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Structural brain networks are used to model white-matter connectivity between spatially segregated brain re-
gions. The presence, location and orientation of these white matter tracts can be derived using diffusion-
weighted magnetic resonance imaging in combination with probabilistic tractography. Unfortunately, as of
yet, none of the existing approaches provide an undisputed way of inferring brain networks from the streamline
distributions which tractography produces. State-of-the-art methods rely on an arbitrary threshold or, alterna-
tively, yield weighted results that are difficult to interpret. In this paper, we provide a generative model that ex-
plicitly describes how structural brain networks lead to observed streamline distributions. This allows us to draw
principled conclusions about brain networks, which we validate using simultaneously acquired resting-state
functional MRI data. Inference may be further informed by means of a prior which combines connectivity esti-
mates frommultiple subjects. Based on this prior, we obtain networks that significantly improve on the conven-
tional approach.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Human behavior ultimately arises through the interactions between
multiple brain regions that together form networks that can be charac-
terized in terms of structural, functional and effective connectivity
(Penny et al., 2006). Structural connectivity presupposes the existence
of white-matter tracts that connect spatially segregated brain regions
which constrain the functional and effective connectivity between
these regions. Hence, structural connectivity provides the scaffolding
that is required to shape neuronal dynamics. Changes in structural
brain networks have been related to various neurological disorders.
For this reason, optimal inference of structural brain networks is of
major importance in clinical neuroscience (Catani, 2007). Inference of
these networks entails two steps. First is the estimation of the white
matter tracts. The second step consists of obtaining the network that
captures which regions are connected, based on the earlier identified
fiber tracts. In this paper, we focus on the latter step.

For the first step, we use diffusion-weighted imaging (DWI),
which is a prominent way to estimate structural connectivity of
whole-brain networks in vivo. It is a variant of magnetic resonance
imaging (MRI) which measures the restricted diffusion of water
n, Faculty of Science, Institute for
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molecules, thereby providing an indirect measure of the presence
and orientation of white-matter tracts. By following the principal dif-
fusion direction in individual voxels, streamlines can be drawn that
represent the structure of fiber bundles, connecting separate regions
of gray matter. This process is known as deterministic tractography
(Chung et al., 2010; Conturo et al., 1999; Shu et al., 2011). Alternative-
ly, fibers may be estimated using probabilistic tractography (Behrens
et al., 2003, 2007; Friman et al., 2006; Jbabdi et al., 2007). This com-
prises a model for the principal diffusion direction that is then used
to sample distributions of streamlines. Ultimately, the procedure re-
sults in a measure of uncertainty about where a hypothesized connec-
tion will terminate. A benefit of the probabilistic approach is that it
explicitly takes uncertainty in the streamlining process into account.

Apart from studies focusing on particular tracts, much research
has been devoted to the derivation of macroscopic connectivity prop-
erties, that is, whole-brain structural connectivity. Several approaches
have been suggested to extract whole-brain networks from probabi-
listic tractography results (Gong et al., 2009; Hagmann et al., 2007;
Robinson et al., 2008). Unfortunately, inference of whole-brain net-
works from probabilistic tractography estimates remains somewhat
ad hoc. Typically the underlying brain network is derived by
thresholding the streamline distribution such that counts above or
below threshold are taken to reflect the presence or absence of tracts,
respectively. This approach is easy to implement but it has a number
of issues. First, the threshold is arbitrarily chosen to have a particular
value. In a substantial part of the literature, the threshold that is used
to transform the streamline distribution into a network is actually set
to zero (Chung et al., 2011; Hagmann et al., 2007, 2008; Vaessen et al.,
2010; Zalesky et al., 2010). However, probabilistic streamlining
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depends on the arbitrary number of samples that are drawn per
voxel. This implies that, as more samples are drawn, more brain re-
gions are likely to eventually become connected given a threshold
at zero. Alternatively, the number of streamlines can be interpreted
as connection weight (Bassett et al., 2011; Robinson et al., 2010;
Zalesky et al., 2010), or a relative threshold can be applied (Kaden
et al., 2007). This way, the relative differences between connections
remain respected. Unfortunately, the connection weights do not
have a straightforward (probabilistic) interpretation. Simply normal-
izing these weights does not yield a true notion of connection proba-
bility. At most, it can be regarded as the conditional probability that a
streamline ends in a particular voxel given the starting point of the
streamline. In the case of a streamline distribution with, say, half of
the streamlines starting at node A ending in node B, and the other
half ending in node C, normalized streamline counts cannot distin-
guish between one edge with an uncertain end point, or two edges
with definite end points. Finally, several graph-theoretical measures
such as characteristic path length and clustering coefficient are
ill-defined for non-binary networks.

In general, it is problematic to use thresholding since it ignores the
relative differences between streamline counts. Intuitively, one
would expect that if, say, 90% of the streamlines connect from voxel
A to voxel B, and 10% connect voxel A to voxel C, then at the least
the former has a higher probability of having a corresponding edge
in the network than the latter, but both edges are possible as well.
This is related to the burstiness phenomenon of words in document
retrieval, where the occurrence of a rare word in a document makes
its repeated occurrence more likely (Xu and Akella, 2010). Summariz-
ing, the issue with thresholding approaches is that they consider each
tract in isolation. This ignores the information that can be gained from
the possible symmetry in streamline counts, as well as from the rela-
tive differences within a streamline distribution.

Another important observation is that the mentioned approaches
do not easily support the integration of probabilistic streamlining
data with other sources of information. Data is often not collected in
isolation but rather acquired for multiple subjects, potentially using
a multitude of imaging techniques. Multi-modal data fusion is needed
in order to provide a coherent picture of brain function (Groves et al.,
2011; Horwitz and Poeppel, 2002). The integration of multi-subject
data is required for group-level inference, where the interest is in es-
timating a network that characterizes a particular population, for ex-
ample, when comparing patients with controls in a clinical setting
(Simpson et al., 2011).

In the following, we provide a Bayesian framework for the inference
of whole-brain networks from streamline distributions. In our ap-
proach, we consider the distribution of (binary) networks that are
supported by our data, instead of generating a single network based
on an arbitrary threshold. Our approach relies on defining a generative
model for whole-brain networks which extends recent work on net-
work inference in systems biology (Mukherjee and Speed, 2008) and
consists of two ingredients. First, a network prior is defined in terms
of the classical Erdős–Rényi model (Erdős and Rényi, 1960). This prior
is later extended to handle multi-subject data, capturing the notion
that different subjects' brains tend to be similar. Second, we propose a
forwardmodel based on aDirichlet compoundmultinomial distribution
which views the streamline distributions produced by probabilistic
tractography as noisy data, thus completing the generative model.

In order to validate our Bayesian framework we make use of the
often reported observation that resting-state functional connectivity
reflects structural connectivity (Damoiseaux and Greicius, 2009;
Greicius et al., 2009; Honey et al., 2009; Koch et al., 2002; Lv et al.,
2010; Park et al., 2008; Skudlarski et al., 2008). We show that struc-
tural networks that derive from our generative model informed by
the connectivity for other subjects provide a better fit to the
(in)dependencies in resting-state functional MRI (rs-fMRI) data
than the standard thresholding approach.
Material and methods

Data acquisition

Twenty healthy volunteers were scanned after giving informed
written consent in accordance with the guidelines of the local ethics
committee. A T1 structural scan, resting-state functional data and
diffusion-weighted images were obtained using a Siemens Magnetom
Trio 3 T system at the Donders Centre for Cognitive Neuroimaging,
Radboud University Nijmegen, The Netherlands. The rs-fMRI data
were acquired at 3 Tesla using a multi echo-echo planar imaging
(ME-EPI) sequence (voxel size 3.5 mm isotropic, matrix size 64×64,
TR=2000 ms, TEs=6.9, 16.2, 25, 35 and 45 ms, 39 slices, GRAPPA
factor 3, 6/8 partial Fourier). A total of 1030 volumes were obtained.
An optimized acquisition order described by Cook et al. (2006) was
used in the DWI protocol (voxel size 2.0 mm isotropic, matrix size
110×110, TR=13,000 ms, TE=101 ms, 70 slices, 256 directions at
b=1500 s/mm2 and 24 directions at b=0).
Preprocessing of resting-state data

Themulti-echo images obtained using the rs-fMRI acquisition pro-
tocol were combined using a custom Matlab script (MATLAB 7.7, The
MathWorks Inc., Natick, MA, USA) which implements the procedure
described by Poser et al. (2006) and also incorporates motion correc-
tion using functions from the SPM5 software package (Wellcome De-
partment of Imaging Neuroscience, University College London, UK).
Of the 1030 combined volumes, the first six were discarded to allow
the system to reach a steady state. Tools from the Oxford FMRIB Soft-
ware Library (FSL, FMRIB, Oxford, UK) were used for further process-
ing. Brain extraction was performed using FSL BET (Smith, 2002). For
each subject, probabilistic brain tissue maps were obtained using FSL
FAST (Zhang et al., 2001). A zero-lag 6th order Butterworth bandpass
filter was applied to the functional data to retain only frequencies be-
tween 0.01 and 0.08 Hz. After preprocessing, the fMRI data were
parcellated according to the Automated Anatomical Labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002). Regions without voxels with
gray-matter probability≥0.5 were discarded. This resulted in an av-
erage region count of 115±0.1. For these regions the functional
data was summed and then standardized to have zero mean and
unit standard deviation. The resulting data were used to compute
the empirical covariance matrix Σ̂. Example covariance matrices are
shown in Fig. 1a.
Preprocessing of diffusion imaging data

The preprocessing steps for the diffusion datawere conducted using
FSL FDT (Behrens et al., 2003) and consisted of correction for eddy cur-
rents and estimation of the diffusion parameters. Raw color-coded frac-
tional anisotropy maps are shown in Fig. 1b. To obtain a measure of
white-matter connectivity, we used FDT Probtrackx 2.0 (Behrens et
al., 2003, 2007). As seed voxels for tractography we used those voxels
that live on the boundary between white matter and gray matter. For
each of these voxels 5000 streamlines were drawn, with a maximum
length of 2000 steps. The streamlines were restricted by the fractional
anisotropy to prevent them from wandering around in gray matter.
Streamlines inwhich a sharp angle (>80°) occurred or that had a length
less than 2 mmwere discarded. The output thus obtained is a matrix N
with nij the number of streamlines drawn from voxel i to voxel j. To
transform this into the parcellated scheme as dictated by the AAL
atlas, the streamlineswere summed over all voxels per region, resulting
in an aggregated connectivity matrix which ranges over regions instead
of voxels. Regions that had been removed after preprocessing the fMRI
data were removed from the aggregated connectivity matrix as well.



a)

b)

Fig. 1. a) Covariance matrices for the resting-state data for three randomly selected subjects. b) Axial view of RGB-FA maps for the diffusion weighted images, again for three ran-
domly selected subjects. The nodes in the matrices are shown in the order they appear in the AAL atlas.

1 It is possible that streamlines end up in voxels outside any region of the
parcellation, hence the inequality.
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Framework for structural connectivity estimation

In this section we derive our Bayesian approach to the inference of
whole-brain structural networks. The quantity of interest in our frame-
work is the posterior over structural networks represented by the adja-
cency matrix A given observed probabilistic streamlining data N and
hyperparameters ξ. An element aij∈{0,1} represents the absence or
presence of an edge between brain region i and j. A is taken to be a sim-
ple graph, such that aij=aji and aii=0. A brain region can either be
interpreted as a voxel or as an aggregation of voxels as defined by a
gray matter parcellation. The posterior expresses our knowledge on
structural connectivity given the data and background knowledge and
is given by:

PðA N; ξj Þ∝P N A; aþ; a−
��� �

P A pj Þð
�

ð1Þ

with hyperparameters ξ=(a+,a−,p), forwhich an interpretationwill be
given later on. In the following, for convenience,wewill sometimes sup-
press the dependence on the hyperparameters. To infer the posterior
distribution, we must specify a prior P(A) and a forward model P(N|A)
which together define a generative model of probabilistic streamlining
data. Given these components, the posterior can be approximated
using a Markov chain Monte Carlo algorithm, as described in detail in
the section ‘Approximate inference’. We nowproceed to formally define
the components of the generative model as shown in Fig. 2.

Forward model
We begin with a specification of the forward model P(N|A). Here,

we describe how the observed streamline distributions N depend on
the underlying network A through latent streamline probabilities X.

Assume there are K brain regions for which we want to estimate
the structural connectivity. We start by considering one region i and
the possible targets in which a postulated tract may terminate. Let
nik denote the number of streamlines which start in region i and ter-
minate in region k. We assume that nii=0. Probabilistic tractography
produces a distribution over target vertices ni ¼ ni1;…;niKð ÞT by
drawing S streamlines, Ni=∑k=1

K nik≤S of them ending up in a
target region.1 A particular distribution ni depends on the streamline
probabilities. That is, we expect many streamlines between two re-
gions when there is a high streamline probability and vice versa.
This is captured by expressing the probability of a distribution ni in
terms of a multinomial distribution

Pðni xij Þ∝∏
K

j¼1
x
nij
ij ;

in which xi=(xi1,…,xiK) is a probability vector with∑ jxij=1. Each xij
represents the probability of drawing a streamline from region i to re-
gion j. This streamlining probability itself depends on whether or not
there actually exists a physical tract between region i and region j.

Let ai denote the i-th row of A indicating the connectivity between
region i and all other regions. Intuitively, we expect a high streamline
probability when there is an edge in the network. Conversely, we ex-
pect a low probability when two regions are disconnected. Thus, the
streamline probabilities depend on the actual white-matter connec-
tivity as modeled by A. This is captured by modeling the distribution
of streamline probabilities using a Dirichlet distribution

P
�
xi ai; a

þ
; a−

��� �
∝∏

K

j¼1
x
bij−1
ij ;

where shorthand notation bij≡aija
++(1−aij)a− is used. The bij can

be interpreted as the parameters that determine the probability of
streamlining from region i to region j when an edge aij is either pres-
ent (a+) or absent (a−).

To obtain a single expression for the likelihoodof an adjacencymatrix,
let N=(n1;…;nK) represent the combined probabilistic tractography
data, i.e. for each of the K nodes a distribution of streamlines to all
other nodes. Similarly, let X=(x1;…;xK) denote the combined hidden



AA X N

= 1 : M

Fig. 3. The hierarchical model describes how the connectivity for a subject depends on
its streamline distribution but also on the connectivity in other subjects as mediated
through parent network �A .

A X N

Fig. 2. The generative model that describes how the observed streamline distribution N
depends on the (hidden) connectivity probabilities X. These in turn depend on the
hyperparameters a+ and a− as well as the connectivity A, which is determined by
hyperparameter p of the prior.
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connection probabilities and A=(a1;…;aK) the adjacency matrix for all
brain regions. The likelihood of the network A is expressed as

PðN A; aþ; a−
�� � ¼ ∫PðN Xj ÞP X A; aþ; a−

��� �
dX:

�
ð2Þ

By recognizing that the Dirichlet distribution is the conjugate prior
for the multinomial distribution, it follows that Eq. (2) is a product of
Dirichlet compound multinomial distributions (Madsen et al., 2005;
Minka, 2000; Xu and Akella, 2010). The DCM distribution assumes
that, given a network, a probability vector can be drawn with large
values where the network has edges and small values where the net-
work is disconnected. This probability vector, in turn, can be used to
sample from a multinomial distribution that reflects the probabilistic
tractography outcome.

For sufficiently small choices of the hyperparameters of the DCM,
sampling from this multinomial reflects the burstiness behavior we
observe in the streamline distributions, where some pairs of nodes
are connected by many streamlines, while most pairs have few or
even zero streamlines.

Network prior
In order to define a prior on adjacency matrices, we adopt the

Erdős–Rényi model which states that the probability of an edge be-
tween region i and j is given by parameter p (Erdős and Rényi,
1960). This allows the prior to be expressed in terms of a product of
binomial distributions:

PðA pj Þ ¼ ∏
i<j

paij 1−pð Þ1−aij :

Recall that aji≡aij by definition, such that choosing p=0.5 gives
rise to a flat prior on simple graphs.

Hierarchical model
So far, we assumed that data for each subject is analyzed indepen-

dently. However, in practice, data for multiple subjects may be avail-
able and data for one subject might inform the inference for another
subject. The intuition is that brain connectivity will, to a certain ex-
tent, be similar across subjects. Therefore, borrowing statistical
strength from other subjects should lower the susceptibility to noise
and artifacts in a single subject. This can be achieved by formulating
a hierarchical model, where subject-dependent parameters at the
first level are tied by subject-independent parameters at the second
level. Fig. 3 depicts this hierarchical model.

Suppose streamline dataN ¼ N 1ð Þ;…; ;N Mð Þ
� �

is acquired forM sub-
jects. LetA ¼ A 1ð Þ;…; ;A Mð Þ

� �
denote a vector whose elements A(m) re-

fers to the connectivity matrix for subjectm. In the hierarchical model,
we assume that the different subjects are related through parent con-
nectivity �A . The different A(m) are conditionally independent given �A .
For a new subjectM+1, the quantity of interest is the posteriormargin-
al

P A Mþ1ð Þ N ;N Mþ1ð Þ
; ξ

��� �
∝P N Mþ1ð Þ A Mþ1ð Þ

; aþ; a−
��� �

P A Mþ1ð Þ N ; ξ
�
:

������

We could approximate this marginal by sampling from the hierar-
chical model. However, this is a computationally demanding task as it
requires the simultaneous estimation of all of the adjacency matrices
belonging to each of the subjects, as well as the parent network �A . In-
stead, we specify a prior based on the connectivity obtained for other
subjects. This improvement over the Erdős–Rényi model defines a
separate connection probability for each individual edge instead of
using a single parameter p to specify the connection probability for
complete networks. This multi-subject prior is derived from the hier-
archical model in A and is equal to:

P A Mþ1ð ÞjN; ξ
!

¼ ∏
i<j

p
a Mþ1ð Þ
ij

ij 1−pij
� � 1−a Mþ1ð Þ

ij

� �
;

 
ð3Þ

where pij≡ ∑M
m¼1â

mð Þ
ij þ 1

� �
= M þ 2ð Þ with â mð Þ

ij the maximum likeli-
hood (ML) estimate for subjectm. Hence, we derive a prior for subject
M+1 from the ML estimates for subjects 1,…,M. These estimates can
be obtained by running the single-subject models together with a flat
prior. The multi-subject prior can subsequently be plugged into
Eq. (1) to produce the posterior for subject M+1.

Approximate inference

Since the posterior (1) cannot be calculated analytically, we resort
to an MCMC scheme to sample from this distribution (Mukherjee and
Speed, 2008). We always start the sampling chain with a random
symmetric adjacency matrix without self-loops. A new sample is pro-
posed based on a previous network A by flipping an edge, resulting in
a network A′ (which, because of the symmetry of A, implies a′ij ¼
1−aij and a′ij ¼ 1−aji). The acceptance of the proposed sample is de-
termined by the ratio

γ ¼ PðA′ N; ξj Þ
P A N; ξj Þ:ð

A proposed network becomes a new sample with probability
min(1,γ) with log γ=ΔLkl+ΔPkl. Here, ΔLkl and ΔPkl define the
change in log-likelihood and log-prior respectively, after flipping
edge akl. A complete derivation of these terms is given in Appendix B.

The sample distributions were obtained for each subject by draw-
ing ten parallel chains of 300,000 samples (discarding the first 60,000
samples as burn-in phase and keeping only each 600th sample to as-
sure independence). The collection of T accepted samples {A(1),…,
A(T)} forms an approximation of the posterior P(A|N,ξ). The samples
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can be used to estimate posterior probabilities of network features,
such as the probability of a specific connection. Assuming the Markov
chain has converged, the posterior probability of a single connection
is given by E aij Nj � ¼ 1

T ∑T
t¼1a

tð Þ
ij

h
. Other summary statistics for the dis-

tribution may be estimated in a similar manner.

Validation of structural connectivity estimates

Functional connectivity is constrained by structural connectivity
(Cabral et al., 2012; Honey et al., 2010). In other words, when there
is functional connectivity, there is often structural connectivity, al-
though structural connectivity is not a necessary requirement for
functional connectivity (Honey et al., 2009). We exploit this relation-
ship in the validation of structural connectivity estimates. This is
achieved by constraining the conditional independence structure of
functional activity by structural connectivity (Deligianni et al., 2011;
Marrelec et al., 2006; Smith et al., 2010; Varoquaux et al., 2010). As-
sume that a K×1 vector of BOLD responses y can be modeled by a
zero-mean Gaussian density with inverse covariance matrix Q. That
is,

Pðy Qj Þ ¼ 2πð Þ−K=2 Qj j1=2exp −1
2
y⊤Qy

� �
: ð4Þ

Then, given acquired resting-state data D=(y1;…;yT) for T time
points, model estimation reduces to finding the maximum likelihood
solution Q̂ ¼ argmaxQ∏tP yt Qj Þ�

. However, in general for fMRI data,
K>T, which implies that the covariance matrix is not full rank. Hence,
finding its inverse requires suboptimal solutions such as the general-
ized inverse or pseudo-inverse (Ryali et al., 2011). As a solution to
this problem, regularization approaches have been suggested to find
sparse approximations of the inverse covariance matrix (Friedman
et al., 2008; Huang et al., 2010). In our setup, the sparsity structure
is readily available in the form of structural connectivity A. In order
to use A as a constraint when estimating Q̂ , we can make use of the
fact that variables yi and yj are conditionally independent if and
only if qij=0 (Dempster, 1972). That is, we can interpret Eq. (4) as
a Gaussian Markov random field with respect to network A such
that aij=0⇔qij=0 for all i≠ j (Whittaker, 1990). We will use nota-
tion Q∼A to denote that the independence structure in Q is dictated
by A.

Let Σ̂ ¼ 1
T ∑T

t¼1y
t yt
� �⊤ denote the empirical covariance matrix. As

shown by Dahl et al. (2008), the ML estimate can be formulated as the
following convex optimization problem:

Q̂ ¼ argmax
Q∼A

‘ Qð Þ s:t: qij ¼ 0⇔aij ¼ 0
n o

;

where ‘ Qð Þ ¼ T=2ð Þ log detQ−trace Q Σ̂
� �� �

is, up to a constant, the
log-likelihood function of Q. Wemade use of a standard convex solver
to find this constrained maximum likelihood estimate (Schmidt et al.,
2007) and use it to define the score for a particular matrix A:
S Að Þ≡‘ Q̂

� �
. By comparing scores for different structural connectivity

estimates, we are able to quantify the performance of a structural net-
work in terms of how well it fits the functional data.

Since we compare different models, we have to take model com-
plexity into account. We could opt for the use of a penalty term such
as the Bayesian information criterion. Here, however, we use a more
stringent approach, where we enforce constant model complexity.
This is implemented by constraining the number of edges for all net-
works from one subject to be equal to that of the maximum likelihood
(ML) solution AML=arg maxA P(N|A,a+,a−) of that particular subject.
Recall that this maximum likelihood solution is equivalent to the solu-
tion obtained when using a flat prior in our generative model. The con-
straint on edge count is achieved by starting outwith the convergedML
solution and, subsequently, drawing new samples by simultaneously
adding and removing an edge. For the thresholded networks, we choose
a threshold such that the resulting number of edges is the same as that
of theML solution. Note that this approach is only a way to obtain a fair
comparison between different structural networks and not a require-
ment of the model itself. The threshold was applied to the asymmetric
streamline data, normalized according to the number of streamlines
emanating from each node. Note that all added edges were symmetric.

Results

In order to validate our framework, we made use of resting-state
functional data which was acquired in conjunction with the diffusion
imaging data. Specifically, we compared the fit to the functional data
for structural networks either obtained by the standard thresholded ap-
proach or obtained using the developed generativemodel. The fit to the
functional data is quantified in terms of the score S(A). We performed a
comparison using either a flat prior (by choosing p=0.5) or the
multi-subject prior. For simplicity, the hyperparameters a+ and a−

were manually set to 1 and 0.1, respectively, as small values for the
hyperparameters capture the burstiness phenomenon described in
the Introduction. For the thresholded approaches, we have one struc-
tural network estimate, denoted by AT. In contrast, for our generative
model, we have a posterior over structural networks, which gives rise
to a distribution of scores S(A(t)) where t denotes sample index.

Comparing ML estimates with thresholded networks

The sparsity of the maximum likelihood estimates AML, as
obtained with the flat prior, was fairly constant (1019±39.4 out of
6670 possible edges). As an example, Fig. 4 shows connectivity results
for one subject.

Although thresholding of streamline distributions is common
practice, how exactly the threshold is applied varies between studies.
To have a fair comparison, we investigated the impact of different
thresholding approaches. We considered applying the threshold to
the maximum, the mean and the minimum of nij and nji, respectively.
To compare our generative model with these approaches, we com-
puted for each subject the fraction of samples of the posterior net-
work distributions that scored higher than thresholding. Let fF−T be
the fraction of samples where the generative model with a flat prior
scored higher than the thresholded network. The results for the dis-
tribution of fF−T over 20 subjects, given the different threshold
methods, are shown in Table 1. When the threshold is applied to
the maximum of nij and nji, the generative model outperforms
thresholding. However, when either the mean or the minimum of
nij and nji is used, samples obtained from the posterior with a flat
prior score somewhat less than thresholded networks, on average.
To understand the behavior of the generative model, it is instructive
to consider Eq. (B.3) in Appendix B. Given that hyperparameters a+

and a− are very small compared to elements of N, the change in
log-likelihood after flipping edge aij from absent to present boils
down to

ΔLij≈ aþ−a−
� �

log
nij

∑knik

	 

þ log

nji

∑knjk

 !" #
:

This expression nicely summarizes the ramifications of our model.
When sampling over networks, the generative model takes symmetry
between streamlines into account (which follows from the sum) and
it considers the relative distribution of streamlines (which follows
from the fractions). Note that the latter is equivalent to normalizing
the streamlines; a required step for thresholding. Thresholding ap-
proaches can imitate the behavior of the DCM by thresholding on ei-
ther the mean or the minimum of nij and nji and by normalizing the
streamline distribution by the number of outgoing streamlines.
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d)

b)
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f)

Fig. 4. (a–e) Connectivity results for that subject for which sampling in conjunction with the multi-subject prior showed the largest improvement. Shown are (a) the network that is
obtained through the thresholding approach, (b) the posterior connection probabilities according to the flat model, (c) the posterior connection probabilities according to the
multi-subject model, (d) the streamline distribution on a log scale and (e) the multi-subject prior based on the other subjects as used in the multi-subject model. Panel (f) shows the
most salient differences in connectivity between themaximum a posteriori networks and the thresholding approach, across all subjects. The edges are color-coded.White edges indicate
those connections that were present in at least 6 subjects whereas these edges would not be part of the thresholded network. Orange edges show converse findings. All matrices are or-
dered according to the order of the AAL atlas.
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Multi-subject prior

Thresholded networks perform roughly similar to the networks
we infer through the posterior distribution using a flat prior. Howev-
er, our model is capable of incorporating additional constraints, such
as the multi-subject prior. Let fM−T be the fraction of samples where
the DCM with the multi-subject prior scored higher than the
thresholded network. The results for the distribution of fM−T over
20 subjects, given the different threshold methods, are shown in
Table 1. In addition, we compared the fraction of samples obtained
with the multi-subject prior that scored higher than samples with
the flat prior, fM−F. We found that this distribution had a mean of
0.73±0.02 (pb10−8).

The likelihood scores estimated for the distributions over samples,
obtained using our approach in the presence of either the flat prior or
the multi-subject prior, are shown in Fig. 5. In addition, the figure
shows the score for the thresholded network, with a threshold
Table 1
The fraction of samples that have a higher score than thresholded networks. The frac-
tion of samples from the distribution with a flat and a multi-subject prior are repre-
sented by fF−T and fM−T, respectively. The different threshold approaches are max,
mean and min. The p-values were obtained using a one-sample t-test with μ0=0.5.

fF−T p fM−T p

Max 0.56±0.06 0.15 0.76±0.07 b0.001
Mean 0.45±0.06 0.23 0.67±0.07 0.02
Min 0.45±0.07 0.27 0.66±0.08 0.03
applied to the mean of nij and nji. The distributions obtained using
the multi-subject prior are narrower and therefore more consistent
than those obtained with the flat prior. Moreover, likelihood scores
obtained using the multi-subject prior tend to be of higher magnitude
than those obtained using the flat prior. From these results we can
conclude that our model is up to par with threshold approaches, but
that it is capable of surpassing thresholded networks by using infor-
mative priors.

Lastly, Fig. 6 shows the connections for which our multi-subject ap-
proach differs most from those of thresholding, across all subjects. The
edges correspond with those shown in Fig. 4(f). The figure shows
edges that are present in the maximum a posteriori networks while
being absent in the corresponding thresholded networks for at least 6
subjects and vice versa. The edges consistently and exclusively included
by either of the approaches do not differ much in length. In fact, the
mean edge lengths are very close: 17.6±1.6 mm for threshold-favored
edges and 17.0±1.4 mm for DCM-favored edges. However, we do ob-
serve that when using the multi-subject prior, consistency for cerebellar
and anterior cortical tracts is increased.

Discussion

Standard thresholding approaches for the inference of whole-brain
structural networks suffer from the fact that they rely on arbitrary
thresholds while assuming independence between tracts and ignoring
prior knowledge. In order to overcome these problems,we have put for-
ward a Bayesian framework for inference of structural brain networks
from diffusion-weighted imaging. Our approach makes use of a
Dirichlet compound multinomial distribution to model the streamline
distribution obtained by probabilistic tractography. In addition, we



f F-T f M- T f M-F

Fig. 5. The scores S(A) (horizontal axis) for the thresholded network AT, samples from the generative model given a flat prior (lower histogram, red) and given the multi-subject prior (upper histogram, green). The fraction of each bin that
has a bright color corresponds with the fraction of the other distribution that is outperformed by this bin. These fractions are also shown in the table to the right; fF−T is the fraction of samples with a flat prior that outperform thresholding,
fM−T is the fraction of samples with the multi-subject prior that outperform thresholding and fM−F is the fraction of samples with the multi-subject prior that outperform samples with the flat prior. The subjects are ordered according to the
performance of the multi-subject prior approach relative to the thresholded network.

549
M
.H

inne
et

al./
N
euroIm

age
66

(2013)
543

–552



Fig. 6. The most salient differences in connectivity between the maximum a posteriori networks with the multi-subject prior and the thresholded networks, across all subjects. The
edges are color-coded. Blue, thick edges indicate those connections that were present in at least 6 subjects whereas these edges would not be part of the thresholded network. Red,
thin edges show converse findings. Nodes that are not adjacent to any of these edges are omitted.
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defined a simple prior on node degrees as well as a multi-subject prior
that uses connectivity estimates from other subjects as an additional
source of information.

The proposed methodology was validated using simultaneously ac-
quired resting-state functionalMRI data. The outcome of our experiments
revealed that the generative model combined with a flat prior performs
similar to the thresholded network. The use of an informative multi-
subject prior instead created networks that significantly outperformed
the thresholding approach. A comparisonbetween thenetworks obtained
with the multi-subject or flat prior showed that the former improved on
the latter, thereby motivating the use of the multi-subject prior.

In our setup, the hyperparameters a+ and a− were set by hand and
the edge probability pwas chosen to result in aflat prior. Instead thesepa-
rameters could have been estimated from the streamline data using em-
pirical Bayes, they could have been integrated out entirely in a full
Bayesian sampling approach, or they could be optimized according to
the resting-state functional data. Note further that a fair comparison be-
tween networks required model complexity to be controlled. This was
achieved via the constraint that networks obtained with either the
multi-subject prior orwith the thresholding approachhad the samenum-
ber of edges as the most probable network with a flat prior. While this is
to the advantage of the thresholding approach, since no arbitrary thresh-
old needs to be chosen, it can only impede networks obtained using the
multi-subject prior since that might support a different number of tracts.

Even apart from the validation results, our approach shows clear
benefits. Foremost, the DCM model intuitively assigns probabilities
to the existence of edges in the inferred networks, providing a mech-
anism to cope with the uncertainty in the data. Moreover, the pro-
posed generative model allows for intuitive and well founded
priors, such as the described multi-subject prior. The hierarchical
model in Fig. 3 also allows for group-level inference (Robinson et
al., 2010). This means that, given streamline data for multiple sub-
jects, the generative model can be used to infer individual subject
connectivity A as well as the group-level parent network �A . This al-
lows one to get a handle on group differences, for instance, in the con-
text of clinical neuroscience. The current work focused mainly on the
empirical validation of our theoretical framework using functional
data. In future work, we will focus more on interpretation of the
obtained structural connectivity estimates.

In this paper we used resting-state fMRI data as a means to validate
whole-brain structural networks derived from diffusion-weighted im-
aging. A logical extension of our work is to derive connectivity based
on the integration of these two imaging modalities. This example of
Bayesian data fusion requires that we extend the generative model to
take functional data into account as well (Rykhlevskaia et al., 2008;
Sui et al., 2011). We can then use structural networks as an informed
prior for inference of functional connectivity or infer structural connec-
tivity from both modalities simultaneously.
An additional benefit of our framework is that the network sparsity
follows directly from optimizing Eq. (1). In the thresholding approach,
the network sparsity is a consequence of the specific threshold setting.
As a byproduct of our study, we have observed that thresholding of
streamlines benefits from considering the mean or minimum of the
number of streamlines connecting A to B and vice versa. This in itself
may lead to improvements in the analysis of structural connectivity.

Summarizing, we proposed a Bayesian framework which lays the
foundations for a theoretically sound approach to the inference of
whole-brain structural networks. This framework does not suffer
from the issues which plague current thresholding approaches to
structural connectivity estimation and has been shown to give rise
to substantially improved structural connectivity estimates. The pro-
posed generative model is easily modified to incorporate other
sources of information, thereby further facilitating the estimation of
whole-brain structural networks in vivo.
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Appendix A. Derivation of the multi-subject prior

We describe here the derivation of the multi-subject prior based
on the maximum likelihood estimates for previously seen subjects,
as described in the section ‘Hierarchical model’. The prior on
A′≡A Mþ1ð Þ is given by
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We approximate this quantity by assuming that the main contri-
bution in the sum over A(m) is due to the ML solution

Â mð Þ ¼ argmax
A mð Þ

P N mð Þ A mð Þ
; aþ; a−

��� �
:

�

Following the Erdős–Rényi model with p=0.5 for P �A pj Þ�
gives a

flat prior on simple graphs. Up to irrelevant constants and keeping
in mind that Â depends on N(m), the prior is rewritten as

PðA′ N ; ξj Þ≈∑
A
�
P
�
A′ A

���� �∏
M

m¼1
P Â

mð Þ
A
���� �;�

with Â ¼ Â 1ð Þ
;…; ; Â Mð Þn o

the different ML solutions. We assume that
the prior factorizes into

PðA Mþ1ð Þ N ; ξj Þ ¼ ∏
i<j

Pða Mþ1ð Þ
ij N ; ξj Þ: ðA:1Þ

Next, we define the probability that aij
(m), m=(1,…,M+1), in-

herits the connectivity from the parent network āij by

P a mð Þ
ij ¼ 1 �aij ¼ 1

��� �
¼ P a mð Þ

ij ¼ 0 �aij ¼ 0
��� �

≡qij;
��

with qij close to 1. That is, each aij
(m) is a copy of āij with unknown

probability qij. The copying probabilities are assumed to be indepen-
dent and have a flat prior. Estimating the prior probability for each
edge is then nothing but an instance of Laplace's rule of succession.
This says that, if we repeat an experiment that we know can result
in a success (presence of an edge) or failure (absence of an edge) m
times independently, and get∑M

m¼1â
mð Þ
ij successes, then our best esti-

mate of the probability that the next repetition aij
(M+1) will be a suc-

cess is:

P
�
a Mþ1ð Þ
ij ¼ 1 â 1ð Þ

ij ;…; â Mð Þ
ij

��� �
¼ ∑M

m¼1â
mð Þ
ij þ 1

M þ 2
≡pij:

Plugging this into Eq. (A.1), we obtain the prior

PðA Mþ1ð Þ N ; ξj Þ ¼ ∏
i<j

p
a Mþ1ð Þ
ij

ij 1−pij
� � 1−a Mþ1ð Þ

ij

� �
:

Appendix B. MCMC sampling

We derive here the acceptance rate γ of a sample A′ in the sam-
pling chain as a function of one edge flip in A (see the ‘Approximate
inference’ section). Note that each of the 2K(K−1)/2 possible networks
A has a probability greater than zero of being constructed, which
guarantees that the Markov chain is irreducible. The log acceptance
rate of a suggested sample can be calculated as log γ=ΔLkl+ΔPkl,
with ΔLkl and ΔPkl the change in log-likelihood and log-prior respec-
tively, after flipping edge akl. The sampling approach requires that
we can efficiently update both the likelihood and the prior for new
samples in the Markov chain. The log-likelihood is given by

L≡∑
i

log
Ni!

∏jnij!
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2
4

3
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with bij≡aija
++(1−aij)a−. The change in log-likelihood as a conse-

quence of flipping an edge akl is defined as

ΔLkl ¼ logP N A′
; aþ; a−

��� �
− logP N A; aþ; a−

��� �
;

��
ðB:2Þ
with the sole difference that a′kl ¼ a′lk ¼ 1−aklð Þ. Plugging Eq. (B.1)
into Eq. (B.2) yields
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The change in the log-prior as a consequence of flipping akl to
1−akl for the prior follows from its definition in Eq. (3):

ΔPkl ¼ logPr A
→′jN ; ξ

→
	 


− logPr A
→jN ; ξ

→
	 


¼ 1−2aklð Þ log pkl
1−pkl

	 

:

Here the edge probability pkl is the same for all edges in the case of
the Erdős–Rényi model and estimated separately per edge in case of
the multi-subject prior.
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