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Multiple sclerosis (MS) is a common neurological disease, especially among
the young in northern countries and is characterized by recurrent or progres-
sive inflammatory events that lead to spatially disseminated demyelination of
the central nervous system, followed by subsequent axonal loss (Compston and
Coles, 2008). Early treatment is important to avoid permanent damage and
might slow or delay progression (Jacobs et al., 2000; Kappos et al., 2007). How-
ever, due to the variety of clinical presentations and its large differential di-
agnosis, early identification of the disease is especially problematic (Rolak and
Fleming, 2007; Swanton et al., 2007). In its most common relapsing-remitting
form (RRMS), patients present attacks alternating with episodes of clinical im-
provements, following an unpredictable rhythm (Noseworthy et al., 2000). Cur-
rent diagnostic workup is based on clinical examination together with structural
magnetic resonance imaging (MRI) of brain and spine as well as cerebrospinal
fluid analysis, seeking for evidence of both dissemination in time and dissemina-
tion in space of the inflammatory lesions (Compston and Coles, 2008). The role
of MRI, most often relying on T2-weighted and Gadolinium-enhanced images
to establish the diagnosis, is of growing importance to establish the diagnosis
and follow disease progression or remission (Polman et al., 2005; Barkhof et al.,
2009; Polman et al., 2011). However, conventional MRI has several recognised
limitations; the “hidden” damage known to occur in the normal appearing brain
tissue (NABT) (Fu et al., 1998) is not captured; structural lesions are not al-
ways specific to MS (Barkhof and Filippi, 2009); T2 hyperintensities are his-
tologically unspecified since inflammation and demyelination as well as axonal
damage and gliosis have similar signal characteristics (Ratchford and Calabresi,
2008); and the correlation of lesion load and clinically significant impairment is
poor (Barkhof, 2002; Filippi and Agosta, 2010). Therefore, current radiological
signs obtained from structural MRI may not reflect the actual disease state.

In this context, interest is growing for alternative MRI modalities, that may
provide complementary information, with the aim of finding additional imag-
ing markers for MS (Filippi and Agosta, 2010). One such modality is diffusion
MRI: there is evidence that axial diffusion is relatively specific to axonal degen-
eration (Song et al., 2003), while increased radial diffusion is mainly driven by
demyelination (Budde et al., 2009; Zhu et al., 1999). The use of advanced trac-
tography methods suggests that a connectional framework may lead to improved
sensitivity and specificity to the disease and its related clinical impairment (Ci-
ccarelli et al., 2005; Lin et al., 2005; Dineen et al., 2009).

Another technique that also builds on the connectional framework and has
potential sensitivity to detect “invisible” lesions is functional MRI (fMRI). Based
on the blood oxygen level dependent (BOLD) signal, this technique gives an in-
direct measure of aggregate neuronal excitation-inhibition in grey matter micro-
circuits (Logothetis, 2008). MS lesions can alter neuronal networks in several
ways. Several fMRI studies have highlighted brain circuit plasticity and its
potentially adaptive role in recovery or compensation in response to brain le-
sions (Reddy et al., 2000b), for motor (e.g. finger tapping) (Lee et al., 2000;
Reddy et al., 2000a; Morgen et al., 2004) as well as cognitive tasks (e.g. working
memory and attention tasks) (Mainero et al., 2004; Morgen et al., 2007). While
permanent axonal changes already accompany even early acute inflammatory
responses (Trapp et al., 1998), fMRI studies indicate that adaptive plasticity
might limit the initial clinical expression of the disease (Cifelli and Matthews,
2002; Rocca and Filippi, 2007) and that patients can show complete clinical



recoveries after relapses, explaining the missing link between clinical and radi-
ological presentation. Pathological functional effects have been shown, as for
example the loss of interhemispheric inhibition, related to corpus callosum at-
rophy (Manson et al., 2006, 2008). A negative effect of disease progression on
plasticity has also become clear, limiting the potential for adaptive capacity and
leading to globally reduced brain connectivity and dysfunction (Morgen et al.,
2004; Cader et al., 2006).

Furthermore, beyond local changes in activity, fMRI can provide informa-
tion on the architecture and interconnectivity of more distributed brain net-
works, notably by measuring patterns of spontaneous fluctuations during rest-
ing state (Biswal et al., 1995; Greicius et al., 2003). Resting-state connectivity
analysis has benefitted from recent advances in fMRI methodology allowing
to investigate intrinsic (i.e. not task related) brain activity across the whole
brain and to identify the degree of functional correlation between distant ar-
eas (Greicius et al., 2009). Many publications have focused on analysing the
default-mode network (DMN) (Buckner et al., 2008), a set of regions highly
synchronised during rest. This methodology has been used in several diseases
characterised by diffuse lesions (Fox and Greicius, 2010) such as schizophre-
nia (Jafri et al., 2008), Alzheimer’s disease (Li et al., 2002; Greicius et al., 2004)
or depression (Greicius et al., 2007), but investigations in MS are limited to
relatively fewer publications. For example, Cover et al. (2006) found decreased
inter-hemispheric connectivity in MS patients at rest, using a coherence measure
based on magneto-encephalography (MEG). Rocca et al. (2010) found reduction
of activity in the anterior cingulate cortex (ACC) at rest in MS patients rela-
tive to controls, and in cognitively impaired MS patients related to cognitively
intact MS patients. Weaker DMN connectivity in the ACC of MS patients was
also reported by Bonavita et al. (2011) using independent component analysis
of IMRI resting-state data. Roosendaal et al. (2010) investigated fMRI resting-
state networks in patients with clinically isolated syndrome (CIS) and patients
with RRMS and observed an increased synchronisation of some resting-state
networks in CIS patients which disappeared in those with RRMS, suggesting
initial functional compensation that is lost with disease progression. Using ICA
and seed correlation, Jones et al. (2011) showed significant differences in con-
nectivity at rest between a single MS patient with an important thalamic lesion
and a group of controls, in particular in the default mode network.

Based on these studies, resting-state fMRI offers a promising avenue to fur-
ther investigate the functional impact of pathology, including at early stages
of MS where long-range connectivity can be altered by both inflammatory pro-
cesses and mild axonal damage. However, a comprehensive assessment of altered
brain connectivity would need to detect subtle and distributed patterns through-
out the brain, in a data-driven and objective manner despite the highly variable
location of lesions in MS. Moreover, for both task-based activity and resting-
state connectivity analyses, functional changes and compensatory mechanisms
can appear either as increases or decreases, depending on the task, individual
patient, and/or disease state. Given the high number of possible connections to
test, mass-univariate or summary statistics have difficulties to find significant
differences; e.g., mean connectivity between specific regions of interest may show
no consistent differences between MS and controls (Lowe et al., 2008). Instead,
here we propose the use of predictive multivariate models that can generalise
to unseen subjects (those not used to learn the parameters of a model) and



thus potentially lead to a new imaging-based marker for MS. Recent work has
highlighted the feasibility of using single structural scans for reliable MS diagno-
sis (Rovira et al., 2009), the ability of local multivariate predictive methods to
discriminate between MS patients and controls with high accuracy, even when
using NABT structural data (Weygandt et al., 2011), and the possibility of using
global multivariate methods with structural data to distinguish various aspects
of MS severity (Bendfeldt et al., 2012). Accordingly, given the increased use and
development of predictive modelling techniques in fMRI research, originally de-
rived from machine learning or pattern recognition (Kamitani and Tong, 2005;
Mourao-Miranda et al., 2005; Ethofer et al., 2009; Weil and Rees, 2010; Shirer
et al., 2011), it would appear highly suitable and advantageous to apply similar
techniques to characterise high-dimensional fMRI data obtained during resting-
state (Richiardi et al., 2010, 2011). There has also been a slow concurrent
increase in the use of multivariate predictive modelling techniques applied to
functional connectivity data of pathological subjects. For example, Craddock
et al. (2009) have proposed using the temporal pairwise correlations between
15 expertly selected regions of interest as features for a support vector ma-
chine classifier applied to depressive patients. More recently, Chen et al. (2011)
have used a low-dimensional representation of connectivity differences obtained
from non-parametric hypothesis testing and linear discriminant analysis to clas-
sify Alzheimer’s disease patients, MCI patients, and normal subjects. To our
knowledge, however, no multivariate predictive modelling approach based on
functional connectivity has been reported in MS.

Here, we describe a functional connectivity analysis of resting-state data
adapted from our recently developed multivariate connectivity decoding tech-
nique (Richiardi et al., 2011), which we use to discriminate between minimally-
disabled MS patients (median EDSS 2.0) and healthy controls, a first step to-
wards the development of predictive prognosis models. Our approach exploits
whole-brain data rather than restricting the study to a few regions of interest
such as motor cortices or the DMN. By doing so, we aim at exploring global
connectivity changes in MS and defining which functional connections are par-
ticularly affected by the disease. Beyond the data-driven exploration of the
functional impact of distributed connectivity damage associated with MS, our
method provides a classifier model that gives predictive information on individ-
ual status (as opposed to whole-group analysis based on a priori classification).
The ability to classify patients based on fMRI connectivity patterns is a first
step towards developing useful tools for improving the diagnostic workup and
the monitoring and prognosis of MS patients, even in the absence of overt clinical
signs or visible structural lesions.

1. Materials and Methods

1.1. Subjects and task

Twenty-two relapsing-remitting (RR) MS patients according to McDonald’s
diagnostic criteria (Polman et al., 2005) were selected from our outpatient clinic
database. The selection criteria were: (1) mild to moderate neurological dis-
ability but unimpaired ambulation (Expanded Disability Status Scale (EDSS)
< 2.5 in all cases (Kurtzke, 1983)); (2) no clinical relapse and no corticosteroid
therapy for at least 6 weeks before inclusion in the study; and (3) no other



neurological diagnosis, major depression, or psychiatric illness according to the
DSM-1V criteria. All underwent a similar MRI protocol during their follow-up,
with all parameters of the imaging sequence equal and with the same MRI scan-
ner in all subjects, in order to prevent confounding factors in the analysis. All
patients were only minimally disabled (median EDSS 2, range 1.5 to 2.5), with
five subjects having had a single attack at the time of imaging. At the time of
scanning, 11 out of 22 patients were receiving disease-modifying therapies (in-
terferon $-1a or 1b in 9 cases, glatiramer acetate in 2 cases) for a mean duration
of 38.8 + 37.1 months).

The control group consisted of 14 healthy subjects with no history of al-
cohol or drug abuse, major psychiatric disorder (major depression, psychosis,
untreated bipolar disorders), head trauma, other neurological disorder, or sys-
temic illness.

The characteristics of the study population are summarised in Table 1, and
full details are provided in Supplementary Table 1.

patients (N=22) controls (N=14)

gender (M/F) 8/14 5/9
mean age at inclusion (SD) 36.8 (7.9) 38.4 (6)
median EDSS (range) 2.0 (1.5-2.5) -
mean years of disease duration (SD) 4.7 (3.5) -

Table 1: Demographic information of the study population

The study was approved by the local university Ethics Committee, and all
subjects gave informed consent for their participation in accordance with the
Declaration of Helsinki.

1.2. Data acquisition

Data was acquired on a Siemens 3T TrioTIM (VB15) platform, using a
32-channel head coil. Functional imaging data were acquired in one session
using gradient-echo echo-planar imaging (TR/TE/FA = 1.1s/27ms/90°, matrix
= 64 x64, voxel size = 3.75x3.75x5.63mm?, 21 contiguous transverse slices, 450
volumes). Longitudinal magnetisation was assumed to reach steady-state after
approximately 10-11 seconds, and the first 10 scans of each acquisition were
discarded. In total, T" = 440 volumes were kept for analysis. The resting state
scanning took 8 minutes. Participants were instructed to lie still with their eyes
closed, to relax and let their mind wander without doing anything in particular
(as is standard practice in resting-state fMRI studies (Fox and Raichle, 2007;
Mantini et al., 2007; Helekar et al., 2010)).

A structural image was also acquired using a high resolution three-dimensional
T1-weighted MPRAGE sequence (160 slices, TR/TE/FA = 2.4 s/2.98 ms/9°,
matrix = 256 x 240, voxel size = 1 x 1 x 1.2mm3).

In addition, a turbo spin-echo proton density (PD) image (46 slices, TR/FA
= 2640 ms/150°, matrix = 204 x 256, voxel size = 0.98 x 0.98 x 3mm?) was
acquired for lesion tracing.

1.3. Data processing and construction of the functional connectivity matriz
1.8.1. Lesion masks and lesion load computation

Lesions were traced manually on the PD image by 2 independent radiologists
(Medical Tmage Analysis Center, University Hospital Basel, E.W. Radue). Le-



sion load was calculated by multiplying the total number of traced lesion voxels
by the voxel volume.

1.8.2. Structural and Resting-state data

To extract the resting-state functional connectivity matrix, we follow the
methodology described in previous work (Achard et al., 2006; Richiardi et al.,
2011). Supplementary Section 1 provides an overview of the processing pipeline.

For each subject, the functional data is spatially realigned and motion-
corrected to the mean image with SPM8 (least-square technique with rigid body
and quadratic interpolation). Movement parameters are checked for excessive
translation and rotation, and the volumes inspected visually for intensity spikes,
which are due to the spin-history effect in case of large movement (Friston et al.,
1996). One patient (not included in Table 1) was excluded due to excessive
movement.

Each subject’s structural image is normalised to MNI space and segmented
using the SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) new segmentation al-
gorithm, an updated version of the unified segmentation algorithm (Ashburner
and Friston, 2005). The structural image is co-registered to the mean image of
the functional data. An individual brain atlas containing 90 cortical and sub-
cortical regions of interest (ROIs) is then computed with a modified version of
the IBASPM toolbox (Aleman-Gdémez et al., 2006) and the AAL atlas (Tzourio-
Mazoyer et al., 2002). A full list of these regions is provided in Supplementary
Table 2. This structural atlas is then mapped back onto the native resolution of
the functional data, the time-series are linearly detrended, and region-averaged
time series are obtained. These regional time-series are windsorised to the 95th
percentile to increase robustness to outliers. At this stage, each subject’s func-
tional data is contained in a 90 x T" matrix (multivariate time series).

The regional time courses are then filtered into frequency subbands using
a wavelet transform (cubic orthogonal B-spline wavelets). The subband of in-
terest for this study contains frequencies in the 0.06-0.11 Hz range, to focus
on resting-state activity (Richiardi et al., 2011). While the commonly used
freeuency band is wider (Biswal et al., 1995; Lowe et al., 1998), the use of
wavelet correlation (Achard et al., 2006) relies on a dyadic wavelet decompo-
sition, where the influence of boundary conditions becomes more important as
we move to coarser (lower frequency) subbands. Given the available acqui-
sition time, the current subband is theoretically a good compromise between
boundary condition artefacts (getting worse towards lower frequencies because
there are fewer independent samples) and signal-to-noise ratio (getting worse
towards higher frequencies because of the haemodynamic response acting as a
low-pass filter). To further ensure that the time course noise (due to movement
or scanning artefacts) does not add a confound and is equal between control
and subject groups, the average standard deviation of the regional filtered time
courses g is computed for each subject, and a Kruskal-Wallis test is conducted
on the hypothesis of no difference in median value of Gr between groups.

After computing pairwise Pearson correlations between all ROIs in the atlas,
a 90 x 90 correlation matrix is obtained for each subject. Note that for the
whole procedure, the data of each subject is not influenced by the data of other
subjects; e.g., no groupwise registration is used. This will ensure independence
later on in the modelling stage, and allows a proper deployment of predictive
approach.



1.4. Modelling and classification of connectivity matrices

The functional connectivity matrix can be considered as the adjacency matriz
of an undirected, weighted, complete graph, by removing the diagonal elements.
This defines the connectivity graph, where each atlas ROI corresponds to a vertex
and the strength of functional connectivity between two ROIs is encoded in the
edge weight (a correlation coefficient). To permit the use of machine learning
algorithms, we use the direct graph embedding method (Richiardi et al., 2010),
in which the upper-triangular part of the adjacency matrix is lexicographically
organized in a vector representation. This provides a flexible approach enabling
us to model the whole-brain graph, or to examine a specific hemisphere or lobe,
or even to consider connections inside functionally-defined networks. These
types of sub-graphs can be readily extracted from the full adjacency matrix, and
represented as vectors. It is possible to train the classifier on the whole graph,
and then to study the relative discriminative importance (weights, see below)
of various subgraphs, or to directly train the classifier on subgraphs. In the
remainder of this work we focus on the former method. Thus, at this stage, each
subject’s resting-state data is represented by a feature vector whose elements are
pairwise regional correlation coefficients. We point out that the input features
used in Craddock et al. (2009) are equivalent to our direct embedding approach,
the difference being the addition of a Fisher R-to-Z transform step and the
lower dimensionality of the feature space generated (15 regions lead to 105 edge
weights in feature space).

For classification, we use an ensemble of functional trees (Richiardi et al.,
2011), a variation on the random forest scheme occasionally used in neuroimag-
ing (Langs et al., 2011). This classifier yields a discriminative weight w; for
each functional connection in our resting-state data. This value represents the
relative ability of each connection to discriminate between controls and MS
patients. Their interpretation is very close to that of regression coefficients, ex-
cept that they only make sense as part of a multivariate pattern: connections
with high discriminative weight are useful in predicting patient status (they are
a good predictor), while connections with low discriminative weight carry little
information. After permutation testing to remove connections with insignificant
discriminative weights, the set of remaining connections yields what we call a
discriminative graph. The discriminative weight of each connection can then be
used to compute regional discriminative weights by summing the discrimina-
tive weights of all connections attached to a particular region. The regions and
connections of the discriminative graph can be represented in MNI space. By vi-
sualising the connections and regions that are jointly most discriminative (those
from which a prediction of the MS status of any new subject can be made), we
can obtain a map of all connections driving the classification between patient
and control groups. Supplementary Section 1 contains more details of about
the computation of discriminative weights, including the permutation testing
approach used for statistical control.

In order to evaluate the performance and generalisation ability of the clas-
sifier, we adopt a leave-one-subject-out cross-validation approach, whereby the
dataset is split N times into a training set containing N — 1 subjects and a
test set containing 1 subject. The training set is used for learning the classifier
parameters, while the held-out testing set is used for prediction. We can then
measure how well the classifier is performing by aggregating prediction results
across the cross-validation folds.



We report the classification performance using the familiar measures sensi-
tivity and specificity. Supplementary Section 7 contains more details about the
computation of performance measures.

1.5. Summary indices of connectivity alterations

We can divide the set of connections C' that provide discrimination between
controls and MS patients into two distinct, non-overlapping parts: connections
that are, on average, weaker in patients than in controls (C'), and those that
are stronger (Cy). Thus, we have C = C UC4, and C N Cy = @. Then, we
can compute two summary measures per subject, which can serve for post-hoc
comparison of the results between groups.

For each subject s, the increased connectivity index (ICI) is the sum of cor-
relation values of the connections in C, denoted p;, each multiplied by its nor-
malised discriminative weight w; = G Thus, we have ICT* = Y jec, P
The reduced connectivity indexz (RCI) is computed in the same way, but from
the set of connections that are weaker in patients, C'; that is for each subject,
RCI® =5 jec P3W;- These two different indices can be plotted jointly to pro-
vide a simple two-dimensional view of discriminative connectivity alterations in
MS patients with respect to controls, e.g. subject 4 would be plotted in R? as
(RCT* ICT*). Figure 1 of the results section provides an example.

Additionally, for statistical analysis we may want to remove the bias due to
total edge strength of the connectivity graph (sum of edge weights > . p7), which
can vary considerably between subjects, and we can compute the normalised
RCI, respectively ICI, as nRCI® = Eilpf RCT?. This reflects the discrimina-
tive importance and connection strength in the discriminative (sub)graph with
respect to the total edge strength of the connectivity graph.

These indices are different from a simple averaging of correlation values,
because only a discriminative subset of connections is used, and the sum is
weighted by the discriminative importance of each connection. We should also
point out that Chen et al. (2011) have previously defined a “decreased connec-
tivity index” and an “increased connectivity index”. While related to our ICI
and RCI, these are different from our indices. They are computed from an “in-
creased connection set” (respectively decreased) which is the set of connections
whose z-scores, obtained from a Wilcoxon rank-sum test between groups, are
the n most positive (respectively negative). Within the increased (respectively
decreased) connection set, the correlation values are averaged, forming the in-
dices. Furthermore, they are used as input features to an LDA classifier in that
paper, as opposed to being a post-hoc summary measure of a high-dimensional
discrimination function in our approach.

2. Results

2.1. Predictive modelling of whole-brain resting-state functional connectivity pat-
terns has high sensitivity for MS

The pattern of correlation coefficients between all pairs of ROIs was cal-
culated for each subject in the MS and control groups, and submitted to our
multivariate decoding algorithm to determine the most consistent differences
in the low-frequency functional connectivity in resting-state between the two
groups.



After cross-validation, 18 out of 22 patients and 12 out of 14 controls were
classified correctly. These results correspond to a sensitivity of 82% (above
chance at p < 0.005, Wilson’s method for the binomial distribution), and a
specificity of 86% (above chance at p < 0.01). Importantly, these classification
results are not driven by noise differences between patients and controls, as
indicated by calculating the standard deviation of the regional filtered time-
courses or (p=0.24, Kruskal-Wallis test on the null hypothesis of no difference
in median value of G between groups).

When looking at the misclassified patients (details in Supplementary Table
1), it can be seen that two of them had only a single attack preceding their
inclusion in our study, and a lesion load in the lowest quartile of our sample
(0.39 and 0.51 cm?®). The two other misclassified patients had an EDSS score
of 1.5, i.e. the lowest in our database. This suggests that a potential source of
classification errors might concern the minimal disability caused by the disease,
when lesion load still has little or no impact on global functional connectivity.
Regarding patient treatment, it seems to have no effect on the performance of
the classification algorithm, but the sample size is not sufficient to assert this
with confidence.

Figure 1 shows the scatterplot of the increased and reduced connectivity
indices (ICI and RCI) computed post-hoc on the whole-group (see method de-
scribed in Section 1.5). This representation, where each index is based on a dis-
tinct sub-network of the discriminative graph, reveals good separation between
the groups. This suggests that the discriminative graph can indeed successfully
capture a predictive subset of connections, and that the discriminative weight
is reliably estimated across different subjects. As shown in this figure, misclas-
sified patients are generally in the region of the RCI/ICI graph corresponding
to high connectivity for patients, both in the C_ and C. subnetworks. This en-
tails these patients tend to exhibit stronger connectivity with respect to controls
than the classifier expected from the training sample. Likewise, the misclassified
controls tend to be those with the weakest connectivity in both the C_ and C
subnetworks.

Interestingly, there is a significant positive correlation between nRCI (see
Section 1.5) and the lesion load computed in MNI space (robust correlation
coefficient (Rousseeuw and Driessen (1998)) : 0.61; IRWLS robust linear re-
gression: p < 0.001 to reject the null hypothesis of a zero slope coefficient).
This suggests that, while total edge strength (3, p?, computed over the whole
connectivity graph for each subject) might not be a good indicator of lesions
(non-significant correlation between the vector whose elements are the total edge
strengths from all patients and the vector whose elements are the corresponding
lesion load values from all patients), the effect of white matter lesion can be
observed within a small subgraph (part of the discriminative subgraph) learned
on resting-state connectivity, linking known physiological effects of the disease
with functional MRI connectivity measurements. Indeed, this finding may be
taken as evidence that discriminative functional connectivity changes can at
least partly be attributed to white matter lesions. Furthermore, although no
causal mechanism is clear, this may indicate that connectivity strength of the
C_ subgraph relative to the rest of the network is increased in these minimally
disabled patients in an effort to compensate for increasing lesion load, while still
being below the connectivity strength of controls.

Supplementary Table 4 contains the weight of all connections that make up



the two indices. For an anatomical representation of subgraphs corresponding
to the ICT and RCI, see Figure 4 (section 2.2 below).

1r

* controls (N=14)
= patients (N=22)

increased connectivity index
|

0 0.2 0.4 0.6 0.8 1
reduced connectivity index

Figure 1: Scatterplot of reduced and increased connectivity indices for controls (green circles)
and patients (red squares). This is a summary representation of the pattern of connectivity
alterations that is predictive of MS in our sample, computed post-hoc on the whole dataset.
Points corresponding to subjects misclassified by our decoding algorithm in the leave-one-out
cross-validation procedure are circled in grey.

2.2. Connections distinguishing MS from controls at rest form a large-scale net-
work with low edge density

To visualise the anatomical organisation of connectivity changes (see Sec-
tion 1.4), we first extract the discriminative graph indicating which connections
and regions are jointly most discriminative between controls and MS patients.
In this sample we find 161 connections (out of 4005) that have significant dis-
criminative weights (p<0.05, corrected for multiple comparisons by permutation
testing), corresponding to an edge density (connectance) D = % ~ 0.04. Since
D <« 1, we interpret the discriminative graph as having a low edge density. The
connections with significant discriminative weights are shown in Figure 2. The
size of the ROIs spheres and connection paths is proportional to the number of
times a connection to or from a region is selected for classification during cross-
validation, and how discriminative it is between the groups. Note that since the
method is multivariate, these connections are not discriminative on their own,
but rather, the joint set of connections is discriminative.

The overall pattern of changes reveals a network of functional connections
mainly centred on subcortical and fronto-parieto-temporal regions, consistent
with the typically widely distributed lesions in MS. However, different patterns
can be seen in different parts of the brain. A notable feature is that occipital
regions are not particularly important in the differentiation of MS from control
brains, even though visual networks often constitute a distinctive component
of resting state activity in normal conditions (Raichle et al., 2001; Salvador
et al., 2005; Mantini et al., 2007). The frontal lobe contains relatively few
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Figure 2: Anatomical illustration of discriminative graphs for MS versus control subjects. In
the top row, the size and shade of connections between regions reflects their discriminative
weight: stronger hues and larger sizes reflect higher discriminative weight. In the bottom row,
the size of each sphere depicting an atlas region is proportional to its regional discriminative
weight (sum of the discriminative weights of all connections between this region and the rest
of the brain). Colour indicates the lobe where each region is located (dark red = temporal,
clear blue = frontal, yellow = parietal, green = occipital, cyan = limbic structures (cingulum,
hippocampus and parahippocampal formation, amygdala) and insula, clear red = subcortical
grey matter). Name labels are given for the regions with the highest regional discriminative
weights (limited to 8 for clarity).
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connections with high discriminative weight, both long-range and short-range.
More remarkably, the temporal lobe and subcortical grey nuclei contain a few
important hubs showing marked changes in connectivity between patients and
controls.

The discriminative power of each individual lobe is summarised in Figure 3
(left), with separate plots for within-lobe and between-lobe connections. As can
be seen, discriminative connections are predominantly inter-lobe, but intra-lobe
connections are equally or more important for temporo-parietal regions. The
latter typically correspond to long range pathways in posterior-anterior axis
along the periventricular regions. Connections to and from subcortical regions
are also particularly discriminative, highlighting the widespread connectivity of
these structures.

outside lobe within lobe ipsilateral
temporal

parietal
limbic+insula

frontal
subcortical
occipital

Figure 3: (left graph) Summary of discriminative weights of ROIs by lobe, distinguishing
connections that link to other regions outside the lobe from connections that stay within the
same lobe. The lobes are ordered from overall most discriminative to overall least discrimina-
tive. Limbic structures include cingulum, hippocampus and parahippocampal formation, and
amygdala. (right graph) Further subdivision of within-lobe connections into ipsilateral and
contralateral connections.

Because inter-hemispheric connections are likely to rely on the corpus callo-
sum which is a known location for MS lesions (Noseworthy et al., 2000; Rocca
et al., 2007; Compston and Coles, 2008), it is of particular interest to separate
the discriminative graph into ipsi- and contra-lateral subgraphs (C; and C¢).
Inspection of the discriminative graph in Figure 2 suggests that some connec-
tions with contralateral areas may have larger discriminative power (a detailed
subdivision is available in Supplementary Figure 3 ). This is confirmed (p <
0.01 and generalised ?> = 0.8) by a repeated measures ANOVA testing the ef-
fect of grouping by subgraphs C; or C'c on the sum of significant discriminative
weights in each cross-validation folds. Nevertheless, it should be noted that
there clearly is a large amount of discriminative information in the ipsi-lateral
subgraph as well. This implies that the functional connectivity at rest is al-
tered by MS both within and between brain hemispheres, and that both types
of changes are reliable indicators of the disease.

Moreover, at detailed look at connections across lobes reveals a subtler pic-
ture: When the discriminative weights of each lobe are divided into ipsi- and
contra-lateral parts (Figure 3, right part)) the temporal lobe shows the most
predictive differences for inter-hemispheric connections, whereas limbic struc-
tures (cingulum, hippocampus and parahippocampal formation, and amygdala)
and the insula only show alterations in intra-hemispheric functional connectiv-
ity. Parietal and frontal lobes seem to have an equal balance of discriminative
weight between inter- and intra-hemispheric connections.

Finally, it is also important to distinguish between increases and decreases in
connectivity. When examining the whole network, we found that discrimination
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is mostly driven by connections that are on average stronger in controls, suggest-
ing a characteristic reduction of functional connectivity in patients. However,
there is a set of ROIs where some connections with other areas show increased
connectivity in patients. Figure 4 shows a division of the discriminative graph
into a subnetwork with increased connectivity in patients with respect to con-
trols (C4) and vice-versa (C_). It is apparent that the regions involved in Cy
form a network whose main connections link the thalamus to medial and an-
terior temporal pole, mainly contralaterally (with stronger effects for the right
hippocampus, right amygdala, and bilateral temporal poles). Connections are
also heightened between the right amygdala, right hippocampus, and right tem-
poral pole. Several connections to and from the left parahippocampal regions
are also stronger in this network. Supplementary Figure 2 shows the relative dis-
criminative weight of some of these connections. These increases of connectivity
in MS patients therefore appear much more circumscribed than decreases which
are observed for long-range pathways both within and across hemispheres.

Figure 4: (top) Subnetwork where patients have on average weaker connectivity than controls
(C-). (bottom) Subnetwork where patients have on average stronger connectivity than con-
trols (C4). The size and shade of connections between regions reflects their discriminative
weight: stronger hues and larger sizes reflect higher discriminative weight. The size of spheres
for atlas regions is proportional to its regional discriminative weight Colour indicates the lobe
each region is part of (see Figure 2 for the colour coding).
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2.3. Connections outside the default-mode network are also informative

Studies have highlighted alterations to the DMN (Buckner et al., 2008) as-
sociated with multiple sclerosis (Roosendaal et al., 2010; Bonavita et al., 2011).
To investigate this effect more specifically in our data, a subnetwork of the
whole-brain graph comprising regions that are part of the DMN was defined
(based on the work of Buckner et al. (2008), and including the ventral and me-
dial prefrontal cortex, the posterior cingulate and retrosplenial cortex, inferior
parietal lobule, lateral temporal cortex, and hippocampal formation. Details
are in Supplementary Table 3. The discriminative weight of connections within
the default-mode network was tallied separately from the discriminative weight
of connections to the outside of the default-mode network.

Results are summarized in Figure 5, clearly showing that discriminative
changes do not only affect connections between DMN regions, but also con-
nections between DMN regions and the rest of the brain. In fact, more discrim-
inative information is contained in regions that are not part of the DMN, high-
ligthing the interest of examining whole-brain networks. Remarkably, however,
the region with the highest discriminative weight, the right middle temporal
pole, is part of the default mode network. Moreover, several DMN regions, such
as the left precuneus, the bilateral superior frontal orbital cortex, and the right
anterior and posterior cingulate cortex, exhibit more discriminative connections
to and from the DMN than to and from the rest of the brain. This is consis-
tent with the existence of a specific functional architecture of the DMN that is
disrupted by MS pathology.

3. Discussion

The present study shows that a multivariate approach based on predic-
tive modelling of brain connectivity at rest allows a reliable differentiation of
minimally-disabled multiple sclerosis patients and healthy control subjects. Our
results do not only confirm that functional changes affecting widespread (cortical
and subcortical) networks are a prominent feature of MS brain pathology (Miller
et al., 2003) but also show that these alterations can be reliably and sensitively
measured using functional MRI of resting state, and furthermore be used to
classify disease state in individual subjects. Our method is based on an estab-
lished technique of brain decoding using wavelet decomposition of resting state
time courses (Richiardi et al., 2011; Eryilmaz et al., 2011), previously applied
to study cognitive and emotional states in normal conditions, but adapted here
to assess pathological states.

Used rigorously, classifiers in a pattern recognition approach provide very
powerful tools to explore high-dimensional data and to capture consistent but
unknown features, without limiting the findings to specific hypotheses. Our
results take into account the full high-dimensional data consisting of 90 x 90
connections, but the discriminative graphs showing the distinctive functional
connections are readily interpretable and the results can even be summarised by
two principal measures: the reduced connectivity index (RCI) and the increased
connectivity index (ICI), which reflect the main characteristics of connectivity
alterations. Furthermore, by using a leave-one-subject-out cross-validation tech-
nique, the results have shown the applicability of our method to single subjects.
With important caveats, the performance obtained with the proposed method
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can be compared with the results of Weygandt et al. (2011), based on a search-
light approach to structural T2-weighted images. In particular, their larger
study population is in generally worse condition (longer average disease dura-
tion, larger EDSS range (maximum: 7)) and their analysis uses the cerebellum
as well. While the best performance (96% leave-one-out balanced accuracy) is
obtained using hand-segmented lesion masks, the analysis of normal appearing
gray matter yields up to 82% balanced accuracy, and normal appearing white
matter yields up to 91% accuracy. Our results, at 84% balanced accuracy, can
therefore be considered encouraging since no cerebellum is used in our study,
and the population is minimally disabled. Furthermore, subtle white matter
alterations, to which our technique is sensitive, seem to be in and of themselves
discriminative, which hints at possible future gains in accuracy by refining our
method. However, and despite their statistical significance, our current sensitiv-
ity and specificity figures must still be taken with caution because of our limited
sample size. MS is a heterogeneous disease, and our leave-one-out results offer
only limited evidence of generalisation ability to a separate cohort.

Many other analyses of resting state in neurological diseases concentrated on
the default mode network (DMN), or focused on a small number of regions, for
example by using univariate methods to compare the goodness of fit of patients
and controls to a standard DMN template (Greicius et al., 2004), or by measur-
ing the cross-correlation coefficient of activity over time for a single region (Li
et al., 2002). In MS, some studies (Lowe et al., 2008) explored functional con-
nectivity only to and from motor areas and did not find significant whole-group
difference between minimally-disabled MS patients and healthy controls. More-
over, many of the few studies addressing resting state alterations in MS concen-
trated only on the DMN (Rocca et al., 2010; Bonavita et al., 2011). However
MS lesions are not restricted to the DMN. Our results show that the connec-
tions within DMN regions are affected, but do not represent the only nor the
most common ones contributing to correct classification. The major advantages
of our multivariate approach, taking into account connectivity across the entire
brain, include a greater versatility and a higher sensitivity, two crucial features
for discriminating different conditions and studying early stages of pathology.
Whole-brain analysis using ICA in MS has indeed been reported to bring out
significant differences between groups in various brain networks apart from the
DMN Roosendaal et al. (2010). Additionally, the good performance of using
multivariate methods with whole-brain functional data to derive imaging mark-
ers has also been reported in other pathologies, for example depression (see
e.g. Greicius et al. (2007); Craddock et al. (2009)) or Alzheimer’s disease (see
e.g. Buckner et al. (2009); Chen et al. (2011)).

Overall, our data indicate that only about 4% of the total possible connec-
tions considered in our study (between the 90 ROIs distributed over the entire
cortex and subcortical nuclei) are discriminative between minimally disabled MS
patients and healthy controls. Thus, the large majority (i.e., the remaining 96%)
of functional connections have non-significant discriminative weights. However,
these 4% still represent numerous (161) connectivity pairs. Although there is no
single pathognomonic path affected by MS (consistent with widely distributed
lesions (Compston and Coles, 2008; Polman et al., 2011)), these altered connec-
tions are not uniformly distributed across the brain and specific patterns are
visible. Below, we discuss the possible significance of these changes.
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3.1. Topology of the discriminative connections

The discriminative connections between all ROIs considered were located
throughout the brain, including in particular the temporal lobes (with a pre-
dominance for the right temporal pole), the superior parietal lobes, as well
as the frontal lobes and some limbic structures, plus several structures among
subcortical grey nuclei. Strikingly, in contrast, the connections concerning the
occipital lobe had very low discriminative weight, although clinically MS often
presents with visual disturbances (Compston and Coles, 2008; Noseworthy et al.,
2000). However, the latter are typically related to an early affection of optic
tracts (Ciccarelli et al., 2005; Reich et al., 2009; Dineen et al., 2009), which was
not specifically investigated here.

The discriminative connections were mostly associated with long-range path-
ways presumably grouped around the ventricles for intra-parietal and intra-
temporal pairs, or centred on inter-hemispheric pathways for parieto-parietal
and temporo-temporal connections. Frontal and limbic connections were also
affected but to a lesser extent. This observation converges with the preferential
location of MS lesions in areas of dense venular distributions, i.e. around the
lateral ventricles, and at the cortico-subcortical junction (Compston and Coles,
2008). In addition, the connectivity of deep grey matter nuclei (thalamus and
basal ganglia) was also markedly affected, which is consistent with the fact that
these subcortical nuclei both receive and project to large parts of the neocortex,
and that many of these projections also travel in periventricular white matter
(e.g. thalamic radiations).

Notably, among connections with significant discriminative weight across
the whole brain, we found that inter-hemispheric connections are more discrim-
inative than intra-hemispheric connections, even though the latter still make
an important contribution to discriminative power. This finding is compatible
with the well-known preferential affection of the corpus callosum in MS (Gean-
Marton et al., 1991; Evangelou et al., 2000; Mesaros et al., 2009; Rocca et al.,
2010; Yaldizli et al., 2011) and presumably reflects in part the concentration
of all inter-hemispheric connections at a relatively small circumscribed location
in the brain. Our results therefore add to previous studies reporting a de-
creased inter-hemispheric functional connectivity at rest in MS patients (Cover
et al., 2006). However, out data also go beyond these studies by demonstrat-
ing that such decreases are not specific to inter-hemispheric connections, since
most of the functional connectivities with a significant discriminative weight are
decreased in patients, both within and between the two hemispheres. As a par-
ticular case, we found that inter-hemispheric connections in limbic structures
(cingulum, hippocampus and parahippocampal formation, and amygdala) and
the insula provide no discriminating information about patients and controls.
Taken together, these findings highlight the importance of considering intra-
hemispheric connections when analysing functional connectivity in MS, even in
resting-state conditions. We cannot exclude the possibility, however, that the
relatively high significance of intra-hemispheric pathways (compared to inter-
hemispheric pathways) may reflect the minimal disability in our patients, given
the known association between callosal atrophy and disease progression (Pel-
letier et al., 2001).

Several of the relatively most discriminative connections were centred around
the right temporal pole — including left caudate to right middle temporal pole,
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right amygdala to right temporal pole, left inferior frontal orbital to right middle
temporal pole, and left superior frontal orbital to right middle temporal pole.
However, it must be kept in mind that these pairs represent only the top of
161 discriminative connections that all together are responsible for multivariate
pattern classification, and that none of these connections is significantly dis-
criminative on its own. Looking for a more synthetic view, a region that is
part of several discriminative connection pairs becomes a discriminative region
itself. Under this measure, the most discriminative regions were located in the
anterior right temporal lobe, but also in the bilateral superior parietal lobes,
orbitofrontal cortex (gyrus rectus), left globus pallidus, and right amygdala. An
alteration of the underlying structural connectivity (due to white-matter injury)
is likely to account for the important impact of MS on a few specific regions
such as the temporal pole or pallidum, as these regions are known to consti-
tute strong hubs in brain connectivity (Olson et al., 2007; Haber and Knutson,
2010). In particular, the temporal poles are densely connected to orbito-frontal
cortex (via the uncinate fasciculus), amygdala, temporal and occipital ventral
regions (via the inferior longitudinal fasciculus), as well as the temporo-parietal
junction, and as such constitute high-level associative cortical areas integrat-
ing deeply processed information from various parts of the brain (Olson et al.,
2007). By being somewhat at the “top of processing hierarchy”, these temporal
areas might reflect a common impact of disrupted connectivity in widespread
pathways throughout the brain.

We also note that many functional connections highlighted by the present ap-
proach may not necessarily imply the existence (or damage to) direct structural
connections. In fact, coherent activity between distant areas might be subserved
by either direct white-matter pathways or more global synchronization processes
involving other nodes in a common networks and/or diffuse projections from
subcortical (e.g. brainstem) structures (see Golanov and Reis (1996) for an ex-
ample in the rat). These more global influences might account for connections
found across non-homologous areas between the two hemispheres. While our
methodology cannot distinguish between structural and non-structural sources
of functional connectivity, it is likely to gain higher sensitivity by measuring the
impact of diffuse lesions that may affect both types of connections.

3.2. Decreased and increased connectivity in MS patients

Most of the significant connectivity changes reflected decreases in patients
compared to controls, consistent with an impaired functional coupling between
distant brain areas due the presence of MS lesions. However there were also a
few connections showing increased strength in MS compared to controls. These
connections were found in a specific subnetwork, roughly consisting of bilateral
and inter-hemispheric connections around the thalami, medial temporal areas
(para-hippocampal gyrus, amygdalae), and temporal pole. An increase in low-
frequency activations (not connectivity) in the thalamus, insula, and superior
temporal gyrus has previously been reported in MS (Liu et al., 2011) and in-
terpreted as compensatory plasticity. Here, however, we did not find changes
in insula connections allowing a reliable group discrimination, but the insula
is also known to be connected to the temporal pole and amygdala (Augustine,
1996).

Note that our method is sensitive to both reduced and increased connectivity
without any a priori. Increased connectivity (reflected in the ICI values) by itself
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is however not a discriminating feature between patients and controls, because
information about increased connectivity is significant only together with the
concomitant reduction in connectivity (reflected in the RCI). Nevertheless, in
our data, the strongest distinction between subjects and controls is provided by
the RCI, and considering only the sum of correlations for reduced connections
(projection on the RCT axis of Figure 1) still shows a reliable separation between
patients and controls. This may suggest that the phenomena of decreased and
increased connectivity in distinct subnetworks in MS are likely to result from
concomitant but distinct factors.

The meaning of increased connectivities is not completely clear. Along with
the decreased connectivities, these might reflect functional reorganisation to
cope with pathological damage, in keeping with results from several imaging
studies in MS (Reddy et al., 2000a; Morgen et al., 2004; Mainero et al., 2004;
Morgen et al., 2007; Trapp et al., 1998; Cifelli and Matthews, 2002; Rocca
and Filippi, 2007; Hawellek et al., 2011). Compensatory activation is often
considered as a process arising at early stages, which tends to be lost with
disease progression (Bonavita et al., 2011; Roosendaal et al., 2010). Congruent
with this hypothesis, the positive nRCI correlation found with lesion loads (see
Section 2.1) seems to suggest that connectivity in the C_ subnetwork is increased
to cope with lesions. However, our findings of increased connectivity in the C
subnetwork and increasing connectivity with lesion load in C_ might be specific
to minimally-disabled MS patients, a possibility that will require further testing
in additional patients with more severe disease.

Note that in our study, this C'y subnetwork predominantly concerns medio-
temporal and orbito-frontal regions, normally associated with emotional pro-
cessing (Kensinger and Schacter, 2008), and could therefore possibly reflect
latent affective disturbances often associated with MS (Minden and Schiffer,
1990; Compston and Coles, 2008) and/or higher stress levels in patients during
an MRI session (Muehlhan et al., 2011). Alternatively, we cannot exclude that
the observed increases in connectivity might partly reflect stronger coherence
at low frequencies due to an “idling” state of some networks at rest (Richiardi
et al., 2011), subsequent to disconnection lesions in patients. Again, additional
studies in patients with a broader range of MS severity will be necessary to
disentangle these hypotheses.

3.8. Discriminative connections inside and outside the default mode network
Our results confirm that the default mode network (DMN) comprises many
discriminative connections that are affected by MS (Roosendaal et al., 2010;
Rocca et al., 2010; Bonavita et al., 2011), but they also highlight a large number
of additional discriminative connections outside the DMN. Studies of resting-
state brain activity often focus on the default-mode network because it forms
a well-defined set of regions that is observed very reproducibly under different
acquisition paradigms. In fact, the most discriminative ROIs in our analysis,
the right temporal pole, is also part of the DMN and “consistently observed
across approaches” (Buckner et al., 2008). We also found an important role for
the precuneus, another core region of the DMN. In addition, we found weaker
connectivity in the anterior cingulate cortex of MS patients, as reported in a
previous study of resting state in MS (Bonavita et al., 2011), but an opposite
effect in the posterior cingulate cortex (decreased rather than increased connec-
tivity in patients). Nevertheless, as clearly shown in figure 5, many other regions
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that are not part of the DMN made a crucial contribution to the discrimination
between patients and controls. Therefore, we conclude that resting-state data
analysis in MS (and other neurological conditions) should certainly comprise
default-mode network regions, but need not be restricted to them.

3.4. Altered connectivity and grey matter changes

The analysis of functional connectivity is based on temporal correlations
of activity between grey matter ROIs. In case of decreased connectivity, it
is in principle not possible to differentiate between desynchronisation due to
loss of white-matter pathways or grey-matter pathology in one or more of the
connected ROIs. Thus, functional connectivity is sensitive to both white-matter
and grey-matter pathology, and permits the investigation of both aspects of MS.

In general, MS lesions are predominantly located in white matter, and there-
fore mainly affect axonal conduction. However, damage to cortical grey matter
is also increasingly recognized (B et al., 2006; Prinster et al., 2006; Barkhof
et al., 2009). Interestingly, our results for regional discriminative weights in
different lobes show convergent patterns with what is known from anatomical
studies on focal grey matter lesions (Filippi and Agosta, 2010). For instance,
we found that the thalamus is involved in a high number of discriminative con-
nections at rest. The thalamus is known to be a site of preferential atrophy in
MS (Cifelli et al., 2002; Wylezinska et al., 2003; Audoin et al., 2006), possibly
resulting in decreased perfusion (Rashid et al., 2004). In addition, the connec-
tions to and from several deep nuclei such as the globus pallidus, caudate, and
amygdala, were also discriminating between patients and controls. Early and
frequent lesions in the thalamus and caudate as well as in the putamen, globus
pallidus, or amygdalae have been recently pointed out (Vercellino et al., 2009),
and these regions exhibit a rapid atrophy following the first clinical event (Au-
doin et al., 2010). Deep gray matter regions (caudate, lentiform) have also been
reported as discriminative using multivariate predictive modelling on structural
T2-weighted data (Weygandt et al., 2011). Overall, the importance of deep grey
matter and subcortical areas is likely to reflect their key position as regions of
convergence and divergence of many cortico-cortical loops.

Likewise, some temporal regions (with high regional discriminative weights
in our data) have also been found to show a particularly early occurrence of
grey matter atrophy and cortical thinning, even after less than 3 years disease
duration (Sailer et al., 2003). Recent multivariate predictive modelling results
on structural images also report the relative high importance of the superior
temporal gyrus and middle temporal gyrus (among others) in distinguishing
early from late MS patients (Bendfeldt et al., 2012). The marked asymme-
try in the right compared to the left temporal pole is unexplained, although
this may reflect some characteristic of our patient sample, or a predominant
recruitment of right-hemispheric areas in mental and affective processes associ-
ated with resting state (for example Yan et al. (2009) report significantly higher
right-intrahemispheric connectivity at rest between a set of regions including
the middle temporal gyrus). However, a mid-sagittal asymmetry of gray matter
damage has also been reported together with decreased gray matter volume in
the left fronto-temporal cortex in RRMS patients (Prinster et al., 2006).
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3.5. Limitations and outlook

Beyond information on disease pathophysiology and possible correlations
with clinical symptoms, our approach offers a new tool to assess disease prob-
ability. Our results demonstrate very good classification accuracy (sensitivity
82%, specificity 86%) for the differentiation of clinically definite MS patients
with minimal disability (median EDSS 2) from healthy controls. These data
reveal that rich information can be extracted from 8 minutes of resting-state
fMRI. Given its complementarity with other diagnostic modalities, future stud-
ies should further investigate the sensitivity of this approach for patients with
suspected MS or clinically isolated syndromes, and explore its use for monitor-
ing evolution or treatment effects. A particular interest will be the investiga-
tion of the link between connectivity alterations and clinically-relevant scales,
as interesting links with cognitive performance have been found by other au-
thors (Hawellek et al., 2011). Additionally, spatial relationship between lesion
locations and connectivity alterations at the single subject level would be of
great interest in order to improve result interpretation with respect to specific
attack types.

However, the interpretation of such results must be done with care, as func-
tional connectivity, by nature, reflects not only monosynaptic anatomical con-
nections, but also functional entities in multirelay connections. Moreover, as
a purely data-driven method, the performance of our classifier depends on the
amount of data available, and is sensitive to artifactual influences or uncontrolled
factors, e.g. patient movement, which may prevent its use due to degradation
or contamination of the BOLD signal. The movement correction and robust
statistics techniques employed here can help mitigate these problems, but it is
clear that this method will not be amenable to some patients (such as those ex-
hibiting large tremors). Because deep grey matter seems to play an important
role in discrimination results, several combinations of MRI head coils, scanner
field strengths, and imaging sequences may not be suitable if they fail to yield
signal with sufficient contrast-to-noise ratio in these regions, or present too much
susceptibility artifacts (as amygdala and orbito-frontal regions).

Inter-scanner reliability is another topic where more work is needed. The
use of relatively large atlas regions in our study, combined with taking the tem-
poral mean of regions which constitutes aggressive spatial smoothing, lead us
to believe the method could be used in a multi-centric setting. Indeed, inter-
scanner reproducibility of BOLD fMRI activation results is known to increase
with region-based measure rather than voxel-based measures (Demirci et al.,
2008), and more so when regions are large and smoothed (Friedman et al., 2008).
In a recent functional connectivity study of MS using group statistics, 8 different
sites with different manufacturers, models, and sequences could lead to statis-
tically significant results concerning the difference in functional connectivity of
MS patients, simply by including acquisition centre as a model factor (Valsasina
et al., 2011). However, a serious study of predictive modelling of connectivity
across sites remains to be undertaken.

In sum, our study shows that a multivariate approach of predictive mod-
elling allows a discrimination of brain connectivity at rest between minimally
disabled MS patients and healthy control subjects. The model prediction was
based on a large number of altered connections between grey matter areas, in-
volving temporal, frontal, parietal, and subcortical grey matter regions. These
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connections were generally weaker for the patients, concerned both inter- and
intra-hemispheric connectivity, and extended beyond regions of the default net-
work to affect a large number of connections between other brain regions. This
study is only the first, but necessary step towards novel resting-state based
imaging marker of MS, and its results will have to be confirmed and refined
with larger patient samples, including more advanced stages, and other neurode-
generative or inflammatory pathologies, in order to obtain a prognosis model.
Validation with an second, separate cohort of patients would be very beneficial,
in particular because MS has a very heterogeneous presentation.
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Supplementary Material for Richiardi et al.’s manuscript
1. Data processing and modelling

This section gives more details about the pattern recognition methodology
used in the paper, and points to available open-source code to reproduce the
method.

1.1. Data preprocessing

Figure 1 provides an overview of the main processing and modelling steps
constituting our method. All steps up to the regional averaging step are per-
formed using a combination of tools from the SPM package! and custom code.
All necessary custom code up to the dependency computation step are open
source and available as part of the author’s connectivity decoding toolkit, avail-
able at http://miplab.epfl.ch/richiardi/software.php.
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Supplementary Figure 1: Main data processing and modelling step for our method.

1.2. Embedding connectivity graphs for classification

In our approach, the last step before classification is to represent the graph
in a vector space, so that statistical machine learning techniques can be used.
The reason for using an embedding approach to graph classification is that at-
lased brain connectivity graphs are part of a restricted class of graphs, because
the vertices correspond directly to the atlas’ regions (Richiardi et al., 2010,
2011). Thus, there is no need to solve the vertex correspondence problem be-
tween graphs, which is where most of the complexity resides in graph matching
algorithms. We thus resort to a graph embedding approach called direct em-
bedding (Richiardi et al., 2010, 2011), whereby the upper-triangular part of the
adjacency matrix of each graph is represented in a vector space, and each con-
nection of the functional connectivity graph corresponds to a dimension of the
vector space.

Lavailable at http://www.fil.ion.ucl.ac.uk/spm/



1.8. Classification technique

The feature vector representation of each subject’s connectivity graph can
be used in a classification setting to discriminate control and patients. The func-
tion that predicts patient or control status from data is called a classifier. The
parameters of the function can be learned from data by using a large number of
well-known statistical machine learning methods, including (among others) sup-
port vector machines (Mourao-Miranda et al., 2005). The classification problem
can be seen as a high-dimensional learning task, because there are many more
features (dimensions) in the vector space than training samples. To reduce the
problem of overfitting in such situations, we use a multiple-classifier system.
The principle is to train a set of base classifiers, each performing above chance
but not necessarily very accurate, and to obtain a final discriminant function
by combining (ensembling) the outcomes of the base classifiers; e.g., using a
voting mechanism. This scheme is often combined with bootstrap aggregation
or “bagging”, where each base classifier is trained on a resampled version of the
original training set (Breiman, 1996). Here, we use functional tree (FT) classi-
fiers (Gama, 2004) as base classifier. They are similar to a classical decision tree,
but allow decision leaves to be replaced by a multivariate regression function.
Furthermore, the regression function itself is boosted by using the LogitBoost
algorithm (Friedman et al., 2000), an approach that focuses learning on the
most difficult samples and greatly improves accuracy. The use of 21 FT classi-
fiers and their combination via bagging enables a satisfactory tradeoff between
good accuracy and generalisation capability.

1.4. Computation of discriminative weights

For our particular classifier (ensemble of FTs), each base classifier recursively
partitions the feature space by selecting the most discriminative feature to split
the data into controls and patients at each level of the tree. Thus, the fact that a
feature is selected in a the decision tree is an indication of merit relative to other
non-selected features. Furthermore, since a regression is formed in each base
classifier, the regression weight coefficient attached to the feature is proportional
to its importance for the discrimination task. By summing regression weights
for each feature between the 21 base classifiers of each fold, we can obtain a
measure of the discriminative weight of the selected connections. We combine
per-fold estimates of the discriminative weights of features by using a weighted
sum across folds, where the weight is proportional to the accuracy in each fold.
Thus, the weight assigned to features by a classifier that did not result in correct
prediction will not count towards the total discriminative weight.

Finally, we use a non-parametric permutation testing approach to decide
which features should be considered as having a significant discriminative weight
(Nichols and Holmes, 2002; Mourao-Miranda et al., 2005). To this end, we
generate 20 random permutations of the class labels (control or patient), and
run cross-validation experiments. We use a threshold at significance level 5%
corrected for multiple comparisons. This results in a set C' of discriminative
connections.

ii



2. Details of patients and controls in the study sample

Supplementary Table 1 contains details of the demographics of the study
sample. A summary of this table is provided in Table 1.

iii
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3. Atlas regions and nodes of the default-mode network

Supplementary Table 2 contains details of the atlas regions of interest, and
Supplementary Table 3 contains the definition of the default-mode network (Buck-
ner et al., 2008).

Lobe Region Short name
Precentral PreCen
Frontal Sup FrSup
Frontal Sup Orb FrSupOrb
Frontal Mid FrMid
Frontal Mid Orb FrMidOrb
Frontal Inf Oper FrinfOp
Frontal Frontal Inf Tri FrinfTr
Frontal Inf Orb FrinfOrb
Rolandic Operculum RolOp
Supp Motor Area SupMotor
Olfactory Olfac
Frontal Sup Medial FrSupMed
Frontal Mid Orb Medial FrMidOrbMed
Rectus Rec
Insula Ins
Cingulum Ant Acc
Cingulum Mid Mce
Limbic + Insula Cingulum Post Pcc
Hippocampus Hipp
Parahippocampal ParaHipp
Amygdala Amyg
Calcarine Cal
Cuneus Cun
Lingual Lin
Occipital Occipital Sup OccSup
Occipital Mid OccMid
Occipital Inf OcclInf
Fusiform Fus
Postcentral PostCen
Parietal Sup ParSup
Parietal Inf ParInf
Parietal Supramarginal SupMarg
Angular Ang
Precuneus Prec
Paracentral Lobule ParCenLob
Caudate Caud
Subcortical (DGM) g;ﬁ?ﬁlﬁ g;lt
Thalamus Thal
Heschl Hes
Temporal Sup TempSup
Temporal Temporal Pole Sup TempPole
p Temporal Mid TempMid
Temporal Pole Mid TempPolMid
Temporal Inf TemplInf

Supplementary Table 2: 90 regions subset of the AAL atlas (Tzourio-Mazoyer et al., 2002)
and their grouping in lobes. All regions are bilateral. DGM: deep grey matter.



DMN node

AAL regions (all bilateral)

Ventral and medial prefrontal
cortex

Posterior cingulate and retros-
plenial cortex

Inferior parietal lobule

Lateral temporal cortex (BA 21)

Hippocampal formation

Superior frontal orbital, middle frontal
orbital, medial frontal, gyrus rectus, an-
terior cingulate

Posterior cingulate, precuneus

Parietal inferior, angular gyrus

Middle temporal gyrus, middle tempo-
ral pole

Hippocampus and parahippocampal

gyrus

Supplementary Table 3: Regions included as nodes of the default-mode network (DMN) (Buck-
ner et al., 2008) in terms of the AAL atlas, similar to the correspondence established by Frans-

son and Marrelec (2008).
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4. Full list of connections in the discriminative graph

Supplementary Table 4 shows the list of connections that make up the dis-
criminative graph as well as their discriminative weight. It also shows the
weights that go into computing the two summary indices of connectivity al-
terations of Section 1.5.

Supplementary Figure 2 shows a visualisation of the relative discriminative
weights of the 50 highest-weighted connections of the discriminative graph.

Connection Discriminative RCI weight ICI weight

weight
CaudL - TempPolMidR 2.04 0.018
AmygR - TempPoleR 1.93 0.137
FrInfOrbL - TempPolMidR, 1.85 0.017
RolOpR - FusL 1.76 0.016
PccL - PrecL 1.71 0.016
ParSupR - PurR 1.64 0.015
SupMotorL - RecR 1.62 0.015
FrSupOrbL - TempPolMidR 1.60 0.014
SupMotorL - PalL, 1.50 0.014
FrMidL - HesL 1.48 0.013
FrSupMedL - PrecL, 1.48 0.013
SupMotorL - RecL. 1.35 0.013
ThalL, - TempPoleR 1.34 0.132
FrSupMedL - TempPolMidR 1.29 0.012
RolOpR - CalL 1.25 0.012
AmygR - HesR 1.25 0.121
HippR - TempPoleR 1.23 0.067
AmygR - TempPolMidL 1.19 0.067
PreCenL - PostCenL 1.16 0.011
ParSupR - SupMargL 1.16 0.011
ParSupR - PallL 1.15 0.011
FrSupOrbR - TempPolMidR 1.11 0.011
HesL, - TempPoleR 1.11 0.011
ParCenLobL - PalL 1.04 0.010
FrMidOrbR - RecR 1.04 0.010
PreCenL - HesLh 1.02 0.010
AccLi - CaudL, 1.02 0.009
FrMidOrbR - PalR 1.02 0.009
OccSupR - Pall, 1.00 0.009
FrMidOrbMedL - PallL 1.00 0.009
HippR - PutL 0.99 0.009
FrSupOrbL - AccR 0.98 0.009
PreCenL - PostCenR 0.96 0.009
PreCenR - TempPolMidR 0.94 0.009
FrMidOrbR - PurR 0.94 0.009
FrMidOrbL - PalR 0.94 0.008
RecLs - TemplInfL 0.93 0.008
ParaHippR - AmygR 0.92 0.064

SupMotorR - RecL 0.91 0.008
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Connection

ParSupL - ParCenLobLL
ParSupR - PutL
ParaHippR - TempInfR
FrSupMedL - TempPoleLL
RecR - TempPoleR
FrInfOrbL - HippR
FrSupL - HesR
ParaHippL - ThalR
FrMidL - RecR

InsL - CunL

ParaHippR - FusR
AmygR - TemplInfL
PostCenL - ParInfLL
OccInflL - TempInfL
AmygR - TempPolMidR
FrInfTrL - TempMidL
HesL - TempPoleL,
OccInfR - PalL
ParCenLobR - PalLL
ParaHippR - ThalL,
FrinfTrL - PrecL

PalLL - TempInfR

HippL - PallL

HippR - OcclInfR
FrInfTrL - ParSupR
RolOpR - LinL

OccInfR - PurR
RolOpR - ParSupR
FrSupMedR - ParCenLobR
AccL - TempPolMidR
AccR - TempPolMidR
FrinfOpL - ParaHippL
FrMidL - TempPolMidR
AccL - ParaHippL
AngL - PrecL
SupMotorL - ParaHippL
RecR - HippR

RolOpR - CunL

FrSupR - TempPolMidR
RecL - TempPolMidR
FrSupL - TempPolMidR
ParaHippL - Thall,
RecR - TempPolMidR
FrSupOrbR - ThallL
FrMidOrbL - TempPolMidR
FrSupMedL - ParCenLobR
ParSupR - TempSupR
ParSupL - ParCenLobR

Discriminative

viii

weight
0.91
0.90
0.88
0.88
0.88
0.86
0.86
0.85
0.84
0.84
0.84
0.83
0.83
0.83
0.83
0.82
0.82
0.82
0.82
0.81
0.81
0.79
0.79
0.78
0.77
0.74
0.74
0.74
0.73
0.73
0.72
0.72
0.67
0.67
0.64
0.64
0.64
0.64
0.63
0.63
0.63
0.63
0.63
0.62
0.62
0.62
0.62
0.61

RCI weight

0.008
0.008
0.008

0.008
0.008
0.008

0.008
0.008
0.008
0.008
0.008
0.008
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007

0.007
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006

ICI weight

0.062

0.061

0.059



Connection

OccMidL - TempPolMidR
PostCenL - ThalL,
SupMotorR - AmygL
RecR - CaudR

AccL - ParCenLobR
PrecL - TempMidL
OccMidR - HesL

OlfacR - PalR

AmygR - TempSupR
ThalL, - TempMidR,

PccR - PrecLh

PurR - HesR

FrInfTrL - TempPolMidR
TempMidR - TemplInfL
ParSupR - HesLh
FrMidOrbMedL - AngR
FrMidOrbMedL - RecR
FrSupL - HesLh

RolOpR - OccMidR
FrInfTrL - TempMidR
OccInfLL - PurR

RecR - CaudL

FrinfTrR - TempPolMidR
ParaHippL - CaudL
SupMotorR - ParaHippR
SupMotorR - ParaHippL
RecR - PutL

FrMidOrbR - TempPolMidR
RecR - PccR

FrInfTrR - FrSupMedR
FrMidOrbMedR - CaudL
ThalL: - TempSupL
Amygl - ParCenLobL
OccSupL - TempPolMidR
FrInfOrbL - HesL

AngL - AngR

RolOpR - CalR
FrSupOrbL - PccR
FrMidOrbMedR - AmygL
FrSupOrbR - PccR

CunL - AngL

FrSupOrbL - PalR

CunR - HesL

PccR - SupMargR
ParSupR - TempMidL
OccSupR - TempPolMidR
RecR - TempInfR
FrMidOrbL - ParCenLobR

Discriminative

ix

weight
0.61
0.61
0.61
0.61
0.60
0.59
0.59
0.58
0.57
0.57
0.57
0.57
0.56
0.54
0.54
0.54
0.53
0.53
0.53
0.53
0.52
0.52
0.52
0.52
0.52
0.51
0.51
0.51
0.50
0.49
0.49
0.49
0.49
0.49
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.47
0.47

RCI weight
0.006

0.006
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005

0.005
0.005
0.005
0.005
0.005

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

ICI weight

0.058

0.058

0.058



Connection

RecL - ParaHippL
PrecR - ParCenLobLi
FrMidR - ParCenLobR
PccL - CunR
FrInfOrbR - PalL
FrMidOrbL - PccR
InsL - TempPolMidL
AccR - ParSupR

RecL - HippL
TempMidL - TempPolMidR,
FrMidOrbMedR - TempPolMidR
FrMidL - ParaHippL
FusR - PalR
ParCenLobR - ThalR
TempMidL - TempInfR
LinR - Pall

FrinfTrL - FrSupMedR
SupMargR, - ThalLL
FrinfTrR - Angl.
PostCenR, - ThalL
AmygR - PostCenL
PrecR - PalL

CalL - TempPolMidR
RecR - Pccl

AccL - AmygL

PccR - ParInfR

Discriminative
weight
0.45
0.45
0.45
0.44
0.44
0.44
0.44
0.44
0.44
0.42
0.42
0.42
0.41
0.40
0.40
0.40
0.40
0.40
0.40
0.39
0.39
0.39
0.38
0.38
0.38
0.38

RCI weight

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

0.003
0.003
0.003
0.003
0.003
0.003

ICI weight

0.057

Supplementary Table 4: Full list of connections part of the dis-
criminative graph, their weight, and their normalised weight in the

summary indices of connectivity alterations (see Section 1.5).



ParaHippR - FusR I
InsL- CunL
FrMidL - RecR I
ParaHippL - ThalR
FrSuplL - HesR I
FrinfOrbL - HippR I
RecR - TempPoleR I
FrSupMedL - TempPoleL
ParaHippR - TempInfR I
ParSupR - Put. I
ParSupL - ParCenLobL I
SupMotorR - RecL I
ParaHippR - AmygR
RecL - TemplinfL I
FrMidOrbL - PaiR
FrMidOrbR - PurR I
PreCenR - TempPolMidR I
PreCenL - PostCenR N
FrSupOrbL - AccR I
HippR - PutL I
FrMidOrbMedL - PalL I
OccSupR - Pall. I
FrMidOrbR - PalR I
AccL - CaudL I
PreCenL - HesL I
FrMidOrbR - RecR I
ParCenLobL - PalL I
HesL - TempPoleR I
FrSupOrbR - TempPolMidR I
ParSupR - PalL -
ParSupR - SupMargL I
PreCenL - PostCenL I
AmygR - TempPolMidL
HippR - TempPoleR
AmygR - HesR
RoIOpR - CalL I
FrSupMedL - TempPolMidR .
Thall - TempPoleR
SupMotorL - RecL I
FrSupMedL - PrecL .
FrMidL - HesL I —
SupMotorL - PalL  I—
FrSupOrbL - TempPolMidR I —
SupMotorL - RecR .
ParSupR - PurR  I—
Pccl - PrecL  I—
RolOpR - FusL .
FrinfOrbL - TempPolMidR .
AmygR - TempPoleR
CaudL - TempPolMidR  [—

Supplementary Figure 2: Relative discriminative weight of 50 most discriminative connections
amongst the 161 significant connections in the discriminative graph. Connections in olive green

are on average stronger in controls than in patients, while connections in sandy yellow are
stronger in patients than in controls.

xi



5. Ipsi- and contra-lateral functional connectivity alterations

Supplementary Figure 3 shows a division of the discriminative graph into
ipsi- and contra-lateral subnetworks.
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Supplementary Figure 3: Discriminative graphs for MS versus control divided into ipsilateral
and contralateral components. The top row shows the subgraph containing only ipsilateral
connections, while the bottom row shows the subgraph containing only contralateral connec-
tions. The size of spheres is proportional to the regional discriminative weight, and the colour
indicates the lobe the regions are part of. The size and shade of connections between regions
reflects their discriminative weight: stronger hues and larger sizes reflect higher discriminative
weight.
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6. Functional connectivity pattern of control subjects

Supplementary Figure 4 shows the average correlation values of the 100
strongest functional connections in the 0.06-0.11 Hz frequency subband, com-
puted across the N=14 control subjects of our sample. Note that this is not
a discriminative graph, as it shows the connectivity pattern of a single group.
Contralateral connections to homologous regions are particularly strong in this
group (as reported in Stark et al. (2008) and elsewhere).
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Supplementary Figure 4: Average functional connectivity in the 0.06-0.11 Hz subband for the
control group, pruned to the 100 connections with the heighest weight. All connections shown
are significantly different from 0 (t-test, p<0.05 with Bonferroni correction)
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7. Performance measures for classification

Several measures of performance can be adopted, many derived from a con-
fusion matrix (Supplementary Figure 5) which can be computed from the result
of a cross-validation experiment. Confusion matrices are a common sight both
in pattern recognition and in the biostatistics and epidemiology, where diagnos-
tic tests are oven evaluated in terms of sensitivity sens = TP/(TP + FN) and
specificity spec = TN/(T'N + FP). Thus, there is a clear connection between
the predictive approach and common medical practice, and understanding the
results of a classification study (where sensitivity and specificity are called class
accuracies) is intuitive to physicians.

truth

control patient
S ©
= E| TN|FN
Qo °©
= =
22| FP|TP
(__) o

Supplementary Figure 5: Confusion matrix for assessing the outcome of a classification ex-
periment. TN is the number of true negatives (number of controls correctly predicted to be
controls), TP of true positives (patients recognised as patients), FN is the number of false neg-
atives (number of patients mistaken for controls), and FP of false positives (controls classified
as patients).
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