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Abstract
Adaptive false discovery rate (FDR) procedures, which offer greater power than the original FDR
procedure of Benjamini and Hochberg, are often applied to statistical maps of the brain. When a
large proportion of the null hypotheses are false, as in the case of widespread effects such as
cortical thinning throughout much of the brain, adaptive FDR methods can surprisingly reject
more null hypotheses than not accounting for multiple testing at all— i.e., using uncorrected p-
values. A straightforward mathematical argument is presented to explain why this can occur with
the q-value method of Storey and colleagues, and a simulation study shows that it can also occur,
to a lesser extent, with a two-stage FDR procedure due to Benjamini and colleagues. We
demonstrate the phenomenon with reference to a published data set documenting cortical thinning
in attention deficit/hyperactivity disorder. The paper concludes with recommendations for how to
proceed when adaptive FDR results of this kind are encountered in practice.
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Introduction
Since the landmark paper of Benjamini and Hochberg (1995) (hereafter, BH), false
discovery rate (FDR) methods for inference with large numbers of hypotheses have been
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applied most widely in genome science. The second most frequent domain of application is
neuroimaging. The intense interest in FDR-type methods among neuroimagers is attested to
by the fact that, on a recent list (Wit, 2010) of the most highly cited papers citing BH, the
first paper applying FDR to neuroimaging data (Genovese et al., 2002) ranked fourth.

Here we document and explain a paradoxical phenomenon that can arise in the context of
pointwise adaptive FDR inference for a statistic image, i.e. a set of test statistics each of
which corresponds to a point in the image. The term pointwise is meant to encompass
statistic images consisting of either voxels, as for PET or fMRI data, or vertices, as for
cortical thickness data. Adaptive refers to FDR procedures that offer greater power than the
original BH procedure. As will be explained below, the BH procedure controls the FDR at a
given level times a factor π0, the proportion of null hypotheses that are true. Since this value
is unknown and is near 1 in most practical settings, BH use the approximation π0 ≈ 1, the
effect of which is conservative. Adaptive methods (e.g. Storey, 2002; Benjamini et al., 2006;
Liang and Nettleton, 2012) seek an estimate of π0, which then serves as the basis for a
modified, more powerful, FDR procedure.

The paradox is this. Multiple testing adjustment ordinarily means adopting a more stringent
threshold to account for the multiple tests performed. But applying adaptive procedures to
control the FDR at level α can result in a more lenient threshold, and hence more rejected
null hypotheses, than using an uncorrected p-value of α to define the threshold. This
phenomenon generally occurs when the effect being tested for is widespread throughout the
brain, as is common with between-group comparisons of brain structure measures such as
cortical thickness (e.g. Narr et al., 2009; Calabrese et al., 2010).

Fig. 1 illustrates how certain distributions of the test statistics can give rise to this
phenomenon. The left panel depicts the mixture density with proportion π0 = 0.9 of the
mass belonging to the N(0, 1) (null) distribution and the rest to the N(5, 1) (non-null)
distribution. We simulated 50000 test statistics independently from this mixture—a highly
oversimplified model for a “signal” or effect occurring at 10% of the 50000 brain locations
for which a statistic is computed, but one that is adequate for this illustration. Thresholding
at the 0.05 level by the q-value procedure of Storey and Tibshirani (2003), a popular
adaptive FDR method, appears to do a good job of separating the null and non-null
components. But as π0 decreases to 0.6 and then to 0.3 (middle and right panels), the q-
value threshold no longer cleanly divides the distribution into two distinct components.
More to the point for our purposes, the value of the threshold decreases with π0, and for π0
= 0.3 it is actually below 1.96, the uncorrected 0.05-level threshold for the null distribution.

Two previous papers have considered adaptive FDR procedures for two different classes of
neuroimaging applications, and accordingly have reached quite different conclusions. Logan
and Rowe (2004) recommend against adaptive FDR methods in fMRI analysis, on the
grounds that π0 is typically near 1 in that setting and the effect of its estimation on error
control is unclear (cf. Example 2 of Schwartzman et al., 2009). On the other hand, in the
context of voxel-based morphometry (VBM), π0 is often well below 1, and hence Chen et
al. (2009) see a need for adaptive procedures that increase power by estimating π0.

The present paper was motivated by a study of grey matter in individuals with attention
deficit/hyperactivity disorder, in whomProal et al. (2011) found widespread cortical thinning
relative to controls. LikeChen et al. (2009), we found that adaptive FDR procedures have a
major impact when studying effects that are spread widely throughout the brain; but the
paradoxical results that we obtained lend some support to the cautious stance of Logan and
Rowe (2004) toward these procedures.
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Background: p-values and multiplicity-adjusted p-values
To review some concepts that will be important for what follows, we begin with an example.
Suppose, for simplicity, that a quantity of interest is taken to be normally distributed with
equal variances in each of two populations, such as individuals with and without a disorder,
and let the means for the two groups be denoted by µ1, µ2. To test the null hypothesis that
H0 : µ1 = µ2 against the alternative HA : µ1 ≠ µ2, we can recruit a sample from each of the
groups, measure the quantity for all members of each group, and compute a t-statistic. We
would ordinarily wish to control the type-I error probability at a prespecified level α, i.e., we
choose a t-statistic threshold for rejecting H0 such that, if H0 is true, the probability that the
magnitude of the t-statistic exceeds the threshold is α . But rather than simply asking
whether or not the observed t-statistic exceeds a threshold, we can compute its p-value,
which can be defined as either (i) the probability, under H0, of obtaining a test statistic at
least as inconsistent with H0 as the observed one (meaning, in this case, of equal or greater
magnitude); or (ii) the smallest significance level α at which H0 would be rejected (Wright,
1992).

Now consider testing not one but m null hypotheses, e.g., that the two groups have equal
means for m different quantities. Classically, the error rate most often controlled is the
family-wise error rate (FWER), the probability of falsely rejecting one or more of the null
hypotheses. It is easily shown that the Bonferroni procedure, which rejects only those
hypotheses whose associated p-values lie below α /m, controls the FWER at level α .
Equivalently, the Bonferroni procedure can be formulated in terms of adjusted p-values
(Rosenthal and Rubin, 1983; Wright, 1992), i.e. the lowest FWER level at which the
procedure would reject each of the particular null hypotheses. If we let p(1) ≤ … ≤ p(m)
denote the p-values sorted in ascending order and H(1), …,H(m) denote the corresponding

null hypotheses, the Bonferroni-adjusted p-value for H(i) is .

False discovery rate procedures
Benjamini-Hochberg procedure

Benjamini and Hochberg (1995) argue that in many multiple testing applications, it is more
useful to consider not just the probability of any false rejections but the expected number of
such rejections. Instead of the FWER, they propose to control the false discovery rate, the
expected proportion of errors among the hypotheses rejected by the procedure. Formally, we
define a random variable R as the number of hypotheses rejected, and a second random
variable V as the number of true null hypotheses that are rejected, i.e. the number of false
rejections. The FDR is then defined as E(V/R). There is an ambiguity in this definition,
however, in that R may equal 0. BH resolve this by setting V/R to 0 when R = 0, leading to
the more precise definition

(1)

To control the FDR at level α, a “step-up” procedure may be used: if p(i) < i α /m for any i,
then we reject H(1), …, H(k) where k is the largest number such that this inequality holds;
otherwise none of the hypotheses is rejected. BH show that if the test statistics
corresponding to true null hypotheses are independent, this procedure controls the FDR at
level π0 α, where π0 is the proportion of null hypotheses that are true. In view of this key
result, the step-up procedure, although originally proposed by Simes (1986), is commonly
referred to as the “BH procedure” for FDR control.
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In practical applications in neuroimaging and other fields, the test statistics are not
independent, but Benjamini and Yekutieli (2001) show that the BH procedure controls the
FDR at level π0 α under a technical positive dependence condition which is often assumed
to hold at least approximately.1 Since in general π0 < 1, the step-up procedure controls the
FDR at a level lower than α (under appropriate dependence assumptions). However, since
π0 is unknown and in most applications is close to 1, the BH procedure is generally referred
to as controlling FDR at level α, and it remains the standard procedure for this purpose.

Although the BH procedure controls FDR rather than FWER, it can, like the Bonferroni
procedure, be usefully framed in terms of adjusted p-values (Benjamini et al., 2006). The
BH-adjusted p-value for H(i), i.e., the smallest FDR level at which H(i) is rejected by the BH
procedure, is given by

(2)

Clearly , and hence the BH procedure will always reject at least as many
hypotheses at a given (FDR) level α as the Bonferroni procedure will reject at (FWER) level
α .

An adaptive two-stage FDR procedure
As noted in the Introduction, many authors have sought to develop adaptive FDR
procedures. These procedures seek to improve power by estimation of the true null
proportion π0 (an idea that predates FDR; see Schweder and Spjøtvoll, 1982).

For example,Benjamini et al. (2006) propose the following two-stage step-up procedure:

1.
Apply the BH step-up procedure at level 

2. If either all or none of the m hypotheses are rejected in step 1, this is the final
conclusion, and the procedure terminates. Otherwise, estimate π0 by π̂0 = 1−r/m,
where r is the number of hypotheses rejected in step 1.

3.
Apply the BH step-up procedure at level 

Benjamini et al. (2006) prove that, if the test statistics are independent, this two-stage
procedure controls the FDR at level α . They also provide empirical evidence that this
control is maintained under positive dependence.

Positive FDR and q-values
Storey and colleagues (Storey, 2002, 2003; Storey and Tibshirani, 2003; Storey et al., 2004)
introduce a modified approach to FDR that differs from the original BH procedure in two
key respects: an estimate of π0 is employed, and the error rate of interest is E(V/R|R > 0),
the positive FDR (pFDR). Storey (2002) argues that pFDR is a more appropriate error rate
to consider than the original FDR (1).

Any given rejection region (e.g., reject hypotheses for which the t-statistic has magnitude at
least 3, or the raw p-value is at most 0.001) has an associated pFDR. Indeed, in some reports
(e.g., Chiang et al., 2007; Lepore et al., 2008), a fixed threshold such as 0.01 is chosen for

1They also show that, irrespective of the dependence structure, the procedure always controls the FDR at level .
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the raw p-values, and the pFDR associated with that threshold is reported. But Storey (2002)
argues that it is more appropriate to let the observed p-values determine the rejection region.
To that end he proposes a new quantity, the q-value, as the basis for thresholding. The
standard way to apply Storey’s paradigm, and the one advocated in the neuroimaging
context byChen et al. (2009), is to reject those hypotheses with q-values below a specified
level such as 0.05.

The q-value of an observed statistic t is the minimum pFDR arising from a rejection region
that contains t. Under certain assumptions, most notably independence of the test statistics,
the q-value can also be understood as the posterior probability that a null hypothesis is true,
given a test statistic at least as extreme as the one observed (the reverse of definition (i)
above of a p-value; Storey, 2003).2 A key special case is when we take the observed raw p-
values themselves as the test statistics: Storey (2002) then defines the q-value associated
with p(i) (i = 1, …,m)—again, under the assumption that these p-values are independent3—
as the smallest pFDR associated with some threshold γ ≥ p(i). With some additional
technical assumptions (Storey, 2002), the q-value corresponding to p(i) can be expressed as

(3)

where the denominator refers to the probability that the p-value for a given test is at most γ.

Note that (3) is an unobserved quantity; the “q-values” q̂(1) ≤ … ≤ q̂(m) reported in practice
are more precisely q-value estimates. The main step in estimating (3) is to obtain a null
proportion estimate π̂0; see Appendix A. Upon completing this step, the estimated q-value
for H(i) is

(4)

Asymptotic conservatism of this q-value estimate is demonstrated byStorey et al. (2004).4 It
is worth noting that q̂(i) would reduce to the BH FDR-adjusted p-value (2) if we took π̂0 = 1;
or from an algorithmic standpoint, a q-value threshold of α can be applied by performing the
BH procedure at level α /π̂0.

Paradoxical behavior of adaptive FDR procedures
We can now explain mathematically the anomalous behavior sometimes exhibited by
adaptive FDR procedures. By (4), if π̂0 = 1 then the q-value is always larger than the
corresponding unadjusted p-value. But if π̂0 < 1, then for all i > mπ̂0,

(5)

i.e., the ith-smallest q-value is smaller than the corresponding p-value. When π̂0 ≈ 1, i >
mπ̂0 will occur only for i near m, so inequality (5) is entailed only for the largest p-values,

2In this Bayesian interpretation, π0 is the prior probability of the null hypothesis. A small value of π0 then implies that the prior
information no longer supports the null for most tests; hence the tendency to reject a large number of null hypotheses.
3Strictly speaking, the q-value is undefined if the test statistics are not independent, but in practice this requirement is glossed over.
Some empirical evidence (e.g., Storey, 2003; Storey et al., 2004) supports the use of q-values for dependent data; cf. the brief remarks
above concerning dependence and the BH procedure.
4Somewhat confusingly, whereas the q-value is defined in terms of pFDR, the fractional expression in the q-value estimate (4) is an
estimate of FDR. This follows Storey and Tibshirani (2003), whereas the q-value estimate in Storey (2002) is based on an estimate of
pFDR. SeeStorey et al. (2004), p. 196, regarding these alternative estimators of the q-value.
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which will generally be far from the chosen significance threshold. If, for example, q̂(i) =
0.93 < 0.95 = p(i) for some i near m, this may be somewhat counterintuitive, but it has no
effect on declarations of significance since neither the raw p-value nor the q-value points
toward rejecting H(i).

As π̂0 decreases, however, i > mπ̂0 for progressively smaller values of i, and hence the p-
values for which (5) must hold move toward the left tail of the distribution. Thus for very
small π̂0 it is entirely possible to have i for which, say, p(i) = .07 but q̂(i) = .03. Adopting the
conventional 0.05 significance level, multiple testing correction would then have the highly
counterintuitive effect of converting the evidence against H(i) from “non-significant” to
“significant”!

This surprising result cannot occur with the BH procedure. A BH-adjusted p-value can never

be less than the unadjusted p-value since, by (2), . For the two-stage
procedure ofBenjamini et al. (2006), the phenomenon is more difficult to demonstrate
mathematically, since there is no explicit expression for an adjusted p-value analogous to (2)
or (4). But the simulation results presented next show that this paradoxical behavior can
indeed occur with the two-stage procedure.

An illustrative simulation study
Setup

We conducted a simulation study to examine the performance of the three FDR approaches
described above for a large number of two-sample t-tests, when for a large proportion of
hypotheses the two groups’ distributions differ by a location shift Δ.

We fixed the sample size at 25 per group and the number of variables at 1000. For members
of group 1, each variable’s values were simulated from the N(0, 1) distribution. For group 2,
values were simulated from either the N(0, 1) distribution for 1000π0 variables, and from
the N(Δ, 1) distribution, for a positive Δ, for the remaining 1000(1−π0) variables. The
simulation settings were arrayed in a 2 × 2 grid:

• In the first two sets (see panels (a) and (b) of Fig. 2), Δ was fixed at 0.7, and 299
replications were performed with each of the values π0 = 0, 0.1, 0.2, …, 1.

• In the last two sets (see panels (c) and (d) of Fig. 2), π0 was fixed at 0, and 299
replications were performed with each of the values Δ= 0, 0.1, 0.2, …, 1.

• In the first and third sets, the 1000 variables were mutually independent.

• In the second and fourth sets, the root mean square (RMS) of the between-variable
correlations was approximately 0.15. The data were generated using R code (R
Development Core Team, 2011) accompanying Efron (2010) (available at http://
stat.stanford.-edu/~omkar/monograph/data.html), which attains a desired RMS
correlation by simulating values that are highly correlated within each of a number
of equal-sized blocks (the default, which we used, is 5 blocks).

For each replication, we determined the proportion of null hypotheses rejected at the (two-
sided) α = 0.05 level, out of the 1000 t-tests performed, by each of the following methods:

1. uncorrected two-sided p-value;

2. the original step-up procedure of Benjamini and Hochberg (1995);

3. the two-stage step-up procedure ofBenjamini et al. (2006);

4. the q-value procedure of Storey and Tibshirani (2003).
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The simulations were performed in R, with the qvalue package (Dabney et al., 2012) used
for the q-value method.

Results
As can be seen by comparing the two left subfigures of Fig. 2 with the two right subfigures,
correlation among the test statistics increases the variance of the number of rejections, but
otherwise does not affect the pattern of results.

The two upper subfigures display results with the effect size Δ fixed at 0.7 and the
proportion of false null hypotheses (1−π0) increasing from 0 to 1. As one would expect, the
mean proportion of rejections based on uncorrected p-values increases linearly with 1 − π0.
Consistent with the discussion above, the BH procedure never rejects more hypotheses than
uncorrected p-values do, but the q-value method curve begins to exceed the p-value curve
around 1−π0 = 0.6. Consistent with the findings of Chen et al. (2009), the two-stage FDR
method lies in between the BH and q-value methods, and its curve crosses the raw p-value
curve only for the highest values of 1 − π0.

Qualitatively similar results are seen in the two lower subfigures of Fig. 2 for the
simulations with π0 = 0 and varying Δ. We showed above that adaptive FDR can reject
more null hypotheses than unadjusted p-values when an effect is widespread, i.e., π0 is
small. The lower subfigures illustrate how similar results can also occur when π0 = 0—
meaning that the null/non-null mixture is no longer a correct description of the data—if the
effect is strong enough. We shall return to this point in the Discussion.

Longitudinal ADHD study
Background

Proal et al. (2011) studied cortical thickness and voxel-based morphometry in 59 adults in
whom attention deficit/hyperactivity disorder (ADHD) had been established in childhood,
along with 80 controls. Both groups consisted of Caucasian males. The ADHD group had
been recruited 33 years earlier, while the comparison group had been recruited ten years
thereafter, but was group-matched for race, childhood socioeconomic status, and place of
residence. The MRI scans were performed at the most recent of three clinical follow-up
visits (mean ages 18.4, 25.0 and 41.2). Despite the long elapsed time since enrollment, the
authors found widespread grey matter deficits in the ADHD group relative to the controls.

Here we apply the three FDR methods discussed above to comparison of cortical thickness
in the two groups at each of 81924 vertices. The test statistic at each vertex is a Wald t-
statistic for the group effect on cortical thickness, controlling for two covariates: age at time
of the scan, and scanner.5 Negative t-statistics imply lower cortical thickness in ADHD
subjects than in controls. Upon converting these t-statistics to standard normal statistics, the
distribution of values across the brain is summarized by the histogram in Fig. 3 (see below
for further discussion of this figure).

FDR results
The left subfigure of Fig. 4 displays the spline smoothing method by which π0 is estimated
(see Appendix A). Extrapolating the curve to λ = 1 yields the final estimate π̂0 = 0.234.
Plugging this estimate into (4) yields the q-values, which are plotted against the raw two-

5Two different scanners were used in the study. Aside from controlling for scanner, we applied a chi-square test to the cross-

tabulation of diagnostic group by scanner. The nonsignificant result (  p = 0.43) diminishes the concern that observed group
effects may be attributable to confounding between scanner and diagnosis.
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sided p-values in the right subfigure, revealing an instance of the paradox we have
described: p-values up to 0.128 (|t| > 1.53) correspond to q-values below 0.05, and hence the
null hypothesis is rejected at the 0.05 level for 49161 of the 81924 vertices by the q-value
method, versus 36569 rejections based on uncorrected p-values. The other two methods
exhibit conventional behavior for multiple testing procedures, rejecting fewer hypotheses at
the 0.05 level than do raw p-values: 18004 for BH, and 21772 by the two-stage FDR
method.

At most vertices for which the null hypotheses were rejected, the ADHD group exhibited
lower cortical thickness, but higher thickness in the ADHD group was found at 2 vertices by
the BH procedure, 126 by the two-stage procedure, and 1136 by the q-value procedure.
Note, however, that the q-value method finds so many “significantly positive” vertices only
because the preponderance of negative t-statistics results in an unusually low threshold
(1.53, as mentioned), which implies that positive t-statistics above 1.53 are deemed
significant. Maps displaying the regions of lower cortical thickness in the ADHD group are
presented in Fig. 5.

Somewhat disquieted by the fact that the q-value method rejected more null hypotheses than
the uncorrected p-values, we considered three alternative approaches to analyzing this data
set.

Alternative approach 1: Empirical null methodology
Efron (2004, 2010) has developed an empirical Bayes approach to FDR inference in which,
as in Storey and colleagues’ approach, one aims to estimate each test statistic’s posterior
probability of having arisen from the null hypothesis distribution. Efron’s key insight is that
the portion of the observed test statistic distribution corresponding to true null hypotheses is
often inconsistent with the theoretical null distribution. Consequently, more accurate
inference can be achieved by modeling the test statistic distribution as a mixture of an
“empirical null” component, which may differ from the theoretical null, and an “alternative”
component. A crucial assumption of the empirical null approach is that π0 ≈ 1, and the
violation of that assumption limits the approach’s utility for our data set, as we now show.

Fig. 3 displays a null/non-null mixture distribution for our data, as estimated by the method
of Muralidharan (2009). The specifics of this author’s empirical null method lie beyond the
scope of this paper, but in essence, the portions of the distribution deemed most inconsistent
with the null hypothesis are those in which the alternative density, shown in green, accounts
for most of the total density. In this instance, Fig. 3 implies that the most significant (or
“interesting,” in Efron’s terminology) test statistics are the small positive values in the right
tail. While it is true that values in this range stand apart somewhat from the bulk of the
distribution, it would be very strange to report as significant/interesting those regions with
the smallest between-group differences.

The empirical null approach was developed for large-scale multiple testing settings in which
the null portion of the test statistic distribution deviates from the theoretical null for reasons
such as unobserved covariates and correlation among the test statistics. The utility of this
methodology for neuroimaging applications in which π0 ≈ 1 has been demonstrated
bySchwartzman et al. (2009). But the empirical null approach is not designed for effects that
occur across wide portions of a collection of tests, and in our instance, it simply does not
provide a useful result.

Alternative approach 2: Adjusting for mean thickness
In neuroanatomic studies in which global effects are observed, it is sometimes appropriate to
include the total or mean value across the brain as a covariate in the voxel- or vertex-wise
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regressions.Peelle et al. (2012) refer to this approach as “local covariation,” and point out
that it changes the scientific question being posed. In our context, controlling for whole-
brain mean cortical thickness means that we are no longer simply asking, for each vertex,
whether a group effect on cortical thickness is observed. Instead we are asking whether there
is a group effect beyond that which can be explained by the association between thickness at
the given vertex and thickness for the brain as a whole.

For our data, with mean thickness included as a covariate, none of our three FDR procedures
declared any vertices significant at the 0.05 level. Thus, like the more sophisticated
empirical null method, the covarying approach does not pinpoint brain regions exhibiting a
particularly strong group effect. The problem with reporting this as our primary analysis is
that we would be missing the main story: widespread cortical thinning in ADHD.

Alternative approach 3: Comparing mean thickness
The simplest alternative is in a sense the opposite of the previous approach: to eschew
multiple testing altogether and compare cortical thickness averaged over the entire brain for
the 80 controls versus the 59 ADHD individuals. When we regress mean cortical thickness
on group, controlling for age and scanner as in the vertexwise analyses, belonging to the
ADHD group is found to predict a deficit of 0.031 mm (t135 = −3.24, p = .0015); see also the
box plots in Fig. 6 (which do not control for the above two covariates).

The problem with simply comparing the two groups’ whole-brain mean thickness is that it
does not give rise to a thresholded map identifying the particularly salient regions. On the
other hand, finding a significant difference in overall cortical thickness provides a
justification for reporting at least an unthresholded map. And if the alternatives for
thresholding are overconservative BH results or paradoxical adaptive FDR results, then an
unthresholded map may be the most reasonable option.

Discussion
What should be made of an analysis in which adaptive FDR procedures lead to more
rejected null hypotheses than do unadjusted p-values? It depends, perhaps, on how seriously
one takes the “two-groups model” (Efron, 2008), which partitions the test statistic
distribution into null and non-null components. In this framework, as noted above, the pFDR
is the posterior probability of belonging to the null rather than the non-null component. But
in the simulations whose results appear in the lower half of Fig. 2, there is no null
component. Accordingly, there are no false discoveries by definition, and in that sense the
number of rejections by the q-value method is not too high; indeed, no number of rejections
would be too high.

On the other hand, perhaps small estimates of π0 should prompt us to question the
applicability of the two-groups model. As Efron (2008) notes in reference to microarray
analyses, “Scientific context, which says that there is likely to be a large group of (nearly)
unaffected genes… is what makes the two-groups model a reasonable Bayes prior.” If, on
the other hand, the data contradict the assumption that most of the test statistics are
generated by the theoretical null distribution—as evidenced by a small estimate of π0—
there may be little scientific reason to posit a null/non-null mixture model at all. And the less
we trust this model, the less reason we have for focusing on the probability of belonging to
the null component, i.e., on the pFDR.

The sometimes-paradoxical behavior of adaptive FDR procedures is noted by Benjamini and
Hochberg (2000), who present a toy example. But the phenomenon remains little known,
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evidently because in most applications π0 ≈ 1. Benjamini and Hochberg (2000) write that
rejecting a hypothesis whose raw p-value exceeds the specified FDR level

need not be of concern, since we view the various comparisons in a simultaneous
framework, and against the background of the many hypotheses rejected in such a
study controlling the FDR allows to reject such an hypothesis as well.

Still, they advise that one may wish to avoid such an outcome by imposing a maximum p-
value (which may be the chosen FDR level) required for rejecting a hypothesis.

In a study of cortical thinning in ADHD, Narr et al. (2009) report that “the estimated FDR
for regions with uncorrected p < .05 is 0.0006.” This appears to be an instance of what we
have called a paradoxical result: i.e., a raw p-value of 0.05 corresponds to an adaptive FDR
estimate of 0.0006. Thus the authors, in reporting results meeting the p = 0.05 threshold,
have implicitly adopted the above suggestion of Benjamini and Hochberg (2000). But in
such instances, readers may wonder (as we initially did) why the effect of multiple testing
correction is to increase, rather than decrease, significance.

We believe that investigators can forestall such confusion by looking carefully at the results
—for example, by means of a histogram of test statistics as in Fig. 3—and considering the
assumptions made by different multiple testing methods: e.g., Efron’s two-component
mixture model is likely inappropriate when π0 is small. More specific recommendations will
naturally depend on the particular application, but the following points seem worth
considering:

1. Using the BH procedure instead of adaptive procedures, as inProal et al. (2011),
avoids paradoxical outcomes, but may be overconservative.

2. The two-stage FDR procedure ofBenjamini et al. (2006) may be an suitable
compromise between the BH and q-value procedures.

3. Comparing whole-brain patterns (alternative approach 3 above) replaces the large-
scale multiple testing problem with a single test, likely with very high power. This
makes it difficult to present a thresholded map, but may serve as justification for
presenting an unthresholded map.

4. If paradoxical adaptive FDR results are reported, this should be clearly noted and
explained.

It is our hope that this note will contribute to clear understanding of adaptive FDR
procedures, and to thoughtful application of these powerful tools, by analysts of
neuroimaging data.
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Appendix A. Null proportion estimation
For estimating π0, Storey and Tibshirani (2003) propose a smoothing method, whereas
Storey et al. (2004) offer a bootstrap method. Here we summarize the former, which is the
default in the package qvalue (Dabney et al., 2012) for R. The p-values for the mπ0 true
null hypotheses are expected to be uniformly distributed between 0 and 1. Hence for any λ
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∈ (0, 1), approximately mπ0(1− λ) true null hypotheses should have p-values above 1− λ.
On the other hand, for sufficiently large λ, essentially none of the p-values for false null
hypotheses should be above 1 − λ. This motivates the null proportion estimator

(A.1)

Arguing that π̂0(λ) should have decreasing bias but increasing variance as λ approaches 1,
Storey and Tibshirani (2003) propose to compute π̂0(λ) for a range of λ values from 0 to
near 1; apply natural cubic spline smoothing with 3 degrees of freedom to these values, to
obtain a smooth function f̂(λ); and estimate π0 by the extrapolated value π̂0 = f̂(1).
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Highlights

• Adaptive false discovery rate procedures boost power via a null proportion
estimate.

• But for neuroimaging data, they can reject more null hypotheses than ignoring
multiplicity.

• We explain this phenomenon and illustrate it with a cortical thickness example.

• We propose strategies for handling such paradoxical results in practice.
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Figure 1.
Observed q-value thresholds for mixture distributions of the form π0N(0, 1) + (1 − π0)N(5,
1). For π0=0.9 (left), 0.6 (center), and 0.3 (right), we simulated 50000 independent test
statistics from the mixture distribution, referred the statistics to the standard normal
distribution to obtain 50000 p-values, and transformed these to q-values by the method of
Storey and Tibshirani (2003). This was repeated 101 times for each mixture, and the median
thresholds for q-value 0.05 (variability across the 101 replications was very low) are shown
by the solid vertical lines. The dashed lines represent the uncorrected threshold.

Reiss et al. Page 14

Neuroimage. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Comparing two samples of size 25, where the first sample has distribution N(0, 1) for each
of 1000 variables, while the second sample has 1000π0 variables distributed as N(0, 1) and
the remaining 1000(1 − π0) distributed as N( Δ, 1). The curves join the mean proportions of
hypotheses rejected by each method, while the bars display the 5th and 95th percentiles,
over 299 simulations. Upper subfigures: α = 0.7, π0 = 0, 0.1, …,1; results with (a) mutually
independent variables, and (b) root mean square correlation 0.15. Lower subfigures: π0 = 0,
Δ = 0, 0.1, …,1; (c) mutually independent variables, and (d) root mean square correlation
0.15. The dashed portions of the q-value curves indicate that for Δ > 0.6, the algorithm
produced an error for some simulations, due to a negative estimate of π0. In the
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independent-test simulations, this occurred for 1.3%, 17%, 54%, and 79% of the simulations
with Δ = 0.7, 0.8, 0.9, 1.0, respectively; for the simulations with RMS correlation 0.15, the
corresponding values were 9.4%, 43%, 70%, and 85%.
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Figure 3.
Histogram of test statistics (Wald t-statistics transformed to z-scores) for cortical thickness
at the 81924 vertices, from the study ofProal et al. (2011). Negative values imply diminished
cortical thickness in individuals with ADHD. The density curves are generated by the FDR
estimation method of Muralidharan (2009, 2010), which models the test statistic density as a
mixture of an empirical null component (Efron, 2004, 2010) and an alternative component.
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Figure 4.
Left: Cubic spline smooth of the null proportion estimates π̂0(λ) (see (A.1)), for the cortical
thickness data ofProal et al. (2011). Right: The ordered raw p-values plotted against the q-
values given by (4); also shown are the line of identity and the horizontal line at q-
value=0.05.
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Figure 5.
Regions of significantly lower cortical thickness in the ADHD group, at level 0.05 of the
error rates controlled, respectively, by the four multiple testing procedures: type-I error
probability for raw p-values, and FDR for the other procedures. Note that the t-statistic
magnitude threshold for rejection is lower for the q-value method (1.53) than for raw p-
values (1.98), resulting in more extensive declarations of significance.
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Figure 6.
Box plots of mean cortical thickness, over all 81924 vertices, for the 80 controls and the 59
individuals with ADHD.
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