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Abstract
Despite growing interest in multi-voxel pattern analysis (MVPA) methods for fMRI, a major
problem remains—that of generating estimates in rapid event-related (ER) designs, where the
BOLD responses of temporally adjacent events will overlap. While this problem has been
investigated for methods that reduce each event to a single parameter per voxel (Mumford et al.,
2012), most of these methods make strong parametric assumptions about the shape of the
hemodynamic response, and require exact knowledge of the temporal profile of the underlying
neural activity. A second class of methods uses multiple parameters per event (per voxel) to
capture temporal information more faithfully. In addition to enabling a more accurate estimate of
ER responses, this allows for the extension of the standard classification paradigm into the
temporal domain (e.g., Mourão-Miranda et al., 2007). However, existing methods in this class
were developed for use with block and slow ER data, and there has not yet been an exploration of
how to adapt such methods to data collected using rapid ER designs. Here, we demonstrate that
the use of multiple parameters preserves or improves classification accuracy, while additionally
providing information on the evolution of class discrimination. Additionally, we explore an
alternative to the method of Mourão-Miranda et al. tailored to use in rapid ER designs that yields
equivalent classification accuracies, but is better at unmixing responses to temporally adjacent
events. The current work paves the way for wider adoption of spatiotemporal classification
analyses, and greater use of MVPA with rapid ER designs.
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Introduction
Interest in multivariate methods for fMRI data analysis, and particularly multi-voxel pattern
analysis (MVPA), has been growing since the start of the last decade, beginning with the
work of Haxby and others (Haxby et al., 2001; Spiridon & Kanwisher, 2002). MVPA treats
neural activity as occurring across ensembles of voxels, and attempts to find differences in
the pattern of activity within these ensembles between events of different classes. More
formally, MVPA assumes the BOLD response to every event can be represented as a point
in a high-dimensional space. The vector defined by this point is referred to as the
“observation vector.” In single-parameter approaches, the observation vector includes one
value for each voxel in the region of interest (ROI). In multi-parameter approaches, the
observation vector includes more than one value per voxel. Give a set of observation
vectors, MVPA attempts to find a statistical machine that can separate observation vectors
of one class from those of another. Many studies have investigated the various
computational decisions involved in undertaking such an analysis (e.g. Cox & Savoy, 2003;
Mitchell et al., 2004; Norman et al., 2006; Pereira et al., 2009).

The first step in applying MVPA is to choose a method for defining the observation vectors.
In block designs, the most popular single-parameter method uses the mean BOLD activation
over that block for each voxel. A popular multi-parameter method includes the BOLD
response at all time points within a window containing the block. Because the observation
vectors that result from this approach include both spatial (because the vector includes
activity from multiple voxels) and temporal (because activity from multiple time points is
included) information, this method of defining observation vectors is known as the
"spatiotemporal" model (Mourão-Miranda et al., 2007). For slow ER designs, a common
single-parameter method uses the GLM to model the BOLD response to each event using a
canonical hemodynamic response function (HRF) convolved with a boxcar function. The
single parameter per voxel is then the beta weight produced by fitting the GLM to the data
from this voxel. For obvious reasons, this method is often referred to as "beta-series"
analysis (Rissman et al., 2004). The spatiotemporal model for slow ER designs would be the
same as in blocked designs, where the window would be large enough to capture the full
BOLD response to the event (Mourão-Miranda et al., 2009).

Defining an observation vector for rapid ER designs is more difficult since the
hemodynamic delay will cause the BOLD response from temporally proximate events to
overlap.Mumford et al. (2012) proposed a single-parameter method that unmixes the BOLD
response from overlapping event-specific activations more successfully than other existing
single-parameter methods. The current article is the first to develop and test multi-
parameter, spatiotemporal methods of defining observation vectors with rapid ER designs.
There are two primary benefits to the methods we develop. First, the Mumford et al.
approach assumes perfect knowledge of the HRF, that neural activation is exactly a boxcar
function, and that the observed BOLD response is the convolution of the HRF and a boxcar.
In contrast, the spatiotemporal method we develop makes none of those assumptions. The
second benefit of the spatiotemporal model is it produces a weight for each time point that
indicates how much the activation at that point contributed to classifying the trial types.

The first spatiotemporal method was first proposed by Mourão-Miranda (2007). A related
method was proposed by Soon et al. (2008) and used a finite impulse response (FIR)
function to extract average ER activity estimates for each of 10 functional runs in a free-
choice response task, and demonstrated above-chance classification accuracy in certain brain
regions, even at time points up to 10s before the self-reported decision to respond. Likewise,
Harrison and Tong (2009) used what they call a “time-resolved decoding analysis” to show
evidence for working memory influences in early visual areas, demonstrating above-chance
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classification accuracy for time points during a delay period in these areas. For all of these
approaches, the researcher is still faced with the problem of extracting observations to be
classified, which is a separate issue from how those observations are used to assay the
temporal aspect of classification performance.

Although Chu et al. (2011) and Mourão-Miranda et al. (2007; 2009) found that block
averages (i.e., a single parameter method) resulted in better classification accuracies than the
spatiotemporal method, it isn't clear that this result would hold for rapid ER designs, since
the analogous approach for rapid ER designs relies on an accurate model of the HRF and the
neural activation. Additionally, as emphasized in Mourão-Miranda (2007), although the
spatiotemporal model did not have better classification accuracy than block averages, the
model gives insight to the dynamics of class discrimination. Lastly, software for carrying out
the Mourão-Miranda approach already exists with recommendations for application to rapid
ER designs (e.g., PyMVPA), yet has never been tested on these designs.

One important shortcoming of the method of Mourão-Miranda et al. is that it has no
mechanism for unmixing the BOLD responses to adjacent events. What is needed is a GLM-
based multi-parameter method that, unlike FIR, allows trial-by-trial estimation. This article
proposes a novel approach that achieves this aim, i.e., it is spatiotemporal but also unmixes
the BOLD responses to adjacent events. It achieves this by using the iterative approach to
estimation employed by the best method of Mumford et al. (2012), but with a multi-
parameter GLM rather than the parametric form used in that article.

This article has two goals: the first is to formally assess the performance of the estimation
method of Mourão-Miranda et al. relative to established methods (in particular, the best
method from Mumford et al., 2012) when applied to rapid ER data, and the second is to
propose and test an alternative method that seeks to avoid some of the possible weaknesses
of this approach (e.g., inability to unmix responses to temporally adjacent events).
Additionally we have studied how activation estimate(s) for a single trial are impacted by
the types of trials occurring before and after that trial. Specifically, we assess whether
having the same versus different trial types in neighboring trials biases the activation
estimate(s). Each of these methods is described in more detail below. The methods are
applied to both simulated and real data, and classification accuracy based on the estimates
generated using these methods is compared. As we will show, the novel method outperforms
the other methods in all analyses, although with longer ISI structures, the difference between
this method and that of Mourão-Miranda et al. diminishes.

Methods
In this paper, we compare three methods for estimating the observation vectors evoked by
separate events; two of these are existing methods and one is novel (shown schematically in
Figure 1). The first method—included to allow comparison with the results of Mumford et
al. (2012)—parametrically reduces the BOLD response elicited by each event to a single
value, while the other two use multiple parameters to represent each event in a weakly-
parametric fashion. The estimates returned by these latter two methods additionally provide
temporal information. Although our application of these estimation methods will be for use
in MVPA, any analysis requiring trial-by-trial estimates of ER activity in data collected
using a rapid ER design could make use of our results—for instance, beta-series functional-
connectivity analysis (Rissman et al., 2004), representational similarity analysis
(Kriegeskorte et al., 2008), or kernel regression (Chu et al., 2011).
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Estimation methods
The first method considered is the best-performing estimator (least squares–separate; LS-S)
from Mumford et al. (2012). This is a single-parameter strongly parametric method that
requires specifying a canonical HRF, which we will see has benefits but can also be
restrictive in some situations. For each unique event, the LS-S method fits a new GLM with
two predicted BOLD timecourses—one that reflects the expected BOLD response to the
current event and another for the BOLD responses to all events except the current event.
This returns two parameter estimates, one for the trial of interest and a nuisance parameter
estimate representing the activation for all other trials. After fitting a separate model for
every event in turn, the estimate for each unique event is taken as the regression weight for
the predicted BOLD response when that event was the “current event” (left panel, Figure 1).
We refer to this version of LS-S as LS1, as there is a single nuisance parameter for all trials.
Additionally we considered a second model, referred to as LS2, which included two
nuisance parameters. In this version, each GLM run included 3 regressors – one for the
current event, one for all other events of the first type, and one for all other events of the
second type (note that we only considered studies with two trial types)1.

The second method is a direct application of the method proposed in Mourão-Miranda et al.
(2007; henceforth denoted as MM). This multi-parameter method treats as the observation
vector for event i the raw BOLD values in the n TRs following onset of event i, with these
temporal vectors concatenated across voxels to form the final spatiotemporal observation
vector (described above). The middle panel of Figure 1 illustrates the GLM that would be
used to extract the MM estimates for a single trial (like LS-S, the algorithm requires a new
model for each trial). As discussed above, this method has been applied to data collected in
block and slow ER designs, where there is no overlap between adjacent events, but never to
data collected in a rapid ER design. However, the MM method forms the basis for an
interesting reformulation of the standard classification approach introduced by Chu et al.
(2011). This novel approach uses kernel regression to do multi-class classification; in the
course of validating their method, they applied the MM method to ER data, where it
returned accuracies ~15–20% lower than when it was applied to block-design data.

The MM method can be considered a multi-parameter extension of the Add6 method tested
in Mumford et al. (2012), which populated the observation vector with the BOLD response
six seconds after each event of interest. Specifically, the MM method simultaneously
includes Add0, Add2, and so forth. One concern with this method is that the same BOLD
data will appear unchanged in the observation vectors for different events. For example,
suppose events 1, 2, and 3 were presented on TRs 1, 2, and 5. For any given voxel, the
observation vector for the first event will include the BOLD values from the following TRs:
[1,2,3,4,5,…], for the second event the observation vector will include TRs: [2,3,4,5,6,…];
and for the third event the vector will include TRs: [5,6,7,8,9,…]. Note that the BOLD
response from the fifth TR appears unchanged in the estimates for all three events, thereby
making them non-independent.

The final method we consider—which is presented here for the first time—aims to explicitly
un-mix BOLD responses to temporally proximal events. Where the previous method was an
extension of the Add6 method of Mumford et al. (2012), this method is more closely related
to the above-discussed LS-S method from that study. However, rather than use the
correlation-based model of Friston et al. (1995) to estimate events, this method uses what we

1Regardless of whether one or two sets of nuisance columns is used, the iterative nature of LS-S requires that the events in the training
and test sets be estimated in separate models in order to maintain independence. This condition is met in both our real and simulated
analyses, both of which use leave-one-run-out cross-validation, where the observation vectors for each block are estimated
independently.
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call the finite BOLD response (FBR) model, which is closely related to the finite impulse
response (FIR) model (Ollinger et al., 2001a, b; Serences, 2004). Whereas the FIR model
(Dale & Buckner, 1997) treats the HRF as a series of finite impulses (which is then
convolved with a boxcar), the FBR model treats the BOLD response as a series of finite
impulses (and does not require convolution). In the FBR method, the parameter estimates
are directly interpretable as the average unmixed BOLD response at each lag included in the
model.

One limitation of the FBR method for trial-by-trial estimation is that it has many more
parameters that need to be estimated for each event than the LS-S method. In particular, the
researcher chooses a number n of TRs across which the BOLD response to each event is
presumed to be nonzero, and this number is used to form a set of n columns in the design
matrix. For the standard GLM approach, where events within a class are collapsed together,
this means there need only be at least n × C TRs in order for the normal equations to be
solvable (where C is the number of classes). However, for trial-by-trial estimation, there
must be at least n × N TRs (where N is the number of unique events). In many rapid ER
designs the number of TRs in the experiment will be less than this large number (i.e., less
than n × N), making one-shot trial-by-trial estimation of observation vectors impossible with
the FBR model.

In order to circumvent this limitation, it is necessary to use an iterative approach, as with the
LS-S method. A simple iterative FBR method can be constructed in a similar way by using
the FBR-based model, rather than the correlation-based model. Specifically, for each unique
event, one set of FBR parameters models the current event and another set models all events
except the current event. As shown in the right panel of Figure 1, the design matrix for a
single iteration includes one set of columns representing all events except the current event,
and an extra set of columns representing the current event. The estimated betas from these
extra columns are taken as the estimate for the current event. By using this iterative
approach, the constraint on the minimum number of TRs is reduced from n × N to n × 2.
Here, we instead focus on the FBR analogue of LS2, i.e., we include two sets of nuisance
columns in addition to the set of unique-event columns. We refer to this method as FS
(FBR–separate).

Simulation study
The simulation procedures were identical to those used in Mumford et al. (2012). Briefly,
there were 500 simulations in each of three (normally distributed noise variance: 0.82, 1.62,
32) × four (interstimulus interval, uniform over: 0–4s, 2–6s, 4–8s, 6–10s) conditions. Each
simulation comprised three runs of data for a single voxel with 30 instances of each of two
classes in each run. The two classes were modeled using a boxcar whose height was
sampled at each presentation from a normal distribution with mean 5 (class 1) or 3 (class 2)
and variance 0.52. The noise was AR(1) with Cor(zi,zj) = ρ|i – j|, where ρ = 0.12. On each
iteration, the noise, along with event ordering, height, and timing were randomly generated.

In order to test the flexibility of each model with respect to its ability to deal with mis-
specification of the HRF, four additional data sets were simulated, which were identical to
the first except that the HRF used to generate the data was lagged by 0.5–2.0s; the boxcar
heights, jitter, and AR(1) noise all were constant between the two, so that on each iteration,
any differences in accuracy can be directly attributed to the mis-specification of the HRF,
allowing us to use paired comparisons across lags in assessing the impact of HRF mis-
specification.

The classification procedure for the simulated data is likewise identical to Mumford et al.
(2012). On each iteration, two runs were held out to fit a logistic regression model that was
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used to generate predicted labels for the third run, which were compared with the true labels
to calculate the classification accuracy. Of course, for the multi-parameter methods, the true
label was regressed on n parameters when fitting the logistic regression, whereas for the
single-parameter methods, there was a single regressor (both models also include an
intercept term). As in Mumford et al. (2012), we also performed an additional correlation
analysis that correlated the estimated and true trial-by-trial responses. However, the pattern
of results was identical to that observed for accuracy, so these results are not reported.

Finally, because the major distinction between MM and FS is the latter’s ability to unmix
responses to temporally adjacent events, we sought to formally test the impact of temporal
adjacency on classifier performance. To this end, after performing the classification above,
we performed the following analysis, only for the simulations with an unshifted HRF in the
high SNR, low ISI case, which gives the greatest opportunity to see differences among the
methods. First, define the margin of event i as

where ŷi is the output of the logistic regression model. Note that because ŷi ranges between
0 and 1, margini takes the value of 0 in the case of a perfect misprediction and the value of 1
if the prediction is perfect. Thus, unlike ŷi, margini is a measure of accuracy. We modeled
the effect of neighboring trials on margin through a multiple linear regression, where the
dependent variable was margin. Define the onset of event i as time 0. Next, define 18 lags
centered around 0, where the first lag variable—lag 1—includes the interval (−18s, −16s],
the interval covered by lag 2 is (−16s, −14s], and lag 18 includes the interval (16s, 18s].
Next define the dummy variables

and

where I is the indicator function [i.e., I(true) = 1 and I(false) = 0]. This defines a total of 36
regressors—18 XSj and 18 XDj. Thus, the linear regression is

(Note that due to jittering, the design matrix is not rank deficient.) Each parameter estimate
then reflects the adjusted change in margin due to the lag and trial type. Positive betas imply
a bias toward correct classification and negative betas imply a bias toward incorrect
classification.

Real data: data description
The real data come from a study on the neural substrates of category learning (unpublished).
Data were collected on the UC Santa Barbara Siemens TIM Trio 3T scanner with a standard
12-channel coil using a T2*-weighted whole-brain echoplanar (EPI) sequence (2s repetition
time (TR), 30ms echo time (TE), 90° flip angle). Each volume consisted of 33 slices
acquired parallel to the AC-PC line (interleaved acquisition; 3-mm slice thickness, 64 × 64

Turner et al. Page 6

Neuroimage. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



matrix). Subjects were scanned in 6 runs spanning approximately 450s each. During each
run, participants had to respond to sinusoidal grating patterns that belonged to one of four
categories on which the subject had been pretrained. The stimulus and response both
occurred in the same TR, i.e., the motor response occurred within 2s of the onset of the
stimulus. For all estimation measures, time ‘0’ corresponds to the onset of this stimulus.
Although there were four responses, two were left-hand responses and two were right-hand
responses. This left-right distinction is the one we will train the classifier to make in order to
assess the estimation methods. This study used a partial trials design with 100 stimulus TRs
per function run. Each stimulus TR was preceded by a cue TR with probability 0.5 and
followed by a feedback TR with probability 0.75. The distribution of intervals between for
any two adjacent stimulus-response events (regardless of class, left or right) was [0, 2, 4] s
with probabilities [0.125, 0.5, 0.375], respectively.

Fifteen healthy normal subjects were scanned performing this task. All trials were included,
irrespective of the accuracy of the response emitted by the participant. Prior to estimating
the observations for classification, the data were pre-processed using FEAT v5.98, part of
FSL (Smith et al., 2004). The following preprocessing steps were applied: motion correction
using the MCFLIRT tool; non-brain removal using the BET brain extraction tool; grand-
mean intensity normalization of the entire 4D dataset by a single multiplicative factor; and
highpass temporal filtering (Gaussian-weighted least-squares straight line fitting, with
sigma=25.0s).

Finally, prior to entry into classification, feature selection was applied using an orthogonal
selection method to isolate voxels that might be task-involved. In particular, the voxels
included as features for subject M were selected based on a top-level GLM analysis
including all subjects except M, calculated using FSL’s FLAME 1 analysis. For every
subject, we took the 1000 voxels with the largest statistic values from each direct contrast
between our two events for a total of 2000 voxels. Because the features included in the
training and test sets were selected without reference to the data comprising either set, this
procedure avoids any “peeking” bias that might inflate the classification accuracy.

Real data: data analysis
All of the methods discussed above were applied to the real data to generate estimates for
use in MVPA. For each method, the estimates from each functional run were generated
independently for every subject. Prior to generating the estimates, the data from each voxel
for a given block were demeaned, and then the data for all voxels within the run were
normalized to have unit variance across all voxels and time points (i.e., there were no
constraints placed on the variance across TRs within a voxel or across voxels for a given
TR). The classifier was a linear SVM2 (implemented using Matlab’s Bioinformatics
Toolbox); an initial double cross-validation (CV) was used to find the optimal value of C for
each fold of the primary CV (see Appendix). Additionally, by default, the dimensions were
each normalized to have zero mean and unit variance—note that this operation is distinct
from the pre-estimation normalization, which operates on the time series, whereas this
normalization operates on the estimates. As with the simulation analysis, the space in which
the SVM operated for the multi-parameter methods was larger by a factor of n than that LS1
and LS2.

In order to assess the significance of the classification results against the null hypothesis of
no class–response associations, a permutation analysis was conducted (Golland & Fischl,

2Because a major advantage of the spatiotemporal methods lies in the interpretation of the SVM weight vector, we decided against
using a nonlinear kernel, which requires much more effort to interpret (e.g., Rasmussen et al., 2010).
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2003). Across each of 500 iterations, a leave-one-run-out cross-validation was run with each
of the methods, with the vector of labels for all events in the training set randomly shuffled.
Within each iteration, the same shuffle is used across all subjects, folds, and methods. This
allows us to use these permutation results to test for differences between methods, in
addition to testing each method individually against chance. Moreover—because researchers
might be interested in class-specific accuracy as well as overall accuracy—for both the true
analysis and the permutation analysis, accuracy was computed separately for the two classes
in addition to the standard across-class average accuracy.

As with the simulated data, we are also interested in the impact of proximal events on
classification performance. However, for the real data results, there are several changes in
how we assess this relationship from the simulation analysis. First, because we are using
SVM rather than logistic regression, the margin is not bounded between 0 and 1 and can no
longer be interpreted as a probability. For this reason, we conducted a repeated measures
logistic regression analysis where we predicted the classification accuracy of each event (0
or 1), rather than the classifier margin. Second, in addition to the independent variables we
had before (indicators of the presence of an event of the same or opposite class at each of the
preceding and subsequent 9 TRs), the model also included a nuisance variable indicating
class. Finally, the intercept was allowed to vary randomly over runs nested within subjects.
As before, if a method’s classification accuracy is impacted by overlap in the responses to
temporally-adjacent events, this analysis will demonstrate the change in accuracy caused by
these adjacent events.

Results
Simulation study

Classification accuracies for all the methods discussed above are shown in Figure 2. Rows
of Figure 2 correspond to different levels of signal-to-noise ratio (SNR), whereas columns
correspond to different ISI structures. For each combination of values, a boxplot shows the
accuracy of all four methods. In general, the single-parameter methods slightly outperform
the multi-parameter methods. Among the multi-parameter methods, the FS and MM
methods perform similarly, with the FS method showing an advantage under conditions of
low noise and short ISI, and MM perhaps showing a much smaller advantage with low noise
and long ISI3. The addition of a second nuisance column (i.e., LS2 vs. LS1) has a negligible
effect on accuracy except in the case of low noise and short ISI, where it evinces an
accuracy advantage of ~2%. Under these same conditions, the disadvantage of the multi-
parameter methods relative to the single-parameter methods is particularly clear: MM is
~10% lower than LS1, and FS suffers a drop of ~5% accuracy from the appropriate single-
parameter comparison (i.e., LS2).

Recall that both LS1 and LS2 require specifying an HRF, and that the HRF assumed by
these methods was the same as the HRF used to generate the simulated data. This gives
these methods a distinct advantage when tested against these data. As described in the
Methods section above, to examine this issue more closely, we generated additional
simulated data sets that were identical except that they used an HRF that was temporally
shifted by 0.5–2.0s. Thus, when applied to these new data, LS1 and LS2 use a mis-specified
HRF (i.e., relative to the HRF used to generate the data). The classification accuracy on
these data sets is shown in Figure 3 for each method. Note that for all the multi-parameter
methods, the change in accuracy is negligible. However, for LS1 and LS2, there is a

3It is unsurprising that, as the ISI structure moves toward longer ISIs, the MM method should be increasingly similar to FBR. In the
limit of perfect separation between successive events, the two are very similar, and MM will be able to perfectly extract the BOLD
response to each event without having to resort to any averaging, which might in fact give MM a slight advantage over FBR.
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noticeable drop in accuracy, particularly with relatively high SNR. The qualitative
difference between the multi- and single-parameter methods here is due not to the difference
in number of parameters per se, but rather to the fact that LS1 and LS2 are strictly
parametric, whereas the multi-parameter methods are nonparametric, or at least much more
weakly parametric. This differs from the situation in Mourão-Miranda et al. (2007), where
the best-performing single-parameter method (i.e., averaging across a subset of TRs within a
block) was also essentially non-parametric4.

The fact that the difference between MM and FS is largest for the shortest ISI distribution
and decreases as the distribution shifts to longer ISIs is expected since MM does not unmix
the BOLD responses to nearby events. For this reason, the MM activation estimates will not
be as accurate when the ISIs are short. The FS approach, on the other hand, specifically
unmixes the observed BOLD response into the component BOLD responses to each event.
We explicitly tested the nature of the bias that occurs because of the failure of MM to unmix
by asking whether the presence of neighbors of the same or opposite class caused any
consistent change in the classifier’s absolute margin (the degree to which the classifier
makes a perfect prediction). We repeated the simulation with high SNR, low ISI, and
unshifted HRF 50 times, i.e., 9000 events— the same number as there was across all
subjects in the real data analysis. We then constructed a separate model that predicted the
classifier’s margin—generated using estimates from each of the methods—as a function of
the presence of same- or opposite-class neighbors at each of the 9 preceding and subsequent
TRs. The beta estimates for this analysis represent the change in classifier margin caused by
a neighbor of the same or opposite class at the given lag, holding everything else constant.
The results, given as the change in margin (above or below baseline, i.e. higher values
correspond to better performance) for all lag-class pairs (i.e., the parameters of this model),
are shown in Figure 4a. Another way to view this effect is to examine the average
classification accuracy as a function of the number of neighbors within ±4s for the same and
opposite classes, as shown in Figure 4b5.

As expected, FS is immune to neighbors of either the same or opposite class, whereas the
performance of MM is affected by these neighbors, and this effect is most severe when there
are at least two events in the preceding or subsequent two TRs. LS1 is even more strongly
affected by neighbors, which may initially be surprising, because this method was designed
to unmix adjacent events. However, it is easy to explain: in the situation where there are two
classes with distinct responses, LS1 allows only a single nuisance regressor, which will take
a value somewhere between the two true responses. Therefore, it is systematically
overestimating the response to one class, and underestimating the response to the other.
When the unique event we are trying to estimate has many other events of a single class
nearby, the predicted timecourse in the vicinity of the unique event will be systematically
too low or too high (i.e., the residuals will not be zero-mean in this local neighborhood),
which will cause the regressor for the unique event to be larger or smaller than it ought to be
in order to accommodate. Because LS2 includes one nuisance regressor per class, it avoids
this problem, so neighbor influences should be minimized when using LS2 (except to the
degree that the choice of an incorrect HRF introduces systematic bias).

4This would be akin to combining parameters in the multi-parameter methods prior to classification, as was demonstrated for the kNN
analysis. The classifier no longer has direct access to temporal information, but estimation was still non-parametric.
5Note that these are unconditioned counts, i.e., the two types are anticorrelated: the mean number of opposite-class neighbors within
±4s given 0, 1, or ≥2 same-class neighbors in the same interval is 1.03, 0.67, and 0.37, respectively. Likewise, the mean number of
same-class neighbors given 0, 1, or ≥2 opposite class neighbors is 1.00, 0.67, and 0.31.
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Real data
The classification accuracy results for the real data are given in Table 1 for each of the
methods considered in this analysis for the baseline case of unrestricted feature selection and
using a linear SVM classifier. To test that classifier accuracy was above chance for each of
these results, we compared the true average accuracy for each class separately and across
classes to the distribution of permuted average accuracies. The number of instances of a
permuted average accuracy falling above the observed average accuracy for a method serves
as an empirical estimate of the p-value of that accuracy result. This analysis revealed that all
class-separate and class-averaged accuracies obtained using each of the estimation methods
were significantly higher than chance (see Table 1).

In order to compare methods, difference scores were computed between every reasonable
pairwise combination of methods, and the above procedure was repeated: the mean of each
of these difference score distributions was compared against the distribution of permuted
mean differences, giving empirical p-values for each of the five pairwise comparisons that
we considered (Table 2). This analysis revealed that, relative to chance performance, the
difference between LS1 and LS2 was significant for one of the classes and for the average
accuracies, indicating an advantage with the addition of the second nuisance column.
Additionally, both multi-parameter methods yielded significantly higher class-separate and
class-average classification accuracies than their single-parameter referents. There was no
significant difference in classification accuracy between the two multi-parameter methods.

In addition to examining the accuracy across all events, we tested the effect of same- and
opposite-class neighbors on event-by-event accuracy. To do this, we used a logistic
regression model to predict the event-by-event accuracies (i.e., 1 or 0) as a function of the
presence or absence of neighbors of the same or opposite class at each of the preceding and
subsequent 9 TRs. The parameter estimates give the log of the ratio of the odds of correct/
incorrect classifications for presence versus absence. In other words, exponentiating any
parameter estimate reveals how much more likely—or less likely—correct classification is
than incorrect classification given presence versus absence for that estimate’s type and lag.
A parameter estimate of 0 indicates that the corresponding neighbor has no impact on
accuracy, i.e., the probability correct is the same given presence or absence. Positive
parameter estimates reflect a beneficial effect of the presence of neighbors, and vice versa
for negative parameter estimates. The results of this analysis are given in Figure 5a, which
shows the parameter estimates for each method. To demonstrate the direct impact of the
neighbor effects on classification accuracy that this analysis implies, Fig. 5b shows the
average classification accuracy for each method as a function of the number of same- or
opposite-class neighbors within ±4s6. As with the simulated data, LS2 shows a large
advantage over LS1 and FS shows a small advantage over MM.

Discussion
Mourão-Miranda and colleagues (2007) showed that the addition of temporal information
resulted in identical classification performance to the best single-parameter method they
considered, and added the benefit of showing the temporal evolution of class-discriminating
information across the brain. Relative to many of the methods that are commonly applied to
rapid ER data (e.g., Misaki et al., 2010; Mumford et al., 2012), their method also has the
advantage of being more flexible, due to its extra parameters and non-parametric form.
However, the MM method was developed for data collected using a block design, and

6Same caveat applies as for Fig. 4b: the mean number of opposite-class neighbors within ±4s given 0, 1, or ≥2 same-class neighbors
in the same interval is 0.94, 0.51, and 0.11, respectively. Likewise, the mean number of same-class neighbors given 0, 1, or ≥2
opposite class neighbors is 0.94, 0.50, and 0.11.
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although it has since been applied to data collected using slow ER designs, the goal of this
article was to extend the method to data collected in rapid ER designs. Although direct
application of MM to rapid ER data is gaining traction, there has never been a systematic
assessment of how it compares to single-parameter methods, or to other potential multi-
parameter methods.

Our results show that, although the classification accuracy of the multi-parameter methods
was slightly lower than that of the single-parameter methods on the simulated data, this
disadvantage only occurred when we used the same HRF during estimation that was used to
create the simulated data. The single-parameter methods considered in this article are
parametric, whereas the spatiotemporal methods are all nonparametric. Any parametric
statistical technique performs best when its parametric assumptions are valid. Of course,
with real data, it is unlikely that a user would be able to specify the HRF with no error7, and
therefore we should not necessarily expect the single-parameter methods to show the same
advantage when applied to real data. In fact, the superiority of the single-parameter methods
disappeared in our real data analysis. For a data set comprising 15 subjects with 6 functional
runs each in a task of category learning, both MM and FS outperformed LS1 and LS2 in
spite of having to overcome the curse of dimensionality in a much higher-dimensional
space.

The advantage of FS over MM is likely to depend on the event timing structure of the
experiment: when the shortest ISI is longer than the time it takes for the hemodynamic
response to return to baseline, MM will be able to perfectly capture the BOLD response to
each event. Similarly, the difference between FS and LS-S will increase as the event timing
becomes more uncertain (or equivalently, as the model used for the HRF becomes less well-
specified). Each of these effects is demonstrated in our simulated data results. Moreover, in
the real data analysis, we show that FS—but not MM, LS1 or LS2—successfully unmixes
the responses to temporally adjacent events. For MM, this is because MM lacks any
mechanism for unmixing adjacent events; for LS1, it is because of the systematic over- and
under-estimation of the two classes by use of a single nuisance regressor; and for LS2, it is
likely because the parametric shape of the assumed response is systematically biased relative
to the true shape. Therefore, in any design where the responses to subsequent events may
overlap, these latter methods will result in contaminated estimates for each event, and
therefore in more variable classification performance. Note that even though classification
accuracy actually improves in the latter methods as more events of the same class are
proximal, this should be considered a liability of the methods rather than an asset, because it
still reflects a failure to estimate event-by-event activity in an unbiased way. On the other
hand, FS does not exhibit this failing, but instead demonstrates an ability to reliably capture
the veridical event-by-event responses in a way that may be useful to researchers applying
techniques extending beyond simply maximizing classification accuracy in MVPA.

Spatiotemporal methods are an obvious choice even for researchers not interested in
classification performance per se, because their classification weight vectors identify when,
as well as where, class-discriminating information arises (see Mourão-Miranda et al., 2007).
These methods incur little extra cost relative to the single-parameter methods, yet they offer
several potential advantages. The most obvious, of course, is a possible improvement in
accuracy. More significant, though, is that the spatiotemporal methods open the temporal
domain to analysis, and thus raise the hope of addressing questions that are beyond the
scope of current pattern classification methods. Regardless of the aims of the researcher—

7Of course, it would be possible to try various forms of the HRF, but this introduces problems with multiple comparisons, requiring
additional cross-validation to control the false-positive rate, and still imposes the constraint that the HRF be identical throughout the
brain—both of which are avoided by more weakly-parametric methods.
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spatiotemporal analyses, pattern information assessment as indexed by classification
accuracy, or other analysis techniques that rely on trial-by-trial activity estimates—FS
makes an appealing choice when the data are collected in a rapid ER design. While future
work remains in determining the effects of, e.g., varying degrees of averaging or other
classifier types, it is our hope that the current work encourages wider adoption of
multivariate and trial-specific methods by researchers who have previously regarded these
areas as inaccessible because they use rapid ER designs.
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Appendix

Double cross-validation
In order to tune the hyper-parameters associated with the classifier we used in this paper, we
performed a double cross-validation as follows:

1. For a given fold within the primary cross-validation, select a functional run to be
held out as the test run. The remaining five runs comprise the training set.

2. Within the test set, select a run to be held out as the cross-validation test run; the
remaining four runs now comprise the cross-validation training set.

3. Loop through candidate values of C, choosing exponents of 10 from −6 to 6 in
steps of size 0.5.

4. Train the classifier with the current value of the hyper-parameter on the cross-
validation training set, and observe the error on the cross-validation test run,
defined as −1 times the phi coefficient (Matthews correlation) of the predicted and
actual labels.

5. Repeat steps 2)–4), holding out each other run in the original training set as the
cross-validation test run, and using the remaining runs as the cross-validation
training set.

6. For the given fold of the primary cross-validation, the optimal hyper-parameter is
the one that returns the lowest error across all folds of the double cross-validation.
This hyper-parameter is used to train and test the classifier with the original
primary cross-validation training and test sets—note that the value was chosen
independent of its impact on classification performance for the primary cross-
validation test set.
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Figure 1.
Schematic representation of the design matrix for a single iteration of each of the three
methods, shown with only a single class (and hence only one set of nuisance columns for
FS); the parameters of interest are the βNs for LS1 and FS, and the βs for MM.
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Figure 2.
Classification accuracy results for the simulated data for six methods. Signal-to-noise ratio
decreases across rows, while ISI increases across columns. The solid horizontal line
indicates chance (50%), while the dashed line indicates accuracy significantly better than
chance according to the binomial distribution.
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Figure 3.
Decrease in accuracy caused by using a shifted HRF to generate simulated data. Each line
runs from 0 s shift to 2 s shift in steps of 0.5 s. The solid horizontal line indicates chance
(50%), while the dashed line indicates accuracy significantly better than chance according to
the binomial distribution.
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Figure 4.
a. Beta weights (±95% confidence intervals) showing the influence of neighboring events
for 50 simulated runs with 0–4s ISI and noise standard deviation = 0.8. The ordinate shows
change in classifier margin (y-axis of each frame) as a function of the presence of a neighbor
at each 2s lag ±18s (x-axis), and whether that neighbor was of the same (blue) or opposite
(red) class.
b. Average classifier accuracy (± 95% confidence interval) for each method as a function of
number of same- or opposite-class neighbors within ±4s, for 50 simulated runs with 0–4s ISI
and noise standard deviation = 0.8.
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Figure 5.
a. Exponentiated logistic regression weights (±95% confidence intervals) showing the
influence of neighboring events for real data. The regression predicts event-by-event
accuracy of an SVM classifier as a function of the presence of a neighbor at each 2s lag
±18s (x-axis), and whether that neighbor was of the same (blue) or opposite (red) class. The
ordinate (log scaled for visualization) gives the change in odds ratio. For example, a value of
2 above zero corresponds to a doubling in p(correct)/p(incorrect) with presence as compared
to absence, while a value of 2 below zero corresponds to a doubling in p(incorrect)/
p(correct) for presence versus absence.
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b. Average SVM classifier accuracy (± 95% confidence interval) for each method as a
function of number of same- (blue) or opposite- (red) class neighbors within ±4s.
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