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Abstract
Neurodegenerative disorders, such as Alzheimer’s disease, are associated with changes in multiple
neuroimaging and biological measures. These may provide complementary information for
diagnosis and prognosis. We present a multi-modality classification framework in which
manifolds are constructed based on pairwise similarity measures derived from random forest
classifiers. Similarities from multiple modalities are combined to generate an embedding that
simultaneously encodes information about all the available features. Multimodality classification
is then performed using coordinates from this joint embedding. We evaluate the proposed
framework by application to neuroimaging and biological data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Features include regional MRI volumes, voxel-based FDG-PET
signal intensities, CSF biomarker measures, and categorical genetic information. Classification
based on the joint embedding constructed using information from all four modalities out-performs
classification based on any individual modality for comparisons between Alzheimer’s disease
patients and healthy controls, as well as between mild cognitive impairment patients and healthy
controls. Based on the joint embedding, we achieve classification accuracies of 89% between
Alzheimer’s disease patients and healthy controls, and 75% between mild cognitive impairment
patients and healthy controls. These results are comparable with those reported in other recent
studies using multi-kernel learning. Random forests provide consistent pairwise similarity
measures for multiple modalities, thus facilitating the combination of different types of feature
data. We demonstrate this by application to data in which the number of features differ by several
orders of magnitude between modalities. Random forest classifiers extend naturally to multi-class
problems, and the framework described here could be applied to distinguish between multiple
patient groups in the future.
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1. Introduction
Changes in multiple biomarkers may provide complementary information for the diagnosis
and prognosis of neurodegenerative disorders such as Alzheimer’s disease (AD). At present,
the clinical diagnosis of AD is based on assessments of cognition and behaviour, which start
to decline in the later disease stages. Recently published revisions to the diagnostic criteria
(Albert et al., 2011; McKhann et al., 2011; Sperling et al., 2011) incorporate suggestions
that biological and neuroimaging measures of structural and molecular changes in the brain
may be better suited for the early detection of AD, as well as for monitoring its progression.
Automated classification of individual patients based on multiple biomarkers could provide
valuable support for clinicians, when considered alongside cognitive assessment scores and
traditional visual image analysis. This could be particularly useful for monitoring the
progression of patients with mild cognitive impairment (MCI), which is often a transitional
stage between the cognitive decline associated with normal ageing, and that of established
AD.

The neuropathological changes associated with the development of AD begin many years
before cognitive symptoms become apparent. According to the amyloid cascade hypothesis,
the disease process begins with the formation of insoluble β-amyloid (Aβ) plaques, whose
presence triggers the hyperphosphorylation of tau protein, ultimately leading to cell death
(Selkoe, 1991). Surrogate measures of the levels of Aβ and tau in the brain may be obtained
from the cerebrospinal fluid (CSF). Various studies have shown reduced CSF Aβ and
elevated CSF tau in AD patients compared with cognitively normal individuals (for
example, Motter et al. (1995); Vandermeeren et al. (1993)). MCI patients tend to have CSF
Aβ and tau levels between those expected of AD patients and healthy controls, with AD-like
biomarker levels associated with an increased likelihood of progression to AD (Hansson et
al., 2006). Positron emission tomography (PET) imaging with radiotracers for amyloid
provides an alternative method for assessing intracranial Aβ deposition (Klunk et al., 2004).

PET imaging with the radiotracer [18F]-fluorodeoxyglucose (FDG) can be used to assess
brain function in terms of the rate of cerebral glucose metabolism. Both AD and MCI are
associated with significantly reduced glucose metabolism in affected regions, including
temporal and parietal lobes, and the posterior cingulate cortex (Herholz et al., 2002;
Langbaum et al., 2009). Reduced metabolism in AD patients is predictive of their cognitive
decline and histopathological diagnosis (Hoffman et al., 2000; Silverman et al., 2001), and
in MCI patients can predict their progression to AD (Anchisi et al., 2005). Changes in
metabolism can be detected on FDG-PET before corresponding structural changes are
visible (Aisen et al., 2010). FDG-PET-based classification techniques can discriminate both
AD and MCI patients from healthy controls (Hinrichs et al., 2009).

The progressive structural damage caused by AD can be non-invasively assessed by using
magnetic resonance imaging (MRI) to measure cerebral atrophy or ventricular expansion.
Temporal lobe atrophy is closely associated with AD, and histological studies show that the
hippocampus, amygdala and entorhinal cortex are particularly vulnerable to AD pathology
(Braak and Braak, 1998). Accelerated hippocampal atrophy compared with healthy controls
has been measured using MRI in both AD and MCI patients (Schuff et al., 2009; van de Pol
et al., 2007). A recent study (Cuingnet et al., 2011) comparing ten MRI-based high-
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dimensional classification methods reported good results in discriminating between AD
patients and healthy controls (up to 81% sensitivity and 95% specificity). Two methods
relied on only hippocampal shape or volume, while the remainder were whole-brain
approaches, using either cortical thickness measures, or voxel-wise tissue class probabilities.
Four of the ten methods achieved slightly better accuracy than a random classifier in
distinguishing MCI patients who later progressed to AD from MCI patients remaining stable
over 18 months.

Although age is the most significant risk factor for AD (Rocca et al., 1991), genetic and
environmental factors also play a role. The ApoE gene is the only one so far shown to be
associated with sporadic late-onset AD (Dawbarn and Allen, 2007). There are three major
alleles of this gene: ε2, ε3 and ε4. The most common is ε3, while ε4 is associated with an
increased risk of developing AD, and ε2 with a reduced risk (Corder et al., 1993). More
extensive AD pathology is generally observed in carriers of the ApoE ε4 allele than in non-
carriers (Roses and Saunders, 1997). Genetics can therefore impact the biological and
neuroimaging biomarkers. For example, AD carriers of the ApoE ε4 allele typically have
reduced CSF Aβ, elevated CSF tau, and accelerated hippocampal atrophy on MRI compared
with non-carriers (Tapiola et al., 2000; Schuff et al., 2009). Cognitively normal carriers of
the ApoE ε4 allele display reduced glucose metabolism on FDG-PET in AD-typical regions
(Langbaum et al., 2009).

The above biomarker patterns, however, are not specific to AD. For example, reduced CSF
Aβ and elevated CSF tau are also associated with Lewy body dementia and vascular
dementia (Andreasen et al., 2001; Blennow and Hampel, 2003). Temporal lobe atrophy is
also observed in hippocampal sclerosis and temporal lobe epilepsy (Keihaninejad et al.,
2012), and an AD-like metabolic pattern can also indicate Creutzfeldt-Jacob disease
(Hoffman et al., 1990). It has been suggested that there may be some complementary
information between modalities which can be exploited to produce more powerful combined
classifiers (Walhovd et al., 2010; Landau et al., 2010). The potential utility of biomarker
combinations is also supported by the recently revised diagnostic criteria (Albert et al.,
2011; McKhann et al., 2011; Sperling et al., 2011). For research applications, these
incorporate a biomarker-based probability of AD etiology which is highest when evidence
of both amyloid deposition and neuronal degeneration or injury are observed. This support
has resulted in an increasing interest in using multi-modality imaging and biological data for
classification. Studies reporting multi-modality AD classification are far less common than
those based on data from a single modality (Weiner et al., 2012). However, two independent
studies (Zhang et al., 2011; Hinrichs et al., 2011) using multi-kernel learning report that
classification based on multi-modality data is superior to that based on any individual
modality. Classification accuracies of 93% between AD patients and healthy controls, and
76% between MCI patients and healthy controls were reported in Zhang et al. (2011), based
on a combination of FDG-PET, MRI and CSF measures.

We present a framework for multi-modality classification based on pairwise similarity
measures derived from random forests (Breiman, 2001). The similarities are used to
construct a manifold representation from labelled training data and then to infer the clinical
labels of test data mapped into this space. Classical multidimensional scaling (MDS)
(Torgerson, 1952) is applied to learn a manifold on which to perform classification, resulting
in the construction of a coordinate embedding in which the distances between points
preserve their pairwise similarities. MDS is commonly used to provide low-dimensional
visualisations of similarity relationships, including those derived from random forests
(Hastie et al., 2011). Random forest-derived similarities have been successfully applied in
unsupervised clustering tasks, for example those involving high-dimensional genetic or
tissue microarray data (Shi and Horvath, 2006; Shi et al., 2005). Here, random forests are
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used to derive supervised similarity measures, with the aim of generating manifolds that are
optimal for the task of clinical group discrimination. The proposed method facilitates the
incorporation of multi-modality data, since similarities derived from several datasets may be
combined to generate an embedding that simultaneously encodes information from all
features.

Manifold learning techniques based on pairwise similarities between images have been
applied in a variety of neuroimaging studies. For example, Laplacian eigenmaps (Belkin and
Niyogi, 2003) have been used to generate an embedding of brain MR images based on
similarities derived from overlaps of their structural segmentations (Aljabar et al., 2008).
Isomap (Tenenbaum et al., 2000) has also been used to estimate the manifold structure of
brain MR images, using distance measures based on nonrigid transformations between
image pairs (Gerber et al., 2010). A framework for fusing manifold learning steps based on
different pairwise similarity measures was presented in Aljabar et al. (2010). The method
proposed here uses random forests to derive consistent pairwise similarity measures for
multiple modalities, thus facilitating the combination of different types of feature data. We
evaluate the proposed multi-modality classification framework by application to
neuroimaging and biological data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). These data include FDG-PET and MR imaging data, CSF biomarker measures, and
categorical genetic information. This work is an extension of preliminary studies involving
neuroimaging data which have been previously presented at a workshop (Gray et al., 2011).

2. Methodology
A schematic overview of the proposed approach is illustrated in Figure 1. A random forest
classifier was applied to the feature data from each modality independently, firstly to obtain
single-modality classification results for comparison, but also to derive the similarities
required for manifold learning. The resulting similarity matrices were combined, and
classical MDS was applied to generate a joint embedding for multi-modality classification.
Full details of the data collection and feature extraction are presented in Section 3.1.

2.1. Random forests for classification
A random forest (Breiman, 2001) is an ensemble classifier consisting of many decision
trees, where the final predicted class for a test example is obtained by combining the
predictions of all individual trees, as illustrated in Figure 2. Random forests combine
bootstrap aggregation (bagging) (Breiman, 1996) and random feature selection (Amit and
Geman, 1997; Ho, 1998) to construct a collection of decision trees exhibiting controlled
variation. We used the R implementation of random forests, a port of Leo Breiman and
Adele Cutler’s original Fortran code by Andy Liaw and Matthew Wiener, version 4.6–6
(http://cran.r-project.org/web/packages/randomForest).

The training set for each individual tree in a random forest is constructed by sampling N
examples at random with replacement from the N available examples in the dataset. This is
known as bootstrap sampling, and bagging describes the aggregation of predictions from the
resulting collection of trees. As a result of the bootstrap sampling procedure, approximately
one third of the available N examples are not present in the training set of each tree. These
are referred to as the “out-of-bag” data of the tree, for which internal test predictions can be
made. By aggregating the predictions of the out-of-bag data across all trees, an internal
estimate of the generalisation error of the random forest can be determined.

At each node in a tree, d ≪ D features are randomly selected from the D available features
in the dataset, and the node is partitioned using the best possible binary split. A parent node
np is partitioned into child nodes nl and nr according to the Gini index (Breiman et al.,
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1984), which measures the likelihood that an example would be incorrectly labelled if it
were randomly classified according to the distrbution of labels within the node. For a binary

split, the Gini index of a node n may be expressed as , where pc is the
relative proportion of examples belonging to class c present in node n. The best possible
binary split is the one which maximises the improvement in the Gini index ΔIG(np) = IG(np)
− plIG(nl) − prIG(nr), where pl and pr are the proportions of examples in node np that are
assigned to child nodes nl and nr, respectively. The Gini index can also be used to assess the
relative importances of features for classification. A measure of the importance of an
individual feature may be computed by summing the decreases in the Gini index occuring at
all nodes in the forest which are partitioned based on that feature.

2.2. Manifold learning based on random forest similarities
Random forests can provide measures of the similarity between pairs of examples in the
dataset. Each of the N examples is represented by a feature vector, all of which are passed
down each tree in the forest. The similarities are initialised to zero, and if examples i and j
finish in the same terminal node of a tree, their similarity sij is increased by one. The final
pairwise similarity measures are normalised by the total number of trees in the forest.

The similarities thus form a N × N matrix with elements sij, and corresponding distance
matrix elements dij = 1 − sij (Cox and Cox, 2001). Manifold learning techniques may be
applied to find an appropriate coordinate embedding for the feature vectors, such that the
distance relationships between them are preserved. A review of the most popular manifold
learning techniques, as applied to medical imaging, is provided in Aljabar et al. (2012).
MDS (Torgerson, 1952) is commonly used in conjunction with random-forest derived
similarity measures for low-dimensional data visualisation, as well as unsupervised
clustering tasks. In this work, MDS is applied to similarity measures derived in a supervised
manner from random forests, with the aim of generating manifolds that are optimal for the
task of clinical group discrimination.

Using MDS, the matrix of coordinates X is derived by performing an eigen-value
decomposition on the matrix of scalar products

Retaining only the eigenvectors corresponding to the k largest-valued eigenvalues leads to a
k-dimensional embedding for the data. A goodness-of-fit parameter G, describing the extent
to which the selected k eigenvectors represent the full matrix, can be useful in selecting an
appropriate dimensionality for the embedding. The measure of goodness-of-fit used in this
work is given by

where the eigenvalues λj are sorted in decreasing order (Mardia et al., 1979).
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To generate an embedding that simultaneously incorporated information from multiple
modalities, a joint similarity matrix S was defined as a linear combination of the similarity
matrices from each of the four modalities Si. Each modality was assigned a weighting factor

αi, such that , where . To ensure the best combination of the four
modalities for classification, the ai parameters were optimised as part of the training process.
This was achieved by performing a grid-search within the training data to select the
optimum modality weightings. The classifier was then trained using the selected set of
parameters, before having its performance assessed on the test data.

3. Experiments and Results
We applied the proposed methodology to neuroimaging and biological data from 147 ADNI
participants for whom baseline 1.5 T MRI, FDG-PET and CSF biomarker measures were
available, as well as ApoE genotype information.

3.1. Neuroimaging and biological feature data
Data used in the preparation of this article were obtained from the ADNI database (http://
adni.loni.ucla.edu). The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assessments can be combined
to measure the progression of MCI and early AD. A more detailed description of the ADNI
study is provided in Appendix A.

We use imaging and biological data from 147 ADNI participants, including 37 AD patients,
75 MCI patients, and 35 healthy controls (HC). These represent all participants for whom
ApoE genotype information and baseline 1.5 T MRI, FDG-PET and CSF measures of Aβ,
tau and phosphorylated tau (ptau) were available, subject to the exclusions described in
Appendix B. The MCI patients were divided into those who have progressed to AD (pMCI)
and those whose diagnoses have so far remained stable (sMCI) based on changes in clinical
status occurring over 20 ± 11 months (range 6 – 36). Clinical and demographic information
for the study population is provided in Table 1.

3.1.1. MRI feature extraction—Automatic whole-brain segmentations into 83
anatomical regions were prepared in native MRI space using multi-atlas propagation with
enhanced registration (MAPER), an approach that has been previously described and
validated for use in AD (Heckemann et al., 2010). The segmentations are available to
download through the ADNI website, and full details of the procedure and morphometric
analysis are presented in Heckemann et al. (2011). The required atlas data consisted of
manually segmented T1-weighted MR volumes from 30 young, healthy adults, as described
in Hammers et al. (2003). Protocols for the manual delineation are described in Hammers et
al. (2003) and Gousias et al. (2008).

To match the requirements of MAPER, additional pre-processing was applied for brain
extraction and tissue classification. For brain extraction, intracranial masks were generated
using binary masks covering intracranial white and grey matter as the starting point, as
described in Heckemann et al. (2011). The binary masks had been generated with a semi-
automatic procedure as part of a separate project using MIDAS (Freeborough et al., 1997;
Leung et al., 2011). Individual tissue probability maps for grey matter, white matter and
CSF were obtained using FSL FAST (http://www.fmrib.ox.ac.uk/fsl). Binary maximum-
probability tissue class labels were employed to mask the anatomical segmentations. All
regions except ventricles, central structures, cerebellum and brainstem were masked with a
grey matter label. Lateral ventricles were masked with a CSF label. Regional volumes were
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normalised by the intracranial volume, resulting in 83 volumetric region-based features per
image.

3.1.2. FDG-PET feature extraction—Each FDG-PET image was motion-corrected as
necessary, converted to a 30-minute static image, examined for major artefacts, and affinely
aligned with the corresponding MRI using the Image Registration Toolkit (IRTK; http://
www.doc.ic.ac.uk/~dr/software). An affine transformation was preferred over a rigid one
because it can account for scaling or voxel size errors remaining after phantom correction of
the MRI (Clarkson et al., 2009).

Using the “Segment” module of SPM5 (http://www.fil.ion.ucl.ac.uk/spm), each MRI was
linearly and non-linearly deformed to the Montreal Neurological Institute (MNI) template
(Ashburner and Friston, 2005). The resulting transformation parameters were applied to the
MRI-space PET images using trilinear interpolation. The MNI-space PET images (voxel
sizes 2×2×2mm) were then smoothed to a common isotropic spatial resolution of 8 mm full-
width-at-half-maximum (FWHM) using scanner-specific kernels (Joshi et al., 2009), and
then by an additional 8 mm FWHM isotropic Gaussian kernel. The smoothed images were
intensity normalised to account for inter-subject variability in overall radioactivity using an
independently-derived cluster of relatively preserved regions (Yakushev et al., 2009). The
apriori brainmask available in SPM5 was thresholded at 50% probability, and applied to
each normalised FDG-PET image to exclude voxels outside the brain. Signal intensities
were extracted from all remaining voxels, resulting in 239,304 voxel-based features per
image.

3.1.3. Biological features—The ADNI Biomarker Core provides biological data for the
study participants. These data include CSF measures of Aβ, tau and ptau, as well as ApoE
genotype information determined from a blood sample. Details of the biofluid collection and
processing are provided in Trojanowski et al. (2010). The genetic feature data for each
participant consisted of a single categorical variable describing their ApoE genotype. These
data are summarised in Table 2.

3.2. Classification experiments
Classification performance was assessed between three clinically relevant pairs of diagnostic
groups (AD/HC, MCI/HC, pMCI/sMCI). Robust estimates of classifier performance were
obtained using a stratified repeated random sampling approach. The mean accuracy,
balanced accuracy, sensitivity and specificity were evaluated over 100 runs in which 75% of
the data were randomly selected for training, with the remaining 25% used as test data.
Balanced accuracy is the arithmetic mean of the sensitivity and specificity. This provides a
more meaningful performance metric for groups of unequal sizes.

3.2.1. Single-modality classification results—A random forest classifier was applied
to the feature data from each of the four modalities independently, and the single-modality
classification results obtained are presented in Table 3.

Before performing classification experiments, the number of trees grown in each forest, t,
and the number of features randomly selected at each tree node, d, had to be chosen. We
used t = 5, 000 for all the experiments that follow, since stable estimates of the out-of-bag
classification error were consistently observed for t ≳ 1, 000. We used  for all
experiments, following the recommendation of Liaw and Wiener (2002). The value of d was
also consistently observed to have little effect on the out-of-bag classification error estimate.

Gray et al. Page 7

Neuroimage. Author manuscript; available in PMC 2014 January 15.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.doc.ic.ac.uk/~dr/software
http://www.doc.ic.ac.uk/~dr/software
http://www.fil.ion.ucl.ac.uk/spm


As described in Section 2.1, estimates of the relative importances of the features for
classification may be extracted from the random forest. Feature importances for the two
imaging modalities are shown in Figure 3. The most important features for MRI include
volumes of the hippocampus, amygdala, and other medial temporal lobe structures. The
most important features for FDG-PET include signal intensities of voxels located in the
posterior cingulate gyrus, parietal lobe, posterior temporal lobe, and around the
hippocampus.

3.2.2. Single-modality similarity-based classification results—The random forest
classifiers described in Section 3.2.1 were used to derive pairwise similarity measures for
each of the four modalities, as described in Section 2.2. Examples of the similarity matrices
are shown in Figure 4.

MDS was applied to each similarity matrix, and a goodness-of-fit value of 90% was used to
determine an appropriate dimensionality for the resulting embeddings. A random forest
classifier was then applied to the embedded feature data from each of the four modalities
independently. The single-modality classification results obtained are presented in Table 4,
along with the dimensionality of each embedding.

No consistent differences are observed between the balanced accuracies based on the
embedded feature data shown in Table 4, and those based on the original feature data shown
in Table 3.

3.2.3. Multi-modality similarity-based classification results—MDS was applied to
the joint similarity matrix constructed using information from all four modalities, and a
goodness-of-fit value of 90% was again used to determine an appropriate dimensionality for
the resulting embedding. A random forest classifier was applied to the embedded feature
data, and the multimodality classification results obtained are presented in Table 5. The
balanced accuracies based on multi-modality classification are significantly (p < 0.01)
higher than those based on any individual modality for both the AD/HC and MCI/HC
experiments. For the pMCI/sMCI experiment, however, the balanced accuracy based on
multi-modality classification is not significantly different from that based on MRI
information alone. Table 5 additionally shows results based on the application of a random
forest classifier to the combined feature set generated by a simple concatenation of features
from all four modalities. These show no significant differences from the results based on
FDG-PET alone.

For each of the classification experiments, the distribution of modality weighting parameters
selected over the 100 runs is illustrated in Figure 5.

4. Discussion and Conclusion
We have presented a framework for multi-modality classification based on pairwise
similarity measures derived from random forests. The similarities are used to construct a
manifold representation from labelled training data and then to infer the clinical labels of
test data mapped into this space. Random forests are used to derive similarity measures in a
supervised manner, with the aim of generating manifolds that are optimal for the task of
clinical group discrimination. The proposed method facilitates the incorporation of multi-
modality data, since consistent similarities may be derived from several datasets, and
combined to generate an embedding that simultaneously encodes information from all
features. Multi-modality classification may then be performed using coordinates from this
joint embedding. The applicability of the method to a large and diverse dataset is
demonstrated using imaging and biological information from the ADNI study. This includes
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FDG-PET and MR imaging data, CSF biomarker measures, and categorical genetic
information.

Classification based on the joint embedding constructed using information from all four
modalities is superior to classification based on any individual modality for comparisons
between AD patients and HC, as well as between MCI patients and HC. This finding is in
agreement with other recent studies (Zhang et al., 2011; Hinrichs et al., 2011), and supports
previous suggestions that there is some complementary information between modalities
which can be exploited to produce more powerful combined classifiers (Walhovd et al.,
2010; Landau et al., 2010). Classification performance is commonly reported in terms of
accuracy, but here we perform statistical comparisons between experiments based on the
balanced accuracy. This provides a more meaningful performance metric for groups of
unequal sizes. In terms of accuracy, we achieve 89% classification between AD patients and
HC, and 75% between MCI patients and HC.

Direct comparisons with existing work are complicated by factors such as the inclusion of
different subjects and modalities, as well as the use of different methods for feature
extraction and cross-validation. In assessing the proposed framework, we consider
comparisons between the single- and multimodality classification performance more
important, since these are based on the same method, data, and processing pipeline. Our
multi-modality classification results are, however, comparable with those reported in other
recent studies based on ADNI data. Zhang et al. (2011) combine MRI, FDG-PET and CSF
data to achieve classification accuracies of 93% between AD patients and HC, and 76%
between MCI patients and HC. Hinrichs et al. (2011) combine MRI, FDG-PET, CSF,
genetic and cognitive data to achieve an accuracy of 92% between AD patients and HC.
Both studies employ multi-kernel classifiers based on support vector machines, which are
relatively well-established in the field (Weiner et al., 2012). Random forests have not been
extensively applied in neuroimaging research, although they are becoming more widely used
for applications including classification (Hope et al., 2008; Chincarini et al., 2011) and
segmentation (Geremia et al., 2011; Iglesias et al., 2011). Classification of
neurodegenerative disease based on the combination of imaging and non-imaging
information is therefore a new application for random forests, and we are encouraged by the
fact that our results are comparable with those of more established techniques.

The ability of random forests to extract consistent pairwise similarity measures for multiple
modalities facilitates the combination of different types of feature data. We demonstrate this
using datasets in which the number of features differ between modalities by several orders
of magnitude. A simple concatenation of all features was shown not to optimally combine
these data (Table 5), since the high-dimensional FDG-PET features dominate the results.

In previous work (Gray et al., 2011), we obtained comparable multi-modality classification
results using only information extracted from the two neuroimaging modalities (accuracies
of 90% for AD/HC, and 76% for MCI/HC). The lack of improvement over these previously
reported results is likely to be attributable to the considerable reduction in size of the subject
group as a result of our requirement for CSF biomarker information. The subject group for
this study is approximately half the size of that used in Gray et al. (2011). The present work
additionally employs a more robust form of cross-validation, using a stratified repeated
random sampling approach, as opposed to the single round of ten-fold cross-validation
employed in Gray et al. (2011).

In the context of a neuroimaging application, estimates of the importances of the features for
classification are valuable because this allows assessment of whether the features that
contribute most to the classifier correspond to regions or structures with a biologically
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plausible connection to pathology. In this work, the most important features for
discriminating between clinical groups correspond with those known to be visibly affected
in AD on both FDG-PET and structural MR imaging (Hampel et al., 2008; Patwardhan et
al., 2004). Important features for distinguishing between AD patients and HC are more
localised to affected areas, with the more challenging distinctions between MCI patients and
HC, or pMCI and sMCI patients, requiring features spread across a larger part of the brain.
The motivation for extracting region-based features from the MR images and voxel-based
features from the FDG-PET images was to demonstrate that these two different types of
imaging features could be readily combined using the proposed method.

The lack of significant difference between classification performance based on the original
feature data and that based on the embedding coordinates for each individual modality is
expected, since a random forest is already a nonlinear classifier. However, a difference is
observed for the comparison between MCI patients and HC based on the voxel-wise FDG-
PET features. This may be due to the inhomogeneity of the MCI group, which comprises
both pMCI and sMCI patients. It is possible that the high-dimensional voxel-based FDG-
PET features are sensitive to differences in the pattern of glucose metabolism between these
two groups, resulting in a reduced classification performance based on the associated
embedding coordinates.

Random forests are ensemble-based classifiers that are often applied to high-dimensional
datasets. In this work, random forests are also applied to low-dimensional biological data so
that consistent pairwise similarity measures may be obtained for all modalities. In the case
of a single feature, such as the categorical genetic information, a random forest reduces to
bootstrap aggregation.

Visualisation of the parameters selected to combine similarities for multimodality
classification (Figure 5) provides some interesting insights into the relationships among the
modalities. The figure indicates the optimum way in which to combine MRI, FDG-PET,
CSF and genetic information within the framework described. For distinguishing between
AD patients and HC, for example, it appears that FDG-PET and MR imaging features
provide the most complementary information. For distinguishing MCI patients from HC,
genetic information appears to have a relatively high importance. However, these indications
may not necessarily have a direct biological interpretation, and are likely not sufficient to
draw any firm conclusions about the relative importances of the four modalities. The
optimum modality weightings for distinguishing between AD patients and HC are more
stable than for the other two experiments. The weighting parameters selected for
distinguishing MCI patients from HC may be more variable because the heterogeneity of the
MCI group makes their selection dependent on the proportions of pMCI and sMCI patients
in the training set. The selected modality weightings are not equal for any experiment,
supporting the need to optimise the relative contributions of the four modalities for
classification. The figure suggests an interesting avenue for further research, in that
estimates of inter-modality correlations could help to determine the amount of
complementary information between them. This could facilitate decisions on how to acquire
the maximum amount of diagnostically relevant information for a patient using a minimum
number of assessments.

The classification performance between pMCI and sMCI patients is not significantly
improved by combining multi-modality information in this study. Other studies which apply
multi-modality classification to this challenging problem have incorporated longitudinal
information to improve performance (Hinrichs et al., 2011; Zhang et al., 2012). Our
previous work based on FDG-PET (Gray et al., 2012) has also shown that incorporating
longitudinal information can be beneficial to improve the ability to distinguish between

Gray et al. Page 10

Neuroimage. Author manuscript; available in PMC 2014 January 15.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



these two groups. This will be an important issue to address in the future. It is important to
consider, however, that progression from MCI to AD occurs at a rate of 10–15% per year
(Petersen et al., 1999), with up to 80% of MCI patients developing AD over a six year
period (Petersen, 2004). Longer clinical follow-up is therefore required to properly assess
the utility of any classification method in separating pMCI from sMCI patients. This may be
made possible by the continuation of the ADNI study in the form of ADNI-GO and
ADNI-2. Further information about these studies is available via the ADNI website (http://
adni.loni.ucla.edu/about/about-the-study/).

We have identified several areas for further research. Methodologically, the approach is
generalisable, in that the manifold learning step could be performed using an alternative
technique, and similarities could be combined using more sophisticated formulae. We
applied MDS for manifold learning in this work because its application to random forest-
derived similarities is straightforward, and relatively common in the literature (Hastie et al.,
2011). However, MDS may not be the optimal embedding approach, and there is potential to
improve the performance of this step by pursuing a thorough exploration of alternative
techniques. Similarly, we chose to additively combine similarity matrices for simplicity, and
there is potential for improvement by incorporating a more sophisticated formula. Random
forest classifiers extend naturally to multi-class problems, and the framework described here
could be applied to distinguish between multiple patient groups in the future. Exploration of
the multi-class setting would better represent a real-world clinical scenario, including
patients with other forms of dementia. In addition, the implementation of random forests
used in this work could be modified to produce uncertainty information about the predicted
diagnostic labels. This may be more useful to clinicians than a simple binary prediction, and
could be achieved by having each leaf node store a probabilistic distribution of labels, rather
than a point estimate. Criminisi et al. (2012), for example, describes this and other
extensions to the original random forests algorithm, and presents a unified model of random
decision forests for classification, regression, density estimation, manifold learning, and
semi-supervised learning. Further investigations into different data fusion strategies may
also be interesting. Although the feature level fusion approach proposed in this work can
capture interdependencies between modalities, the application of a data level fusion
technique to the neuroimaging data may be advantageous in terms of capturing local inter-
modality correlations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. The Alzheimer’s Disease Neuroimaging Initiative
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit organisations, as a
$60 million, five-year public-private partnership. Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and cost
of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California - San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic institutions and private corporations.
Subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit approximately 200 cognitively normal older individuals to be
followed for three years, 400 MCI patients to be followed for three years, and 200 early AD
patients to be followed for two years. Further up-to-date information is available on the
ADNI information website (http://www.adni-info.org).

Appendix B. Exclusions
In this work, we use imaging and biological data from 147 ADNI participants. These
represent all participants for whom ApoE genotype information and baseline 1.5 T MRI,
FDG-PET and CSF measures of Aβ, tau and phosphorylated tau were available, subject to
the following exclusions. FDG-PET images acquired using either the Siemens HRRT or
BioGraph HiRez scanners were excluded due to differences in the pattern of FDG
metabolism that were discovered during the ADNI quality control process. Further
information is available on the ADNI PET Core website (http://www.loni.ucla.edu/twiki/
bin/view/ADNI/ADNIPETCore). A small number of subjects (n = 14) whose imaging data
could not be processed as required, or whose diagnosis did not clearly fall into one of the
four diagnostic groups (AD, pMCI, sMCI, HC), were also excluded. ADNI subject
identifiers for these participants are provided as supplementary material, along with more
detailed reasons for their exclusion.
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Research Highlights

• multi-modal classification based on pairwise similarities derived from random
forests

• framework evaluated by application to neuroimaging and biological data from
ADNI

• random forests provide consistent pairwise similarity measures for various
modalities

• classification based on MR volumes, FDG-PET intensities, CSF biomarkers,
genetic data

• multi-modality classification out-performs that based on any individual modality
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Figure 1.
Schematic overview of the proposed methodology. Each random forest (RF) step provides a
classification result whose performance will be reported. Random forests are used both to
derive the pairwise similarity measures for each feature set, and also to perform the single-
and multi-modality classification experiments.
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Figure 2.
Illustration of a random forest, showing two trees in detail. Each node is partitioned based
on a single feature, and each branch ends in a terminal node. Terminal nodes provide a
prediction for the class of a test example based on the path taken through the tree. The
colour of a terminal node indicates its class prediction. The final predicted class for a test
example is obtained by combining the predictions of all individual trees.
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Figure 3.
Feature importances for discriminating between the three clinical group pairs using region-
based MRI (top), and voxel-based FDG-PET (bottom). For MRI, regional feature
importances are superimposed onto slices of a maximum probability brain atlas which has
been masked in the same way as the anatomical segmentations. For FDG-PET, important
voxels are overlaid onto a MNI-space average MR image.
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Figure 4.
Similarity matrices for each of the four modalities for the AD/HC experiment. Matrices are
symmetric, and each entry represents the similarity between a pair of subjects based on the
input feature data.
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Figure 5.
Cobweb plots showing the distribution of parameters selected over the 100 leave-25%-out
runs for all three classification experiments. The four spokes of each plot represent the four
modalities, and each coloured line connecting the four spokes represents a set of parameter
values. The colour and weight of each line represents the percentage of runs in which the
associated parameter set was selected.
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Table 5

Multi-modality classification accuracy (acc.), balanced accuracy (bacc.) sensitivity (sens.) and specificity
(spec.) based on the application of a random forest classifier to the jointly embedded imaging and biological
feature data, as well as the concatenated set of all features. Results are expressed as mean (standard error). The
mean dimensionality of each embedding (k) is also shown.

Combined embedding Concatenated features

AD/HC Acc. (%) 89.0 (0.7) 86.2 (0.7)

Bacc. (%) 89.0 (1.2) 87.1 (1.1)

Sens. (%) 87.9 (1.2) 85.1 (1.4)

Spec. (%) 90.0 (1.1) 86.1 (1.3)

k 18 -

MCI/HC Acc. (%) 74.6 (0.8) 66.3 (0.8)

Bacc. (%) 72.7 (0.8) 65.3 (1.1)

Sens. (%) 77.5 (1.0) 68.5 (1.5)

Spec. (%) 67.9 (1.7) 66.9 (1.3)

k 20 -

pMCI/sMCI Acc. (%) 58.0 (0.9) 53.0 (1.1)

Bacc. (%) 57.9 (1.7) 57.3 (1.9)

Sens. (%) 57.1 (1.8) 49.6 (1.4)

Spec. (%) 58.7 (1.5) 53.5 (1.7)

k 29 -
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