

alphasim12. In their first joint work, Worsley & Friston (& colleagues) used Random Field

Theory to produce closed-form FWE P-values for cluster size statistics (Friston et al., 1993).

An entire separate review paper is needed to track all the RFT work produced, but a few

highlights include: A unified result for Z, T , χ2 and F images (Worsley et al., 1996); a solution

for the conservativeness found at low smoothness (Worsley & Taylor, 2005); and a unified

multivariate result from which all other results are special cases (Worsley et al., 2004). These

(2003).
10http://www.fmrib.ox.ac.uk/fsl
11http://afni.nimh.nih.gov
12Care must be taken that smoothness parameter is set from the estimated noise smoothness, using say

3dFWHMx, and not just taken to be equal to the smoothing kernel applied to the data
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“Keith and I first met in 1990 at a workshop at Harvard Medical School. I was chaperoned by

Richard Frackowiak and Keith by Alan Evans. Alan had famously recruited Keith after finding

him collecting maple leafs on the campus of McGill University—in the fond hope of finding

something interesting to study! Keith had seen the potential of random field theory and had

been sent a final draft of my 1991 paper (Friston et al., 1991). I remember him being very

excited by the prospect of applying random field theory to neuroimaging data. He was also

bemused and intrigued by the convergence of the general theory of stochastic processes and

level sets (my 1991 paper) and random field theory proper (his paper, Worsley et al., 1992).

I also recall him being exercised by a mild discrepancy between the two formulations; the

discrepancy boiled down to a square root two factor that he could not resolve, and remains

unresolved two decades years later.

We became firm friends over the ensuing months, or more exactly ‘pen-pals’. Getting emails

from Keith was a bit like playing Russian roulette. Most of the time they were insightful, reas-

suring and helpful but—occasionally—he would start with ‘I think there’s a small problem...’.

What he meant was that there was a substantial conceptual or technical problem that would

take at least six months hard work to resolve.

The substantial exchanges between us often weren’t reflected in publications or the rhetoric

we each developed, perhaps to underscore the distinct contributions of our respective groups.

It is worth remembering that we were separated not just by the Atlantic but by some aesthetic

and pragmatic differences. For example, we always assumed that error variance was regionally

specific, but Keith never liked this, because is destroyed some of the simple beauty of imple-

menting the theory. One the other hand, Keith loved the most advanced graphics software that

he could find, whereas we stuck religiously to Matlab despite its very limited graphics support

(at that time).

Years later, the intellectual collaboration rested on shared students and fellows, like Jean-

Baptiste Poline and Stefan Kiebel. Much of that work is embodied in SPM and has remained

the mainstay of topological inference using random field theory to date.”

Table 1: KJF on KJW. Keith Worsley and Karl Friston authored foundational papers in the

1990’s on inference for neuroimaging. We lost Keith suddenly in 2009, so I asked Karl to com-

ment on how it was that a psychiatrist and a statistician came to be friends and collaborators.
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methods and more are implemented in surfstat13, a program Worsley was actively developing

until his death in 2009.

Whether Monte Carlo or RFT, the estimation of smoothness is crucial. Poline et al. (1995)

found that if smoothness was estimated from but a single image (as was done in SPM95), RFT

P-values should have confidence intervals of about ±40%! This uncertainty affects Monte

Carlo P-values to the same or greater degree. Standard practice now is to estimate smooth-

ness from standardized residuals images (Kiebel et al., 1999), but there remains two different

approaches. Forman et al. (1995) estimated the smoothness based on a discretized Gaussian

kernel, where as the estimator of Kiebel et al. (1999) is based on partial differences approxi-

mating a continuous random field’s derivatives. While the later makes no assumption about the

shape of the autocorrelation function—except the existence of 2 derivatives at the origin—it

has greater bias at low smoothness.14

Cluster-wise inference captures the spatial nature of the signals, and suffers from less mul-

tiplicity than voxel-wise inference. However it is not always more sensitive, and Friston et al.

(1996) showed that the power of cluster inference depends on the spatial scale of the signal

relative to the noise smoothness: Focal, intense signals will be better detected by voxel-wise

inference. Thus there is a natural temptation to compute both cluster-wise and voxel-wise re-

sults and take the better of the two. This of course forms a new multiple testing problem, which

will yield more false positives15. To address this, Poline et al. (1997) proposed a RFT-based

joint cluster size, cluster peak-height test.

3.4 Permutation.

Inspired by Blair & Karniski’s EEG permutation work (1994), Holmes et al. (1996) proposed

a permutation test for PET that controlled FWE with few assumptions. Based on that work,

13http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat
14SPM and AFNI use the Kiebel approach, though SPM only uses up to 64 images by default; FSL uses a

version of the Forman approach on the standardized residuals (Flitney & Jenkinson, 2000; Jenkinson, 2000).
15The SPM software encourages profligate exploration of results, showing all possible types of inferences, while

the FSL software only provides users one of voxel-wise or cluster-wise inferences
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Holmes and I created the SnPM16 software, which we thought would quickly become irrelevant

as fMRI came to dominate neuroimaging. The problem was that fMRI times series’ autocor-

relation violates a basic assumption needed by permutation, exchangeability. Others had tack-

led this problem, by decorrelating the fMRI data using the fit of a parametric autocorrelation

model (Bullmore et al., 1996; Locascio et al., 1997), however we found this mix of parametric

and nonparametric modeling unsatisfactory17. However fMRI analysis quickly came to focus

on group analysis using a summary statistic approach (Holmes & Friston, 1999; Mumford &

Nichols, 2009), meaning our PET 1-scan-per-subject permutation methods remained relevant.

Despite some compelling results on the tremendous power gains of voxel-wise FWE per-

mutation inference over RFT (Nichols & Hayasaka, 2003; Nichols & Holmes, 2001), SnPM

did not become an integral SPM tool (in part because it remained difficult to use). In FSL,

however, the randomise software18 has become a central tool for all voxel-based anatomical

analyses. Aside from overcoming any RFT conservativeness, permutation inference works

in nonstandard settings like Track-Based Spatial Statistics (Smith et al., 2006) where tracks

are highly irregular and vary from 1-D to 2-D. Permutation also allows consideration of new

test statistics, where no parametric result is available. Examples include: The smoothed vari-

ance T-test (Holmes et al., 1996), cluster-mass (Bullmore et al., 1999), different peak-cluster

combining tests (Hayasaka & Nichols, 2004), and a completely new cluster-inspired method,

Threshold-Free Cluster Enhancement (Smith & Nichols, 2009). Permutation even feeds-back

into RFT research: We developed a RFT cluster-mass test (Zhang et al., 2009) only after exten-

sive experience with permutation showed that it dominated alternate peak-cluster combining

methods (Hayasaka & Nichols, 2004).

16http://go.warwick.ac.uk/tenichols/software/snpm
17More flexible wavelet decorrelation can whiten better (Bullmore et al., 2001), but can have problems with

simple block designs (Friman & Westin, 2005). Also note that a randomized experimental design justifies a

randomization test with any data (Raz et al., 2003), though this has limited application.
18Initially an exercise for Tim Behrens to teach Steve Smith C++; I gave instructions from the sidelines.
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4 Looking Ahead

Looking ahead, there is renewed enthusiasm for resampling-based test as GPU’s make order-

of magnitude speed-ups (Eklund et al., 2011), and in particular which make local multivariate

methods attractive (Eklund et al., 2011; Nandy & Cordes, 2007). Predictive analyses and “brain

reading” distill inference to a single accuracy number (Haynes & Rees, 2006) seem to be a step

away from “brain mapping”. But in practice investigators wish to determine which brain re-

gions are responsible for the predictive power, and thus we return to a spatial mapping exercise

(Kriegeskorte et al., 2006). And perhaps the most promising direction, is the application of

explicit spatial models to brain image data, for both original fMRI data (Keller et al., 2008; Xu

et al., 2009; Weeda et al., 2009; Thirion et al., 2010; Kim et al., 2010; Gershman et al., 2011)

and meta-analysis data (Neumann et al., 2008; Kang et al., 2011). These methods can provide

spatial confidence intervals on effects of interest and more flexible and interpretable model fits.

Finally, I apologize to the authors of scores of papers on fMRI inference that I have not

cited. Sometime in the next 20 years I hope I can make a more comprehensive review.
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