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Abstract

Hippocampal volumetry derived from structural MRI is increasingly used to delineate regions of

interest for functional measurements, assess efficacy in therapeutic trials of Alzheimer’s disease

(AD) and has been endorsed by the new AD diagnostic guidelines as a radiological marker of

disease progression. Unfortunately, morphological heterogeneity in AD can prevent accurate

demarcation of the hippocampus. Recent developments in automated volumetry commonly use

multitemplate fusion driven by expert manual labels, enabling highly accurate and reproducible

segmentation in disease and healthy subjects. However, there are several protocols to define the

hippocampus anatomically in vivo, and the method used to generate atlases may impact automatic

accuracy and sensitivity – particularly in pathologically heterogeneous samples. Here we report a

fully automated segmentation technique that provides a robust platform to directly evaluate both

technical and biomarker performance in AD among anatomically unique labeling protocols. For

the first time we test head-to-head the performance of five common hippocampal labeling

protocols for multi-atlas based segmentation, using both the Sunnybrook Longitudinal Dementia
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Study and the entire Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) baseline and 24-

month dataset. We based these atlas libraries on the protocols of (Haller et al., 1997; Killiany et

al., 1993; Malykhin et al., 2007; Pantel et al., 2000; Pruessner et al., 2000), and a single operator

performed all manual tracings to generate de facto “ground truth” labels. All methods

distinguished between normal elders, mild cognitive impairment (MCI), and AD in the expected

directions, and showed comparable correlations with measures of episodic memory performance.

Only more inclusive protocols distinguished between stable MCI and MCI-to-AD converters, and

had slightly better associations with episodic memory. Moreover, we demonstrate that protocols

including more posterior anatomy and dorsal white matter compartments furnish the best voxel-

overlap accuracies (Dice Similarity Coefficient = 0.87–0.89), compared to expert manual tracings,

and achieve the smallest sample sizes required to power clinical trials in MCI and AD. The

greatest distribution of errors was localized to the caudal hippocampus and alveus-fimbria

compartment when these regions were excluded. The definition of the medial body did not

significantly alter accuracy among more comprehensive protocols. Voxel-overlap accuracies

between automatic and manual labels were lower for the more pathologically heterogeneous

Sunnybrook study in comparison to the ADNI-1 sample. Finally, accuracy among protocols

appears to significantly differ the most in AD subjects compared to MCI and normal elders.

Together, these results suggest that selection of a candidate protocol for fully automatic multi-

template based segmentation in AD can influence both segmentation accuracy when compared to

expert manual labels and performance as a biomarker in MCI and AD.
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Introduction

The hippocampus is one of the most extensively studied medial temporal lobe (MTL)

structures in Alzheimer’s disease (AD), demonstrating early pathological atrophy (den

Heijer et al., 2010; Jack et al., 2009) and association with episodic memory decline (Leung

et al., 2010; Schuff et al., 2009). Importantly, hippocampal volumetry offers an attractive

marker to quantify pathoanatomical changes and delineate functional changes across the

continuum of AD progression (Dubois et al., 2007). It has been proposed for use in putative

AD-modifying therapeutic trials, as both an in vivo marker of disease progression and to

select candidate patients for study enrichment (Hampel et al., 2010). Moreover, radiological

assessment of the hippocampus was recently endorsed by the new mild cognitive

impairment (MCI) and AD diagnostic guidelines (McKhann et al., 2011).

Recent automated hipppocampal segmentation techniques are commonly based on a priori

anatomical characteristics and encompass several strategies, which furnish volumetric

and/or surface based information (Collins and Pruessner 2010; Hu et al., 2011; Leung et al.,

2010; Lotjonen et al., 2011; Patenaude et al., 2011; Shen et al., 2012; Wang et al., 2011b). In

particular, techniques using multi-atlas registration and fusion strategies generate some of

the best accuracies among automated methods to-date (Aljabar et al., 2009; Collins and
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Pruessner 2010; Leung et al., 2010; Lotjonen et al., 2010; Wang et al., 2011b; Wolz et al.,

2010a) Multi-atlas techniques use a series of structural MRIs that have been labeled by an

expert operator (atlas library), which are then selectively registered to an unseen or query

subject’s MRI. The technique is based on three principal steps that include (1) atlas-to-target

(query) MRI similarity matching, (2) image registration with binary label mapping to the

target MRI and (3) label fusion. This framework requires only a single 3-dimensional high-

resolution T1-weighted MRI acquisition, and is suitable for segmenting the hippocampus

from large prospective studies and legacy MRI datasets. Template libraries can be

customized for pathological studies in epilepsy (Hammers et al., 2007) and AD (Leung et

al., 2010), effectively capturing the significant morphological variation that occurs in both

disease processes. Moreover, advances in diffeomorphic registration algorithms (Avants et

al., 2008; Klein et al., 2009) may provide improved label mapping to target images

compared to other registration techniques. Although multiatlas fusion methods are

computationally more expensive than some automated techniques, improvements in server

memory and parallel processing can significantly expedite segmentation.

There are several degrees of freedom within a multi-template based approach, which may

impact accuracy including atlas assembly, template-to-target matching scheme, registration

parameters (affine + nonlinear), label hybridization and false positive minimization. A

number of recent methods have focused on improving atlas selection, label fusion strategy

and post-fusion modifications, showing equivocal outcomes. For example, (Leung et al.,

2010) compared accuracy across label combination methods for the Multi-Atlas Propagation

Segmentation (MAPS) tool including shape-based average (SBA) (Rohlfing and Maurer

2007), voxel-wise voting and Simultaneous Truths and Probability Label Estimation

(STAPLE) (Warfield, Zou, Wells 2004), with STAPLE achieving the best performance,

although (Robitaille and Duchesne 2012) reported that SBA frequently outperformed both

STAPLE and vote method. Techniques also use graphcuts and morphological operations to

improve label mapping (van der Lijn et al., 2008). Other work has compared registration

methods for subcortical segmentation, demonstrating that non-linear label propagation

methods furnish greater accuracy than rigid and affine normalization (Barnes et al., 2008a;

Leung et al., 2010).

Despite these advances, there remains significant variation in atlas construction among

multi-template driven techniques, which are commonly developed and validated using in-

house manual tracing datasets. The hippocampus has been historically defined using various

cerebrospinal fluid (CSF), white matter (WM), grey matter (GM) and landmark-based

boundaries, and can be labeled in various stereotactic spaces (e.g. normalization to brain

templates and reorientation along either the anterior commissure – posterior commissure

(AC-PC) line or the long hippocampal axis) (Boccardi et al., 2011). In fact a recent literature

review by Konrad and colleagues identified 71 hippocampal tracing methods. Indeed, the

absolute volume differences between certain protocols may vary by >30 percent (Konrad et

al., 2009). Additionally, hippocampal atlas libraries use varying template numbers, combine

tracings by multiple operators, include/exclude certain pathologies – all of which prevent

direct performance assessments among protocols. In dementia the relative positions of

anatomical landmarks can change in the atrophic sub-cortex, which may confound landmark
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driven delineation. When taken together, these issues complicate direct comparisons among

techniques to determine an optimal definition for atlas-driven segmentation.

Accordingly, to directly measure the performance of different anatomical definitions for

atlas-based segmentation, a study design should satisfy certain minimum requirements. First,

a common pipeline should be used for label generation. Second, hippocampal labels must be

derived from a common dataset (library); third, a single expert operator should label all

template MRIs for consistency, and finally, these atlases should be validated against

common datasets. Only a few studies in AD have compared different automated

hippocampal segmentation methods using a common dataset (Holland et al., 2011; Leung et

al., 2010; Mouiha, Duchesne, Alzheimer's Disease Neuroimaging Initiative 2011; Wolz et

al., 2010b), although these studies were usually based on numeric summary data, unique

algorithms and various structural priors. In addition, previous direct volumetric-based

comparisons of the hippocampus have been limited by sample size and/or survey only a few

methods (Carmichael et al., 2005).

To the authors’ knowledge, there have been no head-to-head morphometric comparisons of

template protocols for multi-template hippocampal segmentation techniques that satisfy all

of the abovementioned criteria and therefore performance across template protocols remains

unclear. Thus, the primary goal of the current study is to directly evaluate whether

morphological variation among 5 structurally unique and commonly deployed hippocampal

labeling protocols modulates the accuracy and sensitivity of automated multi-atlas

segmentation in AD, using the entire baseline and 24-month Alzheimer’s Disease

Neuroimaging Initiative-1 (ADNI-1) MRI database (Weiner et al., 2010).

To investigate these relationships, we developed a fully automated multi-atlas segmentation

technique that provides a robust platform to evaluate performance among anatomically

unique labeling protocols. We refer to this method as the SunnyBrook Hippocampal

Volumetry (SBHV) Tool. A single expert operator created 5 template libraries that were

selected from 12 protocols investigated by the hippocampal harmonization initiative (Frisoni

and Jack 2011): Protocol 1 (P1) (Haller et al., 1997); Protocol 2 (P2) (Killiany et al., 1993);

Protocol 3 (P3) (Malykhin et al., 2007); Protocol 4 (P4) (Pruessner et al., 2000), and

Protocol 5 (P5) (Pantel et al., 2000). This is a large multi-national project sponsored by the

ADNI, the European Alzheimer Disease Consortium (EADC), non-profit organizations and

industry partners that are working towards a consensus definition to manually label the

hippocampus in-vivo (Frisoni and Jack 2011). A detailed description of the project

methodology and results is available from www.hippocampal-protocol.net/SOPs. In the

present study, all five template libraries were manually segmented from a set of 50 in-house

acquired high-resolution T1-weighted MRI scans that included normal elderly controls

(NC), AD, AD with small vessel disease (AD+SVD), vascular dementia (VaD) and mixed

dementia (VaD+AD). All previously reported template libraries in AD are based on ADNI-1

data or other pure AD samples (Barnes et al., 2008b; Leung et al., 2010; Wang et al., 2011b;

Wolz et al., 2010b). The rationale for including several diagnostic groups was to include

more representative morphological variation and improve generalizability to a tertiary

memory clinic cohort. Indeed, population-based studies suggest that AD and

cerebrovascular disease (CVD) together account for 80 percent of dementia cases, with
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mixed AD plus superimposed CVD accounting for 38 percent in a community autoposy

study (Schneider et al., 2007). Moreover, an ADNI-1 study by Carmichael and colleagues

reported compelling evidence that white matter disease predicts 1-year cognitive decline in

MCI and AD (Carmichael et al., 2010).

The specific objectives were to directly compare 5 commonly used hippocampal

segmentation protocols within an automated multi-template fusion framework by (i)

assessment of voxel-wise similarity to ground truth manual labels within and across

diagnostic groups, (ii) compare differences in baseline volumes and baseline normalized

atrophy rates, (iii) compare neurocognitive-anatomical correlations and (iv) compare

differences among samples sizes required to detect a 25% reduction in the rate of MCI- and

AD-type hippocampal atrophy in a hypothetical disease-modifying therapeutic trial. Voxel-

wise accuracy was evaluated for each automated protocol using a leave-one-out cross-

validation (LOOCV) analysis on a large in-house dataset and further cross-validated using a

random selection of 30 manual tracings derived from NC, patients with MCI and patients

with AD that participated in the ADNI-1 study. Finally, all available baseline and 24-month

ADNI-1 datasets were segmented using the 5 automated methods. We chose 24-months as

our longitudinal interval, as this has been previously recommend for measuring disease

progression in AD (Jack et al., 2011).

Materials and Methods

1.0 Subjects

1.1 Sunnybrook—A total of 50 subjects’ 1.5 Tesla 3D high-resolution MRI scans were

used to generate a library of MRI templates and were selected from over 1000 subjects

participating in the longitudinal Sunnybrook Dementia Study (Pettersen et al., 2008), here

on referred to as the Sunnybrook dataset. All subjects were recruited from the LC Campbell

Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre at the University

of Toronto. Patients underwent standardized clinical dementia assessments, including

medical history and examination, blood tests, single-photon emission computed

tomography, MRI, and neuropsychological testing. Alzheimer’s disease patients were

diagnosed according to National Institute of Neurological and Communicative Disorders

and Stroke and the Alzheimer's Disease and Related Disorders Association criteria

(McKhann et al., 1984) or for VaD according to the National institute of Neurological

Disorders and Stroke-Canadian Stroke Network Vascular Cognitive Impairment

Harmonization Standards (Hachinski et al., 2006). Small vessel disease was identified on

MRI as silent lacunar infarcts (small hypointense (CSF isointense) regions on T1-weighted

MRI), or as white matter hyperintensities that appear as punctate or diffuse regions of

hyperintense signal on T2/PD and FLAIR MRI (Ramirez et al., 2011), or microbleeds on

gradient echo (T2*) MRI. Normal controls were community-dwelling, healthy elderly

volunteers with normal baseline neurocognitive test results. Demographic and co-morbid

disease data were acquired on patients, including age, sex, years of education and vascular

risk factors. The Sunnybrook Health Sciences Centre research ethics board approved the

project and all participants or substitute decision maker provided informed consent.
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1.2 ADNI-1—Certain clinical, demographic and T1-weighted MRI used in the preparation

of this article were downloaded by the authors from the ADNI-1 database

(adni.loni.ucla.edu) between September and November 2011. The ADNI-1 was launched in

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI-1 has been to test whether serial MRI,

positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI and

early AD. Determination of sensitive and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of clinical trials.

2.0 MRI

2.1 Sunnybrook—Sunnybrook participant MRI scans were performed on a 1.5-Tesla

Signa system (GE Healthcare, Chalfont St. Giles, England). The acquisition parameters for

the T1-weighted 3-dimensional volumetric spoiled gradient echo sequence were 124 slices;

matrix, 256 × 192; 22 × 16.5 cm FOV; number of excitations, 1; echo time/repetition time,

35 ms/5 ms; flip angle, 35°, and an in plane resolution of 0.859 × 0.859 mm slice thickness,

1.2–1.4 mm depending on head size.

2.2 ADNI-1 acquisitions—All ADNI-1 participants had high-resolution structural brain

MRI scans acquired using a protocol developed for the study by Jack and colleagues (Jack et

al., 2008b). Scans were acquired from 59 ADNI sites on 1.5 Tesla GE Health Care, Philips

Medical Systems and Siemens MRI scanners. A 3D MP-RAGE scanning protocol was used

that captured images in the sagittal plane with the following parameters, repetition time (TR)

of 2400 ms, minimum full TE, inversion time (TI) of 1000 ms, flip angle of 8°, 24 cm field

of view, 192 × 192 × 166 acquisition matrix (x, y and z dimensions), and a voxel size of

1.25 × 1.25 × 1.2 mm3. All MRI scans were evaluated for quality control.

3.0 MRI pre-processing

3.1 Sunnybrook—A rotation matrix was generated in ANALYZE software (Biomedical

Imaging Resource, Mayo foundation, Rochester, MN, USA) by manual placement of

landmarks, which were used to align the MRIs along the plane that intersected the anterior

and posterior commissures (i.e. AC-PC line) (Ramirez et al., 2011). All raw T1-weighted

template images were then reoriented using trilinear interpolation into AC-PC alignment by

applying the manually generated rotation matrices and were additionally re-sliced into

isotropic 0.86 mm3 voxels. (Ramirez et al., 2011). The open source FSL 4.1 distribution

Brain Extraction Tool (BET) (Smith 2002) was used to extract the intra-cranial volume

(ICV) for each subject by removal of the skull and infratentorial structures. In addition the –

S and -B option were used to improve removal of the eye, optic nerves and to apply a bias

field correction. The pre-processed skull stripped MRIs were then used for all further

processing steps.
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3.2 ADNI-1—All available post-acquisition corrected baseline (screening) and 24-month

1.5 Tesla T1-weighted ADNI-1 MRI data was downloaded from http://www.loni.ucla.edu/

ADNI/Data/. Raw images were adjusted using a scheme that performed grad-warp

correction of geometric distortion from gradient non-linearity (Jovicich et al., 2006), B1-

correction, adjusting for inhomogeneity from B1 field non-uniformity (Jack et al., 2008b),

N3 bias field correction (Sled, Zijdenbos, Evans 1998), and geometric scaling to remove

scanner calibration errors using a phantom scan acquired for each participant.

4.0 Library creation

4.1 Template library subject selection—To generate a template library, fifty subjects’

T1-weighted MRI scans were selected a priori from the larger Sunnybrook dataset using a

combination of each subject’s global Mini Mental State Exam (MMSE) score (Folstein,

Folstein, McHugh 1975) and qualitative anatomical evaluation in three orthogonal planes

using ANALYZE Software 10.0, Mayo Clinic, Rochester. The goal of the selection process

was to generate a library that would deliver sufficient morphological variability within the

MTL whilst matching subjects for age, education and gender (Table 1). We included NC,

AD, VaD (including a few with hippocampal infarcts), AD + SVD and mixed dementia.

4.2 Template tracing—We selected candidate hippocampal tracing methods from 12

commonly used methods that were previously vetted by the ADNI-EADC hippocampal

harmonization project (Frisoni and Jack 2011). First, a detailed set of author endorsed

standard operating procedures (SOPs) were downloaded from the harmonization project

website: www.hippocampal-protocol.net. These procedures provided a detailed description

and slice-by-slice delineation of the anatomical boundaries on a T1-weighted high resolution

MRI of a normal elder and person with AD. All protocols in AC-PC space were selected to

(1) control for potential confounds between different stereotactic orientations, (2) capture

sufficient morphological variation between label methods and (3) reduce the number of

manual tracings performed by a single operator (S.N.). For a detailed description of the five

hippocampal SOPs refer to www.hippocampal-protocol.net/SOPs. The basic differences

between protocols are summarized in Table 1. To improve label accuracy, the (Duvernoy

1998) hippocampal atlas was additionally used for neuroanatomical reference.

The hippocampal standardization project has harmonized semantic differences across

methods and distilled the hippocampus into sub-compartments (Boccardi et al., 2011). The

current study does not attempt to parcellate the hippocampus. In contrast, we adhered to the

author endorsed SOPs to provide accurate delineation and allow comparison to previous

studies. However, there were a number of author-supported modifications to the original

manual methods that were annotated in the harmonization project SOPs; these modifications

were applied to assemble the 5 atlas libraries. Most notably the volumes based on the criteria

(i.e. P4) (Pruessner et al., 2000) were not pre-normalized to Talairach space, enabling direct

comparison between protocols. Further, the label sets based on (Pantel et al., 2000) (P5)

excluded the alveus and fimbria as per the author endorsed SOP.

The 50 T1-weighted MRI atlases were constructed using ANALYZE software. The same

window-leveling procedure was used to ensure consistent contrast for labeling. Specifically,
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for each image the window-level was set until the choroid-plexus within the lateral

ventricles was just visible in coronal section. The tracings were viewed in three orthogonal

viewports (sagittal, coronal, and axial) to improve segmentation accuracy, prevent partial

volume effects and insure inter-slice consistency. However, each template was traced

principally in the coronal orientation. The axial plane was also used to assess the amygdalar-

hippocampal boundary, and the sagittal plane was also used to detect boundaries where

appropriate.

Each template MRI and associated binary hippocampal tracing was flipped along the x-

coordinate so that a set of mirror image templates was produced according to previously

published methods (Collins and Pruessner 2010). After the first set of tracings, labels were

reviewed for quality control by an experienced neuroradiologist (FG).

5.0 Manual labeling inter/intra rater reproducibility

A single expert labeler (SN) produced all 5 100-atlas libraries. To ensure intra-rater label

reproducibility, the same author traced the hippocampus bilaterally for each protocol on a

random selection of 5 template MRIs. To test inter-rater tracing reproducibility, a second

rater (FG) performed bilateral tracing on the same 5 Sunnybrook template MRIs for each

protocol for a total of 50 labeled volumes. The second labeler is an experienced

neuroradiologist with over 20-years of experience with manual tracing procedures. All intra-

and inter-rater reliability coefficients (ICCs) were computed using a random two-way mixed

effects design (Fleiss J.L. 1986) in SPSS 12.0 software, SPSS Incorporated. Voxel similarity

between label sets was quantified using the Dice Similarity Coefficient (DSC). DSC = 2*((M

⋂ A)/(M + A)). Where M is the manually traced label set, A is the SBHV automatically

derived label set and ⋂ is the intersection operator. The DSC provides a measure of voxel

correspondence between two label sets and is commonly used to evaluate the accuracy of

segmentation techniques. Associated interquartile ranges (IQR) were computed by the

Matlab bootci function using 100,000 iterations with replacement, Matlab 14.0, MathWorks

Incorporated.

6.0 Automated segmentation method

The SBHV segmentation scheme involved three principal steps including (1) template

matching and selection, (2) atlas-to-target image registration with label mapping and (3)

generating a consensus label set with intensity thresholding.

6.1 Template Matching and selection—To ensure that all templates comprising the

library were aligned to a common space, the 100 BET skull-stripped template MRIs were

affinely registered to the freely downloadable MNI 152 template with 1 mm3 isotropic

resolution (Fonov et al., 2009; Fonov et al., 2011). Similarly, each query subject’s T1-

weighted MRI underwent an affine transformation and was interpolated into MNI 152

template space. A local template matching strategy was applied for assessing similarity

between each template and the query image over a predefined right and left volume of

interest (VOI). The VOIs encompassed the entire hippocampal formation and adjacent MTL

anatomy. Cross-correlation was used locally within the MTL VOIs to compare the voxel

intensities of each template to the query image for similarity and ranking, which has been
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previously demonstrated as an appropriate similarity measure for the hippocampus (Aljabar

et al., 2009) and has been applied to ADNI-1 data (Leung et al., 2010). The MNI-152

template VOIs were only used for template-query image similarity assessment and ranking.

The highest ordered MNI normalized templates were indexed and the corresponding AC-PC

T1-weighted MRIs and binary labels were nonlinearly propagated to the query image.

6.2 Atlas registration and label mapping—The ANTs registration toolkit was used for

template-to-target registration and label mapping (Avants et al., 2008). First, an affine

registration was applied to move the highest ranked AC-PC templates into the target (query)

image space. Next, the ANTs Symmetric Normalization (SyN) algorithm, a deformable

(nonlinear) algorithm was initialized on the affine transformed images and used to further

register the templates to target space. The affine transform and nonlinear warp files were

recovered and used to propagate the atlas hippocampal labels to the skull stripped target

image using Nearest Neighbour interpolation. The ANTs software was downloaded from

(http://www.picsl.upenn.edu/ANTS/).

The ANTs SyN parameters were optimized for intensity normalization using a multi-step

hierarchical-resolution scheme with (60×100×5) number of iterations at each resolution

level using histogram matching and cross correlation with a window radius of 2 and

Gaussian regularization with sigma of 3 (Avants et al., 2008).

6.3 Label fusion and thresholding—A non-weighted vote-rule was implemented in

Matlab 14.0, MathWorks Incorporated, to combine the best 15 intensity normalized and

resliced binary templates into target image space. Only odd numbers of templates were

selected for registration to target space to exclude potential ties. This method of label fusion

has previously demonstrated high accuracy when compared to manual labels (Collins and

Pruessner 2010).

A threshold window of 75–115% mean BET derived ICV intensity was used to exclude

potential CSF and WM false positive labels based on the skull stripped T1-weighted MRI,

and is similar to the method of (Barnes et al., 2008a; Leung et al., 2010). The selected upper

mean intensity threshold did not exclude portions of the alveus/fimbria and occasionally

excluded hyperintense voxels associated with WM of the parahippocampal gyrus. In a

subset of subjects portions of the fornix were excluded. To ensure consistency across

labeling methodologies, the same threshold was used for all templates. Finally, volumes for

each protocol were computed for both left and right hippocampal volumes by multiplying

voxel size by binary label count.

7.0 Method optimization

The SBHV segmentation pipeline was first trained on a random subset of 15 Sunnybrook

subjects with bilateral manual hippocampal labels using a LOOCV design. This training

dataset was separate from the larger Sunnybrook dataset used to cross-validate the SBHV

method. Template matching, registration and thresholding steps were optimized using the

DSC. Supplementary Figure 1 shows the protocol-wise improvement in median DSC value,

as the number of best-matching templates fused together increased. Accuracy only

incrementally improved after fusing 13–15 templates. Thus, in an effort to optimize
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processing time, only the highest ranked 15 templates were registered and propagated for all

validation studies.

All volumes were processed on a Dell PowerEdge R710 rack-mount server with dual 6-core

Intel Xeon X5680 CPUs at 3.33Ghz (12 physical cores – 24 cores with HyperThreading

enabled), 16GB (8x2GB) 1333MHz DDR3 RAM, and two 146 GB 15K RPM SAS hard

drives. This platform allowed >20 volumes to be computed simultaneously over a period of

approximately 7 hours. Processing time was significantly reduced if bilateral target

hippocampi generated similar template rankings.

8.0 Method Validation

8.1 Leave-one-out cross-validation dataset—To assess accuracy for each protocol,

35 subjects were selected from the Sunnybrook dataset and the automatically generated

labels were compared to expert bilateral manual tracings using a LOOCV. These datasets

were independent of the Sunnybrook dataset used to tune the method parameters. Voxel-

wise accuracy between manual and automated labels was measured using the DSC. Further,

volume-wise agreement between manual and automated volumes was assessed using the

Normalized Volume Difference (NVD). NVD= 2*100*abs((MV − AV)/(MV + AV)). Where

MV and AV are the manually labeled and SBHV automatically derived volumes respectively.

ICCs were also computed to compare measurement agreement between SBHV and manually

derived label sets. To ascertain protocol-wise differences between median DSC

measurements, a Kruskal-Wallis Signed Rank Test was used in conjunction with post-hoc

Mann-Whitney comparisons, Bonferroni corrected for 10 multiple comparisons.

8.2 ADNI-1 cross-validation dataset—To test the reproducibility of the automated

protocols on an external dataset, two authors (SN and FG) traced a subset of randomly

selected ADNI-1 participants including 10 NEC, 10 MCI and 10 AD. To reduce the number

of manual tracings, three of the most morphologically different protocols from the

Sunnybrook experiment, were used to cross-validate automated label accuracy including

protocols 1, 2 and 4. The right hippocampus was traced for each subject/protocol (90 total

manual segmentations). To ensure manual segmentation accuracy, both tracers reviewed all

manual labels and corrected manual segmentations where appropriate. To ascertain voxel-

wise similarity DSC was measured, and volume-wise similarity was determined using NVD.

For both DSC and NVD associated 95% bias accelerated confidence intervals (BACI) were

computed by the Matlab bootci function using 100,000 iterations with replacement, Matlab

14.0, MathWorks Incorporated. Kruskal-Wallis Signed Rank Tests were performed to test

(1) group-wise DSC differences within each protocol, (2) protocol-wise DSC differences by

group (NC, MCI and AD) and (3) differences among protocol-wise DSCs when collapsing

across all groups. Exploratory Mann-Whitney post-hoc comparisons were performed when

appropriate. In addition, Bland-Altman plots were constructed to test for volume-biases.

8.3 Qualitative analysis of automatic segmentation error maps—To specifically

assess the voxel-wise distribution of label errors between protocols for SBHV versus manual

labeling, false positive (FP) and false negative (FN) error maps were generated in a

standardized template space. Briefly, a standard template was computed using SyN
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nonlinear registration, ANTs software, from 100 T1 MRIs selected from the Sunnybrook

Longitudinal Dementia study (Pettersen et al., 2008). Subjects included both healthy elders

and persons with AD. All AC-PC T1 MRIs from the LOOCV and ADNI-1 validation

studies were nonlinearly registered to the Sunnybrook average brain atlas. False positive and

FN binary images were generated for each subject and resliced into Sunnybrook template

space using the nonlinear warp files. For each protocol, FP and FN error maps were

generated in template space using a voxel counting method implemented in MatLab

(Mathworks). Protocol-wise error maps were generated for the LOOCV dataset and were

computed for each diagnostic group in the ADNI-1 validation sample. Only voxels with

error counts >1 were visualized. Finally, a single observer (SN) visually assessed the maps.

9.0 Protocol-wise hippocampal biomarker performance applied to the entire ADNI-1
dataset

9.1 ADNI-1 cross-sectional and longitudinal group-wise comparisons—We

reported results using absolute hippocampal volumes to allow comparison to previously

published data. Hippocampal rates of atrophy were calculated by normalizing to baseline

volume and scan interval using the following formula, ΔV=100*(baseline volume − 24

month volume)/(baseline volume)/(month scan interval/24). Results were not annualized, as

dividing rates by 12-months did not affect sample sizes.

To test the effect of diagnostic group across all 5 protocols for both baseline volume and 24-

month rate of change, a Multivariate Analysis of Covariance (MANCOVA) was calculated

in SPSS 12.0 software, SPSS Incorporated. Group was entered as a fixed factor and the

baseline volume or baseline-normalized 24-month rate of change for each protocol were

used as dependent variables in the model. For group-wise analyses, the MCI group was

trichotomized into persons with MCI that remained stable through 24-months (sMCI),

persons with MCI that had a clinical conversion to AD through 24- months (cMCI) and

persons with MCI that reverted from MCI to NC through 24-months (rMCI). For baseline

volumes, ICV, age and gender were entered as nuisance variables, and age and gender were

entered to adjust 24-month rate of change comparisons. Post-hoc one-way general linear

models were computed to explore group-wise differences for each atlas protocol for baseline

volume (corrected for ICV, gender and age) and 24-month percent change from baseline

(corrected for gender and age). Post-hoc tests were treated as exploratory and not corrected

for multiple comparisons.

9.2 ADNI-1 hippocampal volume and episodic memory associations—Baseline

and 24-month longitudinal test scores were downloaded from ADNI-1 for two commonly

utilized neuropsychological tests that are putatively associated with hippocampal-mediated

episodic memory, including the Auditory Verbal Learning Test (AVLT) (Rey 1964) and the

Logical Memory 1 (LM) exam (Wechsler 1981). The AVLT score was computed as the sum

of trials 1–4 and the LM immediate recall total score was collected for each participant.

Multiple-linear regressions using the enter method were calculated in SPSS 12.0 to compare

the relationships between baseline and longitudinal memory measures and total hippocampal

volumetry for the five protocols. For baseline regressions, age, gender and ICV were entered

as nuisance variables, while age and gender were entered for longitudinal calculations.
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9.3 ADNI-1 hippocampal derived sample size measures—Power calculations were

generated to test the sensitivity of each protocol to measure a hypothetical reduction in the

rate of atrophy (disease progression) in MCI and AD studies. Specifically, sample sizes were

derived from MCI and AD ADNI-1 data to detect a 25 percent reduction in the 24-month

rate of hippocampal atrophy in comparison to a hypothetical placebo group. Sample size =

(u + v)2 (2σ2)/(Δμ)2, where u=0.841 (80% power), v=1.96 (5% significance level), Δμ is the

change in baseline and scan interval normalized atrophy between groups, and σ is the SD of

rates of atrophy in the treatment and placebo groups (Fox et al., 2000). A further calculation

accounted for the average rate of hippocampal atrophy in normal aging (adjusted sample

sizes) by subtracting the protocol-wise ADNI-1 NC baseline-normalized rate of atrophy

from corresponding MCI and AD rates. Holland et al. recently demonstrated NC-adjusted

power calculations to be a more valid estimate of sample size estimates for trials assessing

amyloid lowering therapies (Holland et al., 2011). We report both non-adjusted and NC-

adjusted sample size calculations. For each sample size, 95% BACIs (100,000 iterations

with replacement) were computed.

Results

Demographics for the Sunnybrook LOOCV are available in Table 2, and for the ADNI-1

experiment baseline demographic data is reported in Table 3. There was considerable range

in the period between baseline/screening and 24-month follow-up, although we normalized

all volumetric rates of change for scan interval.

1.0 Manual labeling inter/intra-rater reproducibility

The inter- and intra-rater reproducibility of each hippocampal protocol was excellent and is

reported in Table 4. Intra-labeler reproducibility was better than inter-labeler absolute

agreement, with lower variation among datasets. This was also reflected by high DSC values

across protocols with slightly better intra-labeler DSC values. There were no major

differences in reproducibility across protocols with the exception of P2, which slightly

underperformed when compared to the other protocols. Although P1 required additional

delineation to excise the dorsal WM compartment, it demonstrated comparable results to

P3–P5, which included these structures. The reproducibility of the fully automated multi-

atlas method for each protocol was unity.

2.0 Method validation

2.1 DSC manual Vs. automatic segmentation accuracy

2.1.1 Sunnybrook optimization dataset and LOOCV dataset: No manual corrections

were performed to the automated segmentations for any of the analyses in the current study.

Figure 1 shows 3D renderings of P1–5 manual and corresponding automated hippocampal

volumes for a single subject’s right hippocampus, acquired from the Sunnybrook study.

Table 5 shows voxel-wise DSC accuracy and ICC results across protocols for the algorithm-

training step (N=30 templates) used to optimize all parameters in the automatic pipeline. For

the LOOCV experiment (Table 5), the median DSCs (IQR) in order of protocol inclusivity

(greatest to least inclusive) were P5= 0.88 (0.02), P3= 0.88 (0.02), P4=0.88 (0.03), P1=0.86

(0.04) and P2=0.85 (0.04). ICCs were high for all protocols for the LOOCV (Table 5). After
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correction for 10 nonparametric protocol-wise comparisons, P2 and P1 had significantly

lower DSCs in comparison to the more inclusive P3–P5 (p<0.05), while there were no

significant differences between P1 and P2 DSC measurements. Moreover, P1 and P2

demonstrated higher variation in DSC when compared to the more inclusive atlas methods

P3–P5.

2.1.2 ADNI-1 cross-validation dataset: Median DSCs were modestly improved by

approximately 1–3 percentage points across all protocols for all groups in comparison to the

LOOCV (Table 6). Moreover, ICC values were comparable to the LOOCV when volumes

were pooled across groups (Table 6), and ICCs were lower in both NC and MCI versus AD.

When groups were pooled, the median DSCs for all protocols were significantly different

(p<0.001) and post-hoc comparisons ranked accuracy: P4>P1>P2 (P4 vs. P1: p<0.024, P1

vs. P2: p<0.001 and P4 vs. P2: p<0.001). Interestingly, when protocol-wise comparisons

were performed within each diagnostic group, only the AD group showed significant

differences among all protocols (p<0.001). In NC, post-hoc tests showed only significant

median DSC differences between P2 and P4 (p<0.001), while in MCI significant differences

were only realized between P2 and P4 (p<0.001)..For each protocol individually, there were

no significant differences for DSC measurements between NC, MCI or AD groups, with the

exception of P4 (p=0.008). For P4, the AD group had significantly higher DSC

measurements than normal elders (p<0.001).

2.2 Manual Vs. automatic segmentation volumetric differences

2.2.1 LOOCV dataset: The average SBHV hippocampal volumes for P1–5 are reported in

Table 7, and when protocols were ordered from greatest to least, were ranked

P5>P3>P4>P1>P2, which was congruous with the anatomical definitions described in Table

1. The Bland-Altman plots in Figure 2 show that there was a small volume-bias in the

LOOCV across atlas protocols. Specifically, SBHV modestly underestimated the ground

truth volume on average. Moreover, there appeared to be a small bias towards the mean, as

the smaller hippocampi were consistently larger than the manual segmentations, with the

exception of P4. Table 7 shows that the median NVD was low across all protocols for the

LOOCV analysis (range: 5.05–7.96%). There was a trend towards lower NVDs as protocols

integrated more hippocampal anatomy. Indeed, for the LOOCV dataset median (IQR) NVDs

when ranked from the greatest to the least inclusive protocol were P5 = 5.14 (7.58), P3 =

5.05 (6.96), P4 = 6.43 (9.82), P1 = 6.23 (7.25) and P2 = 7.96 (8.77).

2.2.2 ADNI-1 cross-validation dataset: The range of right hippocmapal volumes for the

ADNI-1 validation was greater than the Sunnybrook LOOCV, which also included bilateral

hippocampal labels. When all groups were pooled, the ADNI-1 NVD values were similar to

the LOOCV dataset. For P1 and P4 the NVD values were lower in AD versus MCI and NC.

However, volume differences were consistently greater for P2 across all groups. Further, the

ADNI-1 SBHV segmentations demonstrated a similar pattern of protocol-wise bias to the

LOOCV, as Figure 3 shows that SBHV underestimated ADNI-1 volumes in comparison to

manual tracings (Table 8).
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2.3 Qualitative analysis using error distribution maps

2.3.1 LOOCV error maps: For the LOOCV study there was a greater proportion of FN

(volume underestimation) versus FP (volume overestimation) labels.

i. Caudal region: The most pronounced segmentation errors were localized to the

caudal/posterior hippocampus. Caudal underestimation was most conspicuous for

P2, which used the crus of the fornix as a boundary landmark (Figure 4), P1 also

suffered from caudal underestimation in comparison to definitions which

segmented the first ovoid mass of posterior grey matter (i.e. P3–P5). There was

some overestimation of the superior-posterior hippocampus across protocols, which

labeled portions of the crus of the fornix (Supplementary Figure 2). For P4, the

posterior medial compartment demonstrated greater FP and FN errors compared to

P3 and P5. This error was attributable to the manually placed vertical line used to

separate the gyrus fasciolaris and Andreas-Retzius gyrus. Moreover, this may

partially explain the high variance in NVD realized for the P4 LOOCV analysis.

ii. Anterior region: The anterior hippocampus suffered from moderate

underestimation and overestimation equally across protocols.

iii. Dorsal border: Protocols 1 and P2 excised the alveus and fimbria located on the

dorsal hippocampal surface. The grey-white matter interface for this compartment

suffered from low contrast resolution and partial volume effects for both datasets at

the acquired 1.5 Tesla in-plane resolutions. SBHV slightly overestimated the

medial anterior-superior white matter compartment for P1 and P2, resulting in a

modest volume underestimation (Figure 5); whereas, SBHV overestimated this

compartment for P1 and P2 throughout the body and tail to a greater extent than

P3–P5 (Figure 6).

iv. Inferior border: All protocols showed some background labeling of the

parahippocampal white matter, resulting in a slight overestimation of the inferior

hippocampus (Figure 7).

v. Medial region: In addition, the medial compartment was occasionally mislabeled

by SBHV. Automatic segmentation modestly underestimated the posterior medial

subiculum (i.e. excluding the presubiculum) among more medially inclusive

protocols (i.e. P1 and P5). However, protocols that used an oblique line to separate

the parahippocampal gyrus from the subiculum (e.g. P4), tended to label more

inferomedial parahippocampal white matter along the hippocampal body.

vi. Right versus left volumes: Visually, there was slightly less voxel-wise error in the

posterior and superior compartments on the right hippocampus versus the left

(Figure 4 and 5).

2.3.2 ADNI-1 cross validation error maps: The ADNI-1 cross validation study revealed a

consistent topographical distribution of errors when compared to the LOOCV.

i. Caudal region: Figure 8 shows a similar underestimation of the posterior

hippocampus across protocols in relation to the LOOCV. However, qualitative

assessment of ADNI-1 group-wise FN map differences shown in Figure 8 revealed
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greater heterogeneity of caudal error distributions between protocols in AD

compared to MCI and NC, and this finding is congruous with our ADNI-1

protocol-wise DSC comparisons, which found significant differences between all

protocols in AD. There was also some overestimation within the posterior-medial

compartment for P1 and P4.

ii. Anterior region: Similar to the LOOCV, the anterior hippocampus suffered from

volume underestimation and some overestimation medially.

iii. Dorsal border: SBHV tended to underestimate the anterior superior white matter

compartment for the NC group to a greater extent than the MCI and AD group. In

contrast, there was comparatively less overestimation of the dorsal white matter

compartment (i.e. alveus and fimbria) for the body of the hippocampus in

comparison to the LOOCV, and these observations to some extent support the

higher DSC values reported in the ADNI-1 validation compared to the LOOCV.

iv. Inferomedial region: The medial hippocampus was also overestimated across

protocols and diagnostic groups. Specifically, there were fewer inferomedial errors

observed for the AD group versus the MCI and NC group (Figure 9). Indeed, this

finding partially explains the poorer segmentation accuracy of the SBHV tool in

NC and MCI in comparison to the AD group.

3.0 Protocol-wise hippocampal biomarker performance applied to the entire ADNI-1
dataset

3.1 ADNI-1 cross-sectional group-wise volumetric comparisons—Three subjects

had inconsistent clinical conversions over the 24-month study window and were included in

the sMCI group. Specifically, subject 127_S_0112 (MCI) reverted → converted → reverted,

subject 136_S_0429 (MCI) converted → reverted, and subject 137_S_0669 (MCI) reverted

→ converted → reverted. Protocol-by-diagnostic mean (SD) unadjusted total (right + left)

baseline volumes are reported in Supplementary Table 1 and are shown juxtaposed in Figure

10. All baseline comparisons were corrected for ICV, age and gender. All protocols showed

significantly larger mean baseline hippocampi in the NC group in comparison to both the

MCI and AD groups (p<0.001). The MCI group had significantly smaller total adjusted

hippocampal volumes than NC but more volume than the AD group (p<0.001). The cMCI

group had significantly smaller adjusted hippocampal volumes than sMCI (p<0.001) and

rMCI (p<0.001), but significantly greater volumes than AD (p<0.05) across protocols. The

rMCI group was not significantly different than the sMCI group. For all protocols, the sMCI

and cMCI hippocampal volumes were significantly smaller than NC (p<0.001); however,

the rMCI group was not significantly different from NC.

3.2 ADNI-1 longitudinal group-wise volumetric comparisons—Protocol-by-

diagnostic mean (SD) baseline and scan interval normalized total (right + left) rates of

change are reported in Supplementary Table 1 and are shown juxtaposed in Figure 11. All of

the group-wise longitudinal comparisons were adjusted for age and gender. For all

protocols, both the AD and total MCI (tMCI) groups had significantly greater rates of 24-

month hippocampal atrophy in comparison to the NC group (p<0.001), and the AD group

had a greater rate of atrophy than the tMCI and sMCI groups (p<0.001). The tMCI, sMCI,
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cMCI and AD groups had significantly greater adjusted hippocampal atrophy than NC

(p<0.001), while the rMCI group was not significantly different from normal elders. In

addition, the cMCI subgroup had significantly less atrophy than the AD group (p<0.001),

and only P1 and P4 demonstrated significant differences between rMCI and AD (p<0.01),

although the rMCI sample size was small (N=10). An important finding was that the most

inclusive protocols (i.e. P1 and P3–P5) demonstrated greater adjusted rates of atrophy for

cMCI compared to sMCI (p<0.01); however, P2 rates were not significantly different

(p=0.065).

3.3 ADNI-1 hippocampal volumetry and episodic memory associations

3.3.1 MCI group correlations: Adjusted baseline hippocampal volumes were significantly

associated with baseline AVLT scores within the MCI group for all protocols (Table 9).

There were no marked differences among hippocampal protocols for associations with

baseline AVLT scores in the MCI group. Similarly, Table 9 shows that the MCI baseline

LM scores were significantly associated with adjusted hippocampal volumes across

protocols, and there were no marked differences between associations. For the MCI group,

there were no significant associations between the rate of hippocampal change and 24-

month change in memory performance on the AVLT. In contrast, all protocols with the

exception of P2 were significantly correlated with 24-month change on the LM (Table 9).

3.3.2 AD group correlations: Only baseline hippocampal and neurocognitive scores were

significantly associated for the AD group (Table 9). Baseline AVLT score was significantly

associated with adjusted baseline hippocampal volume across protocols. Moreover, baseline

LM scores were significantly associated with adjusted baseline hippocampal volumes

(p<0.01). P4 was slightly more associated with baseline memory performance in comparison

to the other protocols.

3.4 Protocol-wise ADNI-1 sample size estimates—Table 10 demonstrates that with

the exception of P2 (which consistently underperformed compared to all other protocols) the

ranking of labeling methods in MCI with respect to sample size changed when adjusted for

normal aging. Sample sizes for P3, P4 and P5 were smaller than P1 and P2, and P1 was

smaller than P2. Within the AD group, all protocols demonstrated smaller sample sizes than

P2, and this relationship remained after correction for normal aging.

Discussion

Based on the original multi-template work of (Aljabar et al., 2009; Barnes et al., 2008a;

Heckemann et al., 2006) in conjunction with the pipelines of (Collins and Pruessner 2010;

Leung et al., 2010; Wang et al., 2011b), we developed a fully automated multi-atlas

hippocampal segmentation tool, SBHV, that spatially maps labels using the SyN

diffeomorphic registration algorithm. What distinguishes this study from previous atlas

comparisons in AD is the large number of unique hippocampal atlas libraries that were

generated by the first author – 5 hippocampal libraries totaling 500 manual hippocampal

tracings. Moreover, this was the first atlas library in AD to include a more heterogeneous

sample of AD pathologies including patients with VaD and SVD, which is important if an
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automated tool is to be applied clinically or to large cohort studies in AD. This automatic

framework coupled with the entire ADNI-1 baseline and 24-month dataset, enabled the

largest automated head-to-head comparison of hippocampal atlas protocols in AD to-date

and the first of its kind to assess voxel-wise accuracy and voxel-wise error distributions

among anatomically distinct multi-atlas libraries. Here we report a number of important

biomarker performance-based findings among the 5 atlas protocols tested including: group-

wise discrimination, differential accuracy association with cognition. We also describe how

both multi-template segmentation accuracy and inclusivity among the protocols sampled

may influence hippocampal biomarker performance in MCI and AD.

DSC Manual Vs. automatic segmentation accuracy

Inter- and intra- rater agreement were excellent (intra-ICC: 0.95–0.97, DSC = 0.92–0.93:

and inter-ICC: 0.92–0.96, DSC = 0.90–0.91) and within the range of previous studies

(Barnes et al., 2009; Boccardi et al., 2011; Collins and Pruessner 2010; Leung et al., 2010).

All protocols demonstrated high accuracy in comparison to manual tracings across both the

LOOCV and ADNI-1 datasets. One of the principal findings of this study was that the

accuracy of automated hippocampal segmentation appears to be modulated by

morphological definition. The most inclusive protocols (P3–P5) demonstrated the highest

accuracies in the LOOCV (DSC = 0.88, 0.88 and 0.89 respectively), and were not

significantly different. The DSC values were modestly improved across all protocols in the

ADNI-1 validation over the LOOCV; however, there were differences between datasets,

which may explain these findings. First, the LOOCV contained greater heterogeneity among

disease profiles (i.e. VaD, AD, mixed AD, AD with SVD and NC) when compared to the

ADNI-1 NC, MCI and AD participants. A recent study by (Scher et al., 2011) reported

differential patterns of hippocampal atrophy across dementia subgroups (AD versus VaD),

and this morphological heterogeneity may have contributed to the greater protocol-wise

DSC measures observed in the ADNI-1 sample versus the LOOCV. Moreover, diagnostic

group was shown to modulate both DSC and NVD in our ADNI-1 validation. Second, the

ADNI-1 validation only compared n = 30 right hippocampal volumes per protocol versus n

= 70 right + left volumes for the LOOCV. Although not reported in the results, right

hippocampal segmentations demonstrated a ½ percentage point improvement in median

DSC over left labels for the LOOCV. Finally, the median volumes were slightly larger for

the ADNI-1 NC and MCI validation groups compared to the LOOCV dataset, which may

have biased the ADNI-1 DSC results. Despite these experimental differences, the ADNI-1

validation reflected the same rank order of protocol-wise DSC accuracy, comparable DSC

variation within protocols and similar FP/FN error distributions to those observed in the

Sunnybrook LOOCV.

Definition of the posterior border was most variable between protocols, and upon visual

inspection of the FN/FP error maps, was frequently underestimated by SBHV, with

occasional inclusion (overestimation) of the fornix. Certain hippocampal protocols use

landmarks to determine the posterior border (Bartzokis et al., 1998; deToledo-Morrell et al.,

2004; Jack 1994; Killiany et al., 1993; Watson et al., 1992). And although manually

identified landmarks were designed to improve inter- and intra- labeler precision, automated

reproducibility of these rule-based boundaries appears to be less accurate in heterogeneous
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cohorts (e.g. elders and AD). For example, P4 used an orthogonal pair of lines to manually

define the hippocampal tail from the surrounding parenchyma, which SBHV failed to

consistently reproduce. Moreover, protocols that truncated caudal regions of the

hippocampus (P1 and P2) tended to suffer from greater posterior volume underestimation.

The most extreme example was P2 (Killiany et al., 1993), which excluded significant

portions of the hippocampal tail posterior to where the crus of the fornix was visible in full

profile. In dementia, there is frequently thalamic atrophy that can modulate where an

operator defines the posterior boundary, often more rostral when atrophy is present, and a

registration algorithm may not appropriately capture this boundary shift.

Strengthening these observations, (Carmichael et al., 2005) found marked label error along

the posterior hippocampus, and this finding was also observed using a multi-atlas based

method in MCI and AD (Leung et al., 2010). In a recent multi-atlas hippocampal

segmentation study, which examined spatial bias in voting-based label fusion, the greatest

error (automatic label underestimation) was realized for convex regions of the hippocampus,

particularly in the posterior and anterior regions (Wang and Yushkevich 2012). However,

the small bias towards the mean observed for atrophic hippocampi in the LOOCV and

ADNI-1 study suggests that volume underestimation may be less pronounced in smaller

hippocampi. We did not explicitly test the effect of registering small versus large templates

to an atrophic hippocampus. Inclusion of a weighted voting strategy may also reduce

averaging bias. Alternatively, a greater number of atrophic hippocampi may also reduce the

affect of heterogeneous template fusion.

The next most variable region among protocols was the dorsal hippocampal border (i.e.

alveus and fimbria white matter compartment). Protocols that excluded the alveus and

fimbria (P1 and P2) were significantly less accurate and had greater DSC variation than

structures including these dorsal white matter compartments (P3–P5). Visual inspection of

error distribution maps revealed a pattern of greater SBHV FP errors along the superior

hippocampal body and FN errors at the anterior-superior pole for both P1 and P2, which

were generated from the low contrast realized at this grey-white matter interface

Further visual inspection of FN/FP error maps revealed that certain hippocampi were

mislabeled along the inferomedial border, which has been previously reported in (van der

Lijn et al., 2008). A thin layer of white matter separates the hippocampus from the

parahippocampl parenchyma, and occasionally, the SBHV tool segmented these background

structures across protocols. However, intensity based thresholding reduced FP labels, and

comparable accuracy was achieved among protocols that predominantly varied by medial

definition (e.g. P3 versus P5).

For our ADNI-1 voxel-overlap comparisons, there were significant protocol-wise DSC

differences within groups, but only the AD group showed significant differences among all

protocols sampled. More inclusive protocols always outperformed less inclusive definitions

in AD (P4>P1>P2). However, in MCI only the most inclusive protocol (P4) outperformed

the least inclusive P2, while in NC, P2 was less accurate than the more inclusive P1 and P4.

This suggests that more inclusive protocols (i.e. that include the alveus/fimbria and

>hippocampal tail) provide superior accuracy across groups, and protocol accuracy as a
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function of structural assembly appears to matter most in AD. Indeed, our findings shown in

Figure 8 strengthen this notion, demonstrating greater voxel-wise error differences between

protocols in AD versus MCI and NC.

It is important to note that FP/FN at the boundary of smaller volumes can have a larger

impact on voxel-wise similarity metrics in comparison to more inclusive structures, and may

partially explain the lower DSC values for P1 and P2 in comparison to P3–P5. Moreover, the

ADNI-1 MCI and AD validation samples had a greater median absolute volume in

comparison to the median volume of the Sunnybrook LOOCV, which may have partially

contributed to the higher DSC ADNI-1 validation results. Indeed, (Patenaude et al., 2011)

reported lower DSC values for small structures such as the amygdala, nucleus accumbens

and hippocampus in comparison to larger subcortical compartments including the putamen,

caudate and thalamus. However, the FP and FN error maps in the current study revealed

greater absolute posterior and superior labeling errors for P1 and P2 than the more inclusive

P3–P5, suggesting that lower DSC values are driven to a larger extent by protocol definition

versus the well-known bias of measuring smaller structures.

Interestingly, in the current study, persons with AD despite having significantly smaller

hippocampi and greater surface-area-to-volume ratios than NC demonstrated comparable

segmentation results to normal elders. One explanation for this inconsistent finding may be

that the enlarged CSF compartment (cistern, choroid fissure and inferior horns) surrounding

atrophic hippocampi improved delineation along the complete lateral extent, superior

parenchymal surface, and amygdalar hippocampal interface, facilitating more robust

registration outcomes. Additionally, SBHV segmentation accuracy along the inferior border

was improved in AD versus NC, which may also support these findings.

ADNI provides a platform for direct quantitative comparisons among segmentation methods

in AD. Since its inception, there have been numerous head-to-head comparisons of

hippocampal segmentation algorithms (see (Weiner et al., 2012) for a detailed review), and

across these studies, much attention has been focused on algorithmic differences. As manual

“ground-truth” labels are not widely available, definitive performance evaluation among

atlas protocols and automated methods in general, is complicated without consistent manual

labels for each protocol on the same MRI dataset. Thus, comparisons across previous

validation studies should be interpreted cautiously. Here we compare our voxel-overlap

results to multi-template studies based on similar manual protocols. In particular, we

replicated DSC measures of a validation study in healthy adults by (Collins and Pruessner

2010), using a smaller atlas library with greater pathological heterogeneity. Moreover, this

result was achieved with a modified version of the labeling criteria developed by (Pruessner

et al., 2000) (P4), as our protocol defined the hippocampus along the AC-PC line without

normalization to Talairach space. Additionally, we used the SyN nonlinear registration

whereas Collins and Pruessner used an elastic registration method (Collins et al., 1995).

We also demonstrated comparable results to previous studies of multi-atlas based

segmentation that employ other anatomical definitions: (Barnes et al., 2008b; Hammers et

al., 2007; Kim et al., 2012; van der Lijn et al., 2008; Wang et al., 2011b; Wolz et al., 2009)

(Table 11). After semantic harmonization of current multi-atlas protocols in Table 11, there
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are only a few widely used protocols for multi-atlas segmentation to-date. All methods

include the alveus/fimbria and similarly define the anterior border. Protocols principally

differ by inclusion/exclusion of the caudal pole and medial compartment. Unfortunately,

there is no clear relationship between structural definition and voxel-overlap in the literature,

partly owing to algorithmic and validation sample differences. Among state-of-the-art

methods, DSCs ranged between 0.83–0.91, and (Wang et al., 2011b) demonstrated the

highest accuracies to-date, also using the SyN registration tool. However, the investigators

derived their gold standard labels from manually corrected automatic volumes and adjusted

automated labels using a learning based wrapper. In summary, SBHV with the P3, P4 or P5

library achieves high voxel-overlap compared to manual labels both within a large multi-

centre study and a diverse memory clinic cohort that is consistent with recent work in

dementia.

Manual Vs. automatic segmentation volume differences

We also tested volumetric differences between manual and automated labels, and our data

show that all 5 automated protocols tended to underestimate absolute volumes for both the

Sunnybrook LOOCV and the ADNI-1 derived manual volumes. Additionally, the error

distribution maps revealed a similar pattern of FN labels compared to the LOOCV dataset.

The higher variation in NVD for P4 in the LOOCV and ADNI-1 AD validation may be

partially explained by the orthogonal lines used to demarcate the posterior compartment. In

certain subjects, this compartment was inconstantly labeled by SBHV, generating greater

NVDs.

Over all, automatic-manual volumetric similarity amongst the assessed protocols was

congruous with previous multi-atlas work in healthy adults (Collins and Pruessner 2010)

(NVD = 4.9%), right temporal lobe epilepsy (TLE) (Kim et al., 2012) (absolute volume =

3134 mm3 manual vs. 3301 mm3 automatic) and AD (Leung et al., 2010; Wang et al.,

2011b) (absolute volume difference = 56–81 mm3). When volumetric accuracies are taken

together with voxel-wise overlap outcomes, these results suggest that more inclusive

protocols furnish superior accuracy versus conservative atlas definitions, especially in AD

and diagnostically heterogeneous samples. Our results also support the notion that SBHV

voxel-wise segmentation accuracy is lower in more diagnostically heterogeneous samples

(i.e. Sunnybrook versus ADNI-1). Finally, SBHV + a more anatomically inclusive template

library provides high fidelity segmentation accuracy when compared to expert tracings and

so is a suitable method to replace manual segmentation for both the analysis of large multi-

centre AD studies and for use in a general memory clinic cohort, with the caveat that image

quality must be sufficient to perform unbiased registration.

Cross-sectional and longitudinal group-wise volumetric comparisons for the entire ADNI-1
dataset

Although an automated hippocampal volumetric technique may demonstrate high technical

accuracy, it is equally important to assess its utility as a biomarker to measure disease

progression, discriminate amongst clinical cohorts, prognosticate decline and serve as a

useful indirect marker for clinical trials. Here we report on the biomarker performance

outcomes of the 5 different SBHV atlas-protocols. Baseline volumes ranged considerably
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between methods. In fact, mean P2 NC volumes were 32% smaller than corresponding P5

volumes. Nevertheless, all methods compare well with previous ADNI-1 cross-sectional

studies (Leung et al., 2010; Morra et al., 2009; Mouiha, Duchesne, Alzheimer's Disease

Neuroimaging Initiative 2011; Schuff et al., 2009; Wolz et al., 2010b), distinguishing

principal groups by baseline volume (NC>MCI>AD) and similarly discriminated across

principal groups for 24-month atrophy measures (AD>MCI>NC). Consistent with previous

studies, cMCI showed reduced baseline volume versus sMCI. However, the least inclusive

protocol, P2, did not significantly differentiate cMCI from sMCI, whereas all other protocols

showed cMCI rates to be greater than sMCI. This may suggest that definitions approaching

the minimal hippocampal assembly are not sufficient to capture atrophic changes

automatically in multi-centre studies of prodromal AD. Moreover, the absolute caudal

segmentation error realized for P2 may reduce the signal-to-noise ratio necessary to detect

group-wise separation.

Our annualized mean longitudinal measures in AD, P1 = 4.12 %, P2 = 4.07%, P3 = 4.13%,

P4 = 4.52% and P5 =4.16% and in NC, P1 = 1.11%, P2 = 1.04%, P3 = 1.22%, P4 = 1.43%

and P5 = 1.27% compare favorably with a metaanalysis by (Barnes et al., 2009) of manually

derived volumes in NC = 1.41% and AD = 4.66%. Our annualized rates based on

independent measures are consistent with a 1-year ADNI-1 study evaluating automatically

derived volumes: NC = 1.40%, and AD = 4.57% (Leung et al., 2011). While our 24-month

mean rates of change and variances are greater than an ADNI-1 study using multi-atlas

segmentation with 4D graph cuts by (Wolz et al., 2010b), who report markedly lower 24-

month mean rates of change (± SD) for NC / MCI / AD of: 1.66% ± 2.07 (n=114), 4.50% ±

3.12 (n=157) and 6.74% ± 2.89 (n=81) when compared to our results in Table 10. These

differences may in part be explained by differing sample sizes that do not represent the more

complete 24-month ADNI-1 sample. Indeed, 12-month and 24-month annualized measures

reported in (Wolz et al., 2010b), notably underestimate the expected meta-analytically

computed manual rate of change reported in (Barnes et al., 2009). However, there are

several sources of bias between serial acquisitions including intensity differences,

Interpolation asymmetries, software upgrades and hardware drift (Fox, Ridgway, Schott

2011), which can introduce morphometric variability. Thus, simultaneous hippocampal

segmentation of aligned scan pairs (i.e. comparative analysis) using, for example, 4D graph

cuts (Wolz et al., 2010b) or the Boundary Shift Integral (BSI) with bias field correction

(Leung et al., 2011) has been shown to lower variance and improve sensitivity.

Nevertheless, our goal was to directly compare different atlas protocols, not algorithms, and

the direct nature of this study design ensured all protocols experienced identical algorithmic

biases and very similar intensity inhomogeneity and resampling biases depending on

subregions included/excluded. Finally, our ADNI-1 results contrast with a recent study by

(Mouiha, Duchesne, Alzheimer's Disease Neuroimaging Initiative 2011), who reported that

both a semi-automated atlas-based registration method called SNT, Medtronic Surgical

Navigation Technologies (Louisville, CO) (Haller et al., 1997) and FreeSurfer (Fischl et al.,

2002) annualized automatic measurements appear to significantly overestimate the rate of

meta-analytically measured mean atrophy in AD (7.75% and 10.09%) and in NC (2.95%

and 1.67%). However, multi-atlas methods have previously demonstrated greater accuracy

than both FreeSurfer (Wang et al., 2011b) and SNT (Leung et al., 2011).
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Protocol-wise associations with episodic memory

To be a valid surrogate marker of AD progression, hippocampal volumetry should relate to

cognitive phenotype. The hippocampus measured in vivo has been strongly implicated in

memory networks, and has been associated with episodic memory impairment in AD.

However, anatomical variability among atlas-protocols may attenuate hippocampal-

neurocognitive correlations. Therefore we directly tested whether differences existed

between template ROI configuration and episodic memory performance. Our findings

showed that all protocols demonstrated comparable associations with AVLT and LM

derived episodic memory performance. Concordant with previous ADNI-1 hippocampal

studies (Apostolova et al., 2010; Leung et al., 2010) baseline cognitive score was modestly

associated with unadjusted total baseline hippocampal volume in both MCI and AD.

Protocol 4 consistently demonstrated the highest association with memory measures among

techniques whilst P2 (the least comprehensive definition) showed slightly lower associations

with cognitive measures. A few studies have examined hippocampus sub-regional

associations with episodic memory in AD (Costafreda et al., 2011; Lim et al., 2012; Shen et

al., 2010). H.K. Lim and colleagues used the FMRIB’s Integrated Registration and

Segmentation Tool (FIRST) (Patenaude et al., 2011), a shape based method, and

demonstrated correlations in drug naïve patients with AD. The authors report associations

with verbal memory within the lateral subiculum and CA1 extending from the hippocampal

head to tail. These results are strengthened by the findings of (Costafreda et al., 2011) who

demonstrated more lateral and anterior localized hippocampal associations with memory

performance in AD compared to persons with MCI. As all protocols (P1–P5) included

similar anterior-lateral hippocampal anatomy, it is unsurprising that we found only minor

variation between methods in relation to cognitive performance. Moreover, the majority of

voxel-wise segmentation error differences among protocols were localized to the posterior

and superior borders and not the lateral/anterior compartments, The small variation that did

exist between protocols for MCI and AD associations may reflect the differential error

realized at the posterior border shown in Figure 8 of the ADNI-1 validation study.

Protocol-wise sample sizes in MCI and AD

Another important application of automated hippocampal volumetry is towards quantitative

assessment of macroscopic brain changes to evaluate drug efficacy in MCI and the early

stages of AD. Hippocampal imaging markers may have the potential to lower sample sizes,

which can expedite trials of putative disease modifying therapies. While, we acknowledge

that using comparative serial measurement methods such as the BSI would likely reduce

sample sizes across protocols than to our independent serial measures (baseline - 24-

months), we showed comparable sample sizes to previous ADNI-1 multi-atlas studies

(Leung et al., 2010) and other techniques reviewed in (Weiner et al., 2012). Interestingly,

our SBHV-P1 24-month MCI sample estimates (when adjusted for 90 percent power) based

on the protocol of (Haller et al., 1997), were 31% lower, N=489, than 1-year sample sizes

reported in (Schuff et al., 2009), N=698, using SNT, two time-points and the same atlas

protocol. A possible explanation for our superior results based on two time points, is that

hippocampal atrophy in MCI may accelerate and provide a larger effect size at 2-years than

1-year serial measures. Indeed, Jack and colleagues found an accelerated trajectory of brain
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atrophy in amnestic MCI subjects (Jack et al., 2008a), and (Schuff et al., 2009) also showed

evidence for accelerated hippocampal change in ADNI-1 MCI over 1-year. However, as

previously mentioned, bias within different techniques and between scan pairs can modulate

longitudinal measures. While the trajectory of MCI atrophy is not entirely clear over 24-

months, the superior performance of multi-atlas segmentation compared to SNT reported in

(Leung et al., 2010) and our results, suggests that algorithmic differences and susceptibility

to bias rather than pathogenesis, may be importantly implicated.

Sample size estimates globally increased after adjusting for the rate of change in normal

aging, which detects the maximum potential treatment effect. Interestingly, adjusting for

atrophy in normal aging appears to significantly improve the relative performance of P1 to

detect changes in MCI, while no significant changes were realized among tracing methods

in AD. The smaller adjusted sample size derived from P1 atlases is due to the lower rate of

atrophy measured in the NC group. While P3 and P4 by definition excluded portions of the

medial body including part of the medial subiculum, sample sizes were not remarkably

different when compared to P1 and P5, which integrated more of this region. This may be

ascribed to either registration errors along the medial boundary, which have been observed

in the current study and by (van der Lijn et al., 2008), or that atrophy of both the subiculum

and adjacent parahippocmapal gyrus in AD, reduces medial volumetric differences amongst

protocols. Thus, medial body definition across the protocols sampled does not appear to

markedly alter sensitivity of multi-atlas segmentation to detect changes in disease

progression in either MCI or AD. Another striking observation was that more inclusive

protocols (P1 and P3–P5) consistently generated smaller sample sizes than the least

inclusive protocol (P2) in both MCI and AD. It is tempting to speculate that the differential

sensitivity to detect disease progression between the protocols surveyed is largely driven by

atrophy within the hippocampal tail. Although we did not explicitly test this hypothesis,

such findings make intuitive sense given emerging shape-based analyses in AD, which

suggest there are significant atrophic changes present in the posterior hippocampus

(Gerardin et al., 2009; Shen et al., 2012). Specifically, (Shen et al., 2012) recently

demonstrated in a subset of ADNI-1 participants that hippocampal atrophy in AD appears to

involve the CA1, subiculum and regions of the hippocampal tail. More inclusive protocols

would capture these putative changes and gain signal to detect volumetric differences

between pathological and healthy hippocampi. However, the proportionally higher error

distribution at the caudal and dorsal boundary of P2 and to a lesser extent P1 compared to

P3–5 suggests that automatic label accuracy may partially modulate sample size differences

among hippocampal protocols.

Protocols Excluded from Comparison

The widespread use of several hippocampal methods in the literature has generated interest

to harmonize hippocampal protocols in AD, and The EADC-ADNI hippocampal initiative is

currently working towards a unified protocol for the manual delineation of the hippocampus

from 3D MRI. Briefly, the principal objectives of this initiative include reviewing the

literature, generating a robust in-vivo definition of the hippocampus, and finally validating

and qualifying a single consensus protocol on pathologically confirmed samples. Although

the current study compared a variety of different hippocampal assemblies, we did not
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include all 12 published morphological variations assessed by the harmonization initiative.

To reduce the number of manual tracings by the first author and to facilitate manual labeling

in a common orientation, we selected 5/12 protocols for comparison. There were, however, a

few notable protocol exclusions that were based on the long axis orientation of the

hippocampus. First, the protocol of (Bartzokis et al., 1998) was the most conservative

anatomical definition among all 12 protocols, excluding the entire tail of the hippocampus

and dorsal WM compartment. Second, (Convit et al., 1997) used the most restrictive

definition at the level of the hippocampal body, which excluded the parahippocampal gyrus

and large portions of the subiculum. Finally, we did not include the protocols of (Jack 1994),

(deToledo-Morrell et al., 2004) and (Watson et al., 1992), which excluded the tail of the

hippocampus similar to (Killiany et al., 1993) (P2), but included notably more anatomy

along the medial body similar to P5.

Algorithm-based limitations

There have been a number of recent technical developments that aim to advance multi-

template driven segmentation and may improve the results reported here. Nevertheless, the

spirit of the current study was to develop a common platform inspired by previously

published work to directly evaluate the performance of template design for multiatlas

segmentation. With this in mind, there were some limitations to the present study. Emerging

evidence suggests that regional nonlinear registration may offer superior registration

outcomes in comparison to whole brain approaches (Yousefi, Kehtarnavaz, Gholipour

2011). While the current study used global versus regionally specific nonlinear registration,

we endeavored to optimize a multi-atlas scheme that could accommodate several other

discrete subcortical structures implicated in AD, including the inferior horn, thalamus and

also the cingulate gyrus. Moreover, we compared intensity similarity between template and

target images using a localized VOI over the hippocampal region.

The current method used only the SyN nonlinear registration algorithm, which is

computationally expensive. However, this method outperformed several nonlinear

registration methods in a large head-to-head comparison (Klein et al., 2009). Moreover,

computationally intensive registration algorithms are increasingly accessible for most

investigators given rapid improvements in multiplex computing, processing speed and

memory.

We cannot fully exclude the possibility that a larger template library (>100 templates) might

improve segmentation results in AD and NC, particularly with outliers. Nevertheless, the

SBHV library was selected based on a priori criteria to ensure sufficient template variation

in a heterogeneous AD sample and normal aging.

Additionally, we used a non-weighted voting strategy to compare protocol libraries.

However, more sophisticated weighted priors and label fusion strategies may furnish even

greater accuracy (Robitaille and Duchesne 2012; Wang et al., 2011a). We also affine

registered templates to the MNI-152 template brain to compare similarity over the

hippocampal region, since this has been previously shown to identify similarity among MTL

ROIs centered over the hippocampus (Collins and Pruessner 2010; Kim et al., 2012).

However, this linear fitting to a healthy average brain may lower variability to assess
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similarity among atrophic brains (e.g. in AD); so future work should evaluate accuracy using

an average elderly or AD-specific brain template.

Recently, (Wang et al., 2011b) developed a wrapper based correction method, which detects

systematic bias across an input dataset and accordingly adjusts final label volumes. This

method improved multi-atlas segmentation accuracy by 1% (DSC =0.0887 → 0.908) for

multi-template based segmentations and may significantly improve segmentation outcomes

for less inclusive protocols.

Conclusions

Accurate and precise automated hippocampal volumetry is ever more important for ROI

demarcation of functional imaging measurements, supporting a diagnosis of AD and

determining therapeutic efficacy in putative disease modifying MCI and AD trials. Although

exceptional efforts are underway to manually harmonize the hippocampus in AD, several

automated methods are based on a variety of labeling protocols, are widely used in other

diseases besides AD and a direct comparison among atlas protocols has not been previously

conducted to determine optimal hippocampal definitions for multi-atlas methods. The SBHV

fully automated method uses a template library derived from a representative memory clinic

cohort and demonstrates comparable to better voxel-overlap outcomes (DSC=0.85–0.88)

compared to previous approaches in NC and AD. Although a consensus definition is

ongoing for the hippocampus, it remains integral to determine how automatic segmentation

performance (accuracy and sensitivity) is impacted by atlas composition. Given our

findings, the most accurate results were for protocols that included the majority of the

hippocampal tail, alveus and fimbria: P3 (DSC=0.88), P4 (0.88) and P5 (0.88). Anatomical

differences for the medial hippocampal body did not markedly affect accuracy among the

most inclusive atlas protocols (P3–P5). In contrast, voxel-wise error differences among

protocols were principally distributed around the alveus/fimbria grey-white matter border

and the posterior hippocampus. Moreover, errors affecting the caudal hippocampus were

more pronounced and desperate in ADNI-1 AD subjects when the posterior definition varied

among protocols. Voxel-wise segmentation accuracy was lower across protocols for the

more pathologically heterogeneous Sunnybrook sample (NC, AD+VaD, VaD, AD+SVD

and AD) versus the ADNI-1 validation dataset, which included only NC, AD and amnestic

MCI subjects. All protocols discriminated between NC, MCI and AD in the expected

directions and showed similar associations with episodic memory performance and decline

in both MCI and AD. At the same time, our findings confirm manually derived rates of

change in the literature. Finally, more inclusive protocols appear to furnish slightly better

group-wise separation between MCI subgroups modestly better associations with episodic

memory measures. A broad interpretation of our results suggests that on the whole, more

inclusive hippocampal definitions that include the alveus, fimbria and >hippocampal tail

capture slightly more pathological change and offer more robust segmentation outcomes,

which together may explain the improved biomarker performance in MCI and AD when

compared to less inclusive definitions. Given that the majority of automated techniques rely

on prior structural information, our ADNI-1 and Sunnybrook Dementia Study performance

findings have application to other automatic hippocampal segmentation techniques.

Moreover, these results extend beyond AD to studies in healthy aging and may be relevant
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to other neurodegenerative diseases. It is the investigators’ hope that these performance

findings ultimately advance the selection, design and interpretation of atlases used for

automatic hippocampal segmentation in AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
3D rendered right hippocampal volumes for protocols 1–5, of a single Sunnybrook

Longitudinal Dementia Study participant with a clinical diagnosis of AD, displaying in

dorsomedial orientation with anterior/head of the hippocampus (forward), medial surface

(right) and superior surface (top). The top panel shows the manually labeled hippocampus

whereas the bottom hippocampus corresponds to the SBHV automatically derived volume

using 15 fused templates per protocol. P1=(Haller et al., 1997), P2= (Killiany et al., 1993),

P3= (Malykhin et al., 2007), P4= (Pruessner et al., 2000) and P5 = (Pantel et al., 2000).

Image rendered in ITK-Snap (Yushkevich et al., 2006).
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Figure 2.
Protocol-wise Bland-Altman Plots comparing manual versus SBHV automatically derived

manual labels for the Sunnybrook LOOCV. An optimized protocol was used for SBHV

segmentation, which fused the 15 best matching label sets in target image space.
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Figure 3.
Protocol-wise Bland-Altman plots comparing manual versus SBHV automatically derived

manual labels of the right hippocampus for the ADNI-1 cross-validation study. An

optimized protocol was used for SBHV segmentation, which propagated to and fused the 15

best matching template library label sets in target (query) image space.
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Figure 4.
False negative (FN) coronal distribution maps for SBHV segmentation of the posterior

hippocampal region from the results of the LOOCV. The color masks represent voxel-wise

FN counts (underestimation) across the five different protocols overlaid on the Sunnybrook

average elderly 100-brain template. Each row of panels represent 4 serial slices from

posterior (right) to anterior (left) for a given protocol. Panel row A represents the posterior

border region for P1 and P3–P5 with no overlay, whereas row B shows the border region for

P2 with no overlay, which is located more anterior to the other protocols. SBHV often

underestimated the caudal hippocampal region across all protocols; however, the more
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inclusive protocols P3–P5 demonstrated less FN errors than P1 and P2, which excluded

portions of the hippocampal tail.
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Figure 5.
Protocol-wise coronal false negative (FN) distribution maps for SBHV segmentation of the

medial anterior-superior alveus from the results of the LOOCV. The color masks represent

voxel-wise FN counts (underestimation) across the five different protocols overlaid on the

Sunnybrook average elderly 100-brain template. The most offending regions are highlighted

with white arrows. SBHV tended to overestimate the anterior-superior medial white matter

compartment (white arrows) to a greater extent in protocols, which excluded the alveus and

fimbria (i.e. P1 and P2).
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Figure 6.
Protocol-wise coronal false positive (FP) distribution maps for SBHV segmentation of the

superior white matter compartment across the hippocampal body (i.e. alveus/fimbria) from

the results of the LOOCV. The color masks represent voxel-wise FP counts (overestimation)

across all five protocols projected onto the Sunnybrook average elderly 100-brain template.

The most offending regions/protocols are highlighted with white arrows. P1 and P2, which

excluded the alveus and fimbria tended to overestimate the superior white matter
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compartment, and this may be partially explained by the poor contrast realized between grey

and white matter within this region.
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Figure 7.
Protocol-wise coronal false positive (FP) distribution maps for SBHV segmentation from the

results of the LOOCV. The color masks represent voxel-wise FP counts across the five

different surveyed protocols projected onto the Sunnybrook average elderly 100- brain

template. White arrows highlight marked overestimation (FP errors) of the inferior

hippocampal compartment, which includes background regions of parahippocampal white

matter. This FP error similarly affected all protocols in the LOOCV.
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Figure 8.
False negative (FN) coronal distribution maps for SBHV segmentation of the posterior

hippocampal region from the results of the ADNI-1 cross-validation study. The color masks

represent voxel-wise FN counts (underestimation) across P1, P2 and P4 (rows) and

NC/MCI/AD ADNI-1 groups (columns), projected onto the Sunnybrook average elderly

100-brain template. Note, the P2 posterior border started more anterior to P1 and P4. Caudal

FN error distributions for the ADNI-1 validation are similar to those observed in the

LOOCV. Qualitatively, caudal FN distributions between protocols varied the most in AD,

and within the AD sample all protocols showed significantly different median Dice

similarity measures (P4>P1>P2). Further, P2 demonstrated the greatest caudal error as a

result of the landmark-based definition used to demarcate the posterior border. For within

protocol comparisons, only P4 demonstrated significantly different voxel-wise accuracy

measurements between groups (AD>NC).
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Figure 9.
ADNI-1 group-wise coronal false positive (FP) distribution maps for SBHV-P4

segmentation from the results of the ADNI-1 cross-validation study. White arrows highlight

overestimation (FP errors) of the inferior hippocampal compartment. The color masks

represent voxel-wise FP counts (overestimation) projected onto the Sunnybrook average

elderly 100-brain template. Note that the FP error count was greater along the inferomedial

hippocampus in NC and MCI than AD, which may partially explain the lower Dice

similarity results in NC and MCI versus AD.
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Figure 10.
Protocol-specific comparisons of baseline total hippocampal volume (right + left) including

ADNI-1 principal groups: Normal controls (NC), Mild Cognitive Impairment (total group)

(tMCI) and Alzheimer’s Disease (AD) in addition to ADNI-1 MCI subgroups: MCI

converters after 24-months (cMCI), MCI subjects who reverted back to normal elders

(rMCI) and MCI subjects who remained stable after 24-months (sMCI). The whiskers

represent the 10th and 90th percentiles, and all data beyond these values are plotted.

P1=(Haller et al., 1997), P2= (Killiany et al., 1993), P3= (Malykhin et al., 2007), P4=

(Pruessner et al., 2000) and P5 = (Pantel et al., 2000).
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Figure 11.
Protocol-specific comparisons of hippocampal 24-month rates of change normalized to

baseline volume and serial scan window including ADNI-1 principal groups: Normal

controls (NC), Mild Cognitive Impairment (total group) (tMCI) and Alzheimer’s Disease

(AD) in addition to ADNI-1 MCI subgroups: MCI converters after 24-months (cMCI), MCI

subjects who reverted back to normal elders (rMCI) and MCI subjects who remained stable

after 24-months (sMCI). The whiskers represent the 10th and 90th percentiles, and all data

beyond these values are plotted. P1=(Haller et al., 1997), P2= (Killiany et al., 1993), P3=

(Malykhin et al., 2007), P4= (Pruessner et al., 2000) and P5 = (Pantel et al., 2000).

Nestor et al. Page 44

Neuroimage. Author manuscript; available in PMC 2014 May 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nestor et al. Page 45

T
ab

le
 1

Su
bj

ec
t d

em
og

ra
ph

ic
s 

fo
r 

th
e 

Su
nn

yb
ro

ok
 A

tla
s 

L
ib

ra
ry

 a
nd

 th
e 

to
ta

l s
ub

je
ct

 p
oo

l f
or

 th
e 

L
O

O
C

V
 (

n=
35

) 
+

 L
O

O
 (

n=
15

) 
op

tim
iz

at
io

n 
da

ta
se

t.

M
M

SE
=

M
in

i M
en

ta
l S

ta
te

 E
xa

m
, N

C
 =

 N
or

m
al

 C
on

tr
ol

, A
D

 =
 A

lz
he

im
er

’s
 D

is
ea

se
, A

D
+

SV
D

 =
 A

lz
he

im
er

’s
 d

is
ea

se
 a

nd
 S

m
al

l V
es

se
l D

is
ea

se
, V

aD
 =

V
as

cu
la

r 
D

em
en

tia
, M

ix
ed

 A
D

 =
 A

D
 +

 V
aD

.

N
C

A
D

A
D

+S
V

D
M

ix
ed

 A
D

V
aD

T
ot

al

N
12

21
9

6
2

50

G
en

de
r 

(M
)

6
12

4
5

1
28

A
ve

ra
ge

 A
ge

 (
SD

) 
(y

ea
rs

)
67

.6
 (

7.
6)

68
.9

 (
10

.4
)

75
.4

 (
7.

6)
78

.3
 (

7.
8)

79
.5

 (
0.

7)
71

.3
 (

9.
5)

A
ve

ra
ge

 E
du

ca
tio

n 
(S

D
) 

(y
ea

rs
)

17
.5

 (
2.

0)
13

.9
 (

3.
7)

11
.2

 (
3.

3)
14

.2
 (

2.
5)

14
14

.2
 (

3.
6)

A
ve

ra
ge

 M
M

SE
 S

co
re

 (
SD

) 
(/

30
)

29
.4

 (
0.

7)
20

.9
 (

5.
8)

20
.9

 (
5.

6)
21

.7
 (

4.
2)

22
 (

5.
7)

23
.1

 (
5.

9)

Neuroimage. Author manuscript; available in PMC 2014 May 07.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nestor et al. Page 46

T
ab

le
 2

A
 b

as
ic

 o
ut

lin
e 

of
 m

aj
or

 a
na

to
m

ic
al

 h
ip

po
ca

m
pa

l b
ou

nd
ar

ie
s 

fo
r 

5/
12

 p
ro

to
co

ls
 s

ur
ve

ye
d 

by
 (

B
oc

ca
rd

i e
t a

l.,
 2

01
1)

 a
nd

 u
se

d 
to

 g
en

er
at

e 
5 

SB
H

V
 m

ul
ti-

at
la

s 
lib

ra
ri

es
. L

an
dm

ar
ks

 d
ef

in
iti

on
s 

w
er

e 
ad

ap
te

d 
fr

om
 S

ta
nd

ar
d 

O
pe

ra
tin

g 
Pr

oc
ed

ur
es

 (
w

w
w

.h
ip

po
ca

m
pa

l-
pr

ot
oc

ol
.n

et
/S

O
Ps

) 
an

d 
th

e 
or

ig
in

al
 p

ro
to

co
l

m
an

us
cr

ip
ts

.

P
ro

to
co

l (
P

)
C

od
e

Se
gm

en
ta

ti
on

M
et

ho
d

H
ip

po
ca

m
pa

l B
oa

rd
er

E
xc

lu
de

d
A

na
to

m
y

Su
pe

ri
or

In
fe

ri
or

M
ed

ia
l

L
at

er
al

P
os

te
ri

or
A

nt
er

io
r

P
1

(H
al

le
r 

et
 a

l.,
 1

99
7)

Fx
- 

Fb
- 

or
 A

v-
G

M
in

te
rf

ac
e,

 I
H

, A
C

W
M

 o
f 

PH
G

an
d 

an
te

ri
or

ly
:

PH
G

 W
M

/U
S*

T
ai

l/B
od

y 
of

 th
e 

H
c:

co
nt

ou
r 

of
 P

H
G

 W
M

ex
te

nd
ed

 b
y 

ho
ri

zo
nt

al
 li

ne
to

w
ar

ds
 th

e 
A

C
. A

nt
er

io
r:

fo
llo

w
in

g 
in

cl
in

e 
of

 P
H

G
W

M

Fx
, I

H
, W

M
of

 M
T

L
Fi

rs
t s

lic
e 

w
he

re
 H

c
ap

pe
ar

s 
ad

ja
ce

nt
 to

V
T

Se
pa

ra
tio

n 
of

 H
c 

an
d

A
g 

(u
se

 a
xi

al
 a

nd
sa

gi
tta

l v
ie

w
s 

to
di

st
in

gu
is

h)

Fx
, F

b,
 A

v,
 P

H
G

(i
nc

lu
de

s 
so

m
e 

of
th

e 
su

pe
ri

or
-

m
ed

ia
l P

H
G

)

P
2

(K
ill

ia
ny

 e
t a

l.,
19

93
)

Fx
- 

Fb
- 

or
 A

v-
G

M
bo

un
da

ry
, I

H
, A

C
W

M
 o

f 
PH

G
an

d 
an

te
ri

or
ly

:
PH

G
 W

M
/U

S*

Po
st

er
io

r/
bo

dy
 H

c 
an

ob
liq

ue
 li

ne
 a

lo
ng

 G
M

-
W

M
 o

f 
PH

G
 e

xt
en

di
ng

 to
th

e 
A

C
, a

nd
 a

t h
ea

d 
of

 H
C

fo
llo

w
in

g 
in

cl
in

e 
of

 P
H

G
W

M

Fx
, I

H
, W

M
of

 M
T

L
L

on
ge

st
 le

ng
th

 o
f

th
e 

C
ru

s 
of

 th
e 

Fx
 in

co
ro

na
l v

ie
w

Sl
ic

e 
w

he
re

 th
e 

A
v

di
ff

er
en

tia
te

s 
A

g 
fr

om
H

c

Fx
, F

b,
 A

v,
 P

H
G

an
d 

po
rt

io
ns

 o
f

m
ed

ia
l S

b 
at

 th
e

le
ve

l o
f 

th
e 

bo
dy

P
3

(M
al

yk
hi

n 
et

 a
l.,

 2
00

7)
Fx

, T
h,

 A
C

, A
v

(m
os

t a
nt

er
io

r
sl

ic
es

)

W
M

 o
f 

PH
G

an
d 

an
te

ri
or

ly
:

PH
G

 W
M

/U
S*

W
M

 o
f 

PH
G

, a
nd

 w
he

n
PH

G
 n

ot
 a

 h
or

iz
on

ta
l l

in
e

us
ed

 a
n 

ob
liq

ue
 li

ne
 a

lo
ng

PH
G

 W
M

 e
xt

en
di

ng
 to

 th
e

A
C

Fx
, V

T
, I

H
,

W
M

 o
f

M
T

L

Fi
rs

t s
lic

e 
w

he
re

 a
n

ov
oi

d 
m

as
s 

of
 H

c
G

M
 is

 in
fe

ri
om

ed
ia

l
to

 V
T

Sl
ic

e 
al

on
g 

an
te

ri
or

-
po

st
er

io
r 

ax
is

(s
ag

ita
lly

) 
w

he
re

 P
H

G
W

M
 is

 f
ir

st
 v

is
ib

le

Fx
 a

nd
 p

or
tio

ns
 o

f
bo

th
 th

e 
Sb

 a
nd

PH
G

 (
w

he
n 

PH
G

W
M

 n
ot

 a
 s

tr
ai

gh
t

lin
e)

P
4

α
(P

ru
es

sn
er

 e
t a

l.,
20

00
)

Po
st

er
io

r:
H

or
iz

on
ta

l l
in

e
th

at
 f

ol
lo

w
s 

th
e

su
pe

ri
or

 P
H

G
 W

M
ex

te
nd

in
g 

to
 th

e
A

C
. O

th
er

w
is

e
C

SF
 o

f 
Q

C
, I

H
 o

r
A

v 
(m

os
t a

nt
er

io
r

sl
ic

es
)

W
M

 o
f 

PH
G

an
d 

an
te

ri
or

ly
:

PH
G

 W
M

/U
S*

Po
st

er
io

r 
H

c:
 V

er
tic

al
 li

ne
th

at
 f

ol
lo

w
s 

m
ed

ia
l e

dg
e 

of
V

T
, o

th
er

w
is

e 
C

SF
 o

f 
A

C
.

B
od

y 
H

c:
 4

5°
 li

ne
 f

ro
m

in
fe

ri
or

 b
od

y 
to

 th
e 

A
C

.
H

ea
d 

H
c:

 C
SF

 o
f 

A
C

.

Fx
, V

T
, I

H
,

W
M

 o
f

M
T

L

Fi
rs

t o
vo

id
 m

as
s 

of
G

M
 in

fe
ri

om
ed

ia
l t

o
V

T

Sl
ic

e 
w

he
re

 e
ith

er
 th

e
IH

, A
g 

or
 A

v 
is

pr
es

en
t (

us
ed

 a
xi

al
vi

ew
 to

 h
el

p 
in

te
rp

re
t)

Po
rt

io
ns

 o
f 

th
e

m
ed

ia
l S

b,
 M

ed
ia

l
G

M
 o

f 
PH

G
 a

t
le

ve
l o

f 
bo

dy
, F

x

P
5

β (
Pa

nt
el

 e
t a

l.,
20

00
)

T
h,

 A
C

, A
v 

(m
os

t
an

te
ri

or
 s

lic
es

)
W

M
 o

f 
PH

G
an

d 
an

te
ri

o
W

M
/U

S*

Po
st

er
io

r 
H

c:
 Q

C
, B

od
y

H
c:

 C
on

to
ur

 o
f 

PH
G

-W
M

.
A

nt
er

io
r 

H
c:

 o
bl

iq
ue

 li
ne

fo
llo

w
in

g 
PH

G
 W

M

Fx
, V

T
, I

H
,

W
M

 o
f

M
T

L

Fi
rs

t o
vo

id
 m

as
s 

of
G

M
 in

fe
ri

om
ed

ia
l t

o
V

T

Sl
ic

e 
at

 w
hi

ch
 h

ea
d 

of
H

c 
ap

pe
ar

s 
as

 o
va

l
sh

ap
e 

be
lo

w
 A

g

α
A

 p
re

-p
ro

ce
ss

in
g 

st
ep

 in
 th

e 
pr

ot
oc

ol
 n

or
m

al
iz

es
 b

ra
in

s 
to

 T
al

ai
ra

ch
 s

pa
ce

, w
hi

ch
 w

as
 n

ot
 p

er
fo

rm
ed

 in
 th

e 
cu

rr
en

t s
tu

dy
.

β T
he

 u
pd

at
ed

 s
ta

nd
ar

di
ze

d 
op

er
at

in
g 

pr
oc

ed
ur

e 
fo

r 
th

e 
hi

pp
oc

am
pa

l h
ar

m
on

iz
at

io
n 

pr
oc

ed
ur

e 
in

cl
ud

es
 th

e 
al

ve
us

 a
nd

 f
im

br
ia

, w
hi

ch
 a

re
 e

xc
lu

de
d 

in
 th

e 
or

ig
in

al
 p

ro
to

co
l.

* T
he

 U
S 

co
m

m
on

ly
 w

id
en

s 
an

d 
be

co
m

es
 a

 v
is

ib
le

 la
nd

m
ar

k 
as

 a
 h

yp
oi

nt
en

se
 b

an
d 

on
 T

1-
w

ei
gh

te
d 

M
R

I 
in

 a
tr

op
hi

c 
br

ai
ns

.

Neuroimage. Author manuscript; available in PMC 2014 May 07.

http://www.hippocampal-protocol.net/SOPs


N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nestor et al. Page 47
K

ey
: P

H
G

 =
 p

ar
ah

ip
po

ca
m

pa
l g

yr
us

, C
SF

 =
 c

er
eb

ro
sp

in
al

 f
lu

id
, W

M
 =

 w
hi

te
 m

at
te

r,
 A

v 
=

 a
lv

eu
s,

 A
C

 =
 A

m
bi

en
t C

is
te

rn
, E

C
 =

 E
nt

or
hi

na
l C

or
te

x,
 I

H
 =

 I
nf

er
io

r 
ho

rn
 o

f 
la

te
ra

l v
en

tr
ic

le
, A

g=
A

m
yg

da
la

, H
c

=
 H

ip
po

ca
m

pu
s,

 M
T

L
 =

 M
ed

ia
l T

em
po

ra
l L

ob
e,

 V
T

 =
 L

at
er

al
 V

en
tr

ic
ul

ar
 T

ri
go

ne
 (

al
so

 in
cl

ud
es

 a
tr

iu
m

 o
f 

la
te

ra
l v

en
tr

ic
le

),
 U

nc
al

 S
ul

cu
s 

=
 U

S,
 V

er
tic

al
 D

ig
ita

tio
n 

=
 V

D
, F

or
ni

x 
=

 F
x,

 F
im

br
ia

 =
 F

b,
T

ha
la

m
us

 =
 T

h,
 Q

C
=

 Q
ua

dr
ig

em
in

al
 C

is
te

rn

Neuroimage. Author manuscript; available in PMC 2014 May 07.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nestor et al. Page 48

T
ab

le
 3

D
em

og
ra

ph
ic

 d
et

ai
ls

 o
f 

th
e 

co
m

pl
et

e 
ba

se
lin

e 
A

lz
he

im
er

’s
 D

is
ea

se
 N

eu
ro

im
ag

in
g 

In
iti

at
iv

e-
1 

da
ta

se
t u

se
d 

to
 c

om
pu

te
 h

ip
po

ca
m

pa
l v

ol
um

es
. T

w
en

ty
-

fo
ur

 m
on

th
 f

ol
lo

w
-u

p 
da

ta
 a

re
 a

ls
o 

re
po

rt
ed

. M
C

I 
=

 M
ild

 C
og

ni
tiv

e 
Im

pa
ir

m
en

t, 
M

C
I 

co
nv

er
te

rs
 (

cM
C

I)
 a

re
 A

D
N

I1
 p

ar
tic

ip
an

ts
 th

at
 c

on
ve

rt
ed

 f
ro

m
 a

di
ag

no
si

s 
of

 M
C

I 
to

 A
D

 th
ro

ug
h 

a 
24

-m
on

th
 s

tu
dy

 w
in

do
w

, w
hi

le
 M

C
I 

re
ve

rt
er

s 
(r

M
C

I)
 a

re
 p

ar
tic

ip
an

ts
 th

at
 r

ev
er

te
d 

fr
om

 a
 c

lin
ic

al
 e

va
lu

at
io

n 
of

 M
C

I

to
 b

ei
ng

 n
or

m
al

 e
ld

er
s.

 M
C

I 
st

ab
le

 o
r 

sM
C

I 
ar

e 
su

bj
ec

ts
 th

at
 h

ad
 a

 d
ia

gn
os

is
 o

f 
M

C
I 

th
at

 d
id

 n
ot

 c
ha

ng
e 

ov
er

 a
 2

4-
m

on
th

 p
er

io
d.

 M
M

SE
=

M
in

i M
en

ta
l

St
at

e 
E

xa
m

, L
M

1 
– 

L
og

ic
al

 M
em

or
y 

T
es

t 1
 I

m
m

ed
ia

te
 R

ec
al

l, 
A

V
L

T
 =

 A
ud

ito
ry

 V
er

ba
l L

ea
rn

in
g 

T
es

t (
Su

m
 o

f 
tr

ia
ls

 I
–I

V
),

 I
C

V
 =

 in
tr

ac
ra

ni
al

 v
ol

um
e.

N
C

M
C

I 
T

ot
al

M
C

I 
C

on
ve

rt
er

s
M

C
I 

R
ev

er
te

rs
M

C
I 

St
ab

le
A

D

N
 (

ba
se

lin
e)

22
7

41
2

13
4

13
26

2
20

0

N
 (

24
 m

on
th

 f
ol

lo
w

-u
p)

17
3

25
4

95
10

14
8

11
1

A
ve

ra
ge

 A
ge

 (
SD

) 
(Y

ea
rs

)
76

.0
(5

.0
)

74
.7

(7
.4

)
74

.4
(7

.2
)

73
.5

(9
.0

)
75

.0
(7

.5
)

75
.6

(7
.7

)

A
ve

ra
ge

 E
du

ca
tio

n 
(S

D
) 

(y
ea

rs
)

16
.1

(2
.8

)
15

.7
(3

.0
)

15
.7

(2
.9

)
15

.8
(2

.5
)

15
.7

(3
.1

)
14

.7
(3

.2
)

G
en

de
r 

(M
)

11
8

26
2

81
9

17
2

10
3

A
ve

ra
ge

 M
M

SE
 S

co
re

 (
SD

) 
(/

30
)

29
.1

2
(1

.0
0)

27
.0

7
(1

.8
9)

26
.6

5
(1

.7
3)

27
.5

4
(1

.3
9)

27
.1

7
(1

.8
1)

23
.2

8
(2

.0
4)

A
ve

ra
ge

 S
ca

n 
In

te
rv

al
 (

SD
) 

(m
on

th
s)

24
.7

(1
.3

)
24

.6
(1

.1
)

24
.6

(1
.1

)
24

.4
(1

.8
)

24
.6

(1
.0

)
24

.7
(1

.6
)

A
ve

ra
ge

 I
C

V
 S

D
) 

(m
l)

13
29

.8
(1

32
.3

)
13

46
.3

(1
37

.0
)

13
27

.2
(1

47
.0

)
13

98
.1

(1
64

.1
)

13
53

.4
(1

29
.4

)
13

11
.9

(1
46

.6
)

Neuroimage. Author manuscript; available in PMC 2014 May 07.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nestor et al. Page 49

T
ab

le
 4

In
te

r-
 (

n=
5)

 a
nd

 in
tr

a-
ra

te
r 

(n
=

10
) 

D
ic

e 
Si

m
ila

ri
ty

 C
oe

ff
ic

ie
nt

s 
(D

SC
) 

an
d 

in
te

rq
ua

rt
ile

 r
an

ge
s 

(I
Q

R
),

 in
tr

ac
la

ss
 c

or
re

la
tio

n 
co

ef
fi

ci
en

ts
 (

IC
C

) 
an

d 
95

%

co
nf

id
en

ce
 in

te
rv

al
s 

(C
I)

 f
or

 b
ila

te
ra

l m
an

ua
l h

ip
po

ca
m

pa
l t

ra
ci

ng
s 

on
 S

un
ny

br
oo

k 
1.

5T
 M

R
I 

sc
an

s.
 P

1=
 (

H
al

le
r 

et
 a

l.,
 1

99
7)

, P
2=

 (
K

ill
ia

ny
 e

t a
l.,

 1
99

3)
,

P3
=

 (
M

al
yk

hi
n 

et
 a

l.,
 2

00
7)

, P
4=

 (
Pr

ue
ss

ne
r 

et
 a

l.,
 2

00
0)

 a
nd

 P
5=

 (
Pa

nt
el

 e
t a

l.,
 2

00
0)

.

A
tl

as
P

ro
to

co
l

In
te

r-
ra

te
r

In
tr

a-
ra

te
r

D
SC

IQ
R

IC
C

95
%

 C
I

D
SC

IQ
R

IC
C

95
%

 C
I

P1
0.

90
0.

01
0.

96
(0

.7
2,

 0
.9

9)
0.

92
0.

01
0.

97
(0

.8
8,

 0
.9

9)

P2
0.

91
0.

01
0.

92
(0

.5
1,

 0
.9

9)
0.

92
0.

01
0.

95
(0

.8
1,

 0
.9

9)

P3
0.

91
0.

01
0.

94
(0

.4
7,

 0
.9

9)
0.

92
0.

01
0.

97
(0

.9
0,

 0
.9

9)

P4
0.

91
0.

01
0.

95
(0

.5
2,

 0
.9

9)
0.

93
0.

02
0.

96
(0

.7
4,

 0
.9

9)

P5
0.

91
<

0.
01

0.
95

(0
.7

0,
 0

.9
9)

0.
92

0.
01

0.
96

(0
.7

6,
 0

.9
9)

Neuroimage. Author manuscript; available in PMC 2014 May 07.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Nestor et al. Page 50

Table 5

Voxel similarity measured using the Dice Similarity Coefficient (DSC) and associated interquartile range

(IQR) between manual and SBHV automatic bilateral hippocampal labels for the Sunnybrook automated

pipeline leave-one-out optimization dataset (template n=30), and Sunnybrook LOOCV dataset (template

n=70). Values reported are based on the automated labels that were generated by nonlinear registration to the

target space and label fusion of the 15 best matching MRI templates. P1= (Haller et al., 1997), P2=(Killiany et

al., 1993), P3=(Malykhin et al., 2007), P4=(Pruessner et al., 2000) and P5=(Pantel et al., 2000).

Atlas
Protocol

Median DSC IQR ICC 95% CI

Sunnybrook Optimization Experiment

P1 0.87 0.05 0.93 (0.56 – 0.98)

P2 0.85 0.04 0.86 (0.42 – 0.96)

P3 0.89 0.03 0.94 (0.79 – 0.98)

P4 0.88 0.03 0.94 (0.60 – 0.98)

P5 0.89 0.03 0.93 (0.76 – 0.98)

Sunnybrook LOOCV Experiment

P1 0.86 0.04 0.92 (0.72 – 0.96)

P2 0.85 0.04 0.88 (0.40 – 0.96)

P3 0.88 0.02 0.94 (0.80 – 0.99)

P4 0.88 0.03 0.91 (0.54 – 0.97)

P5 0.88 0.02 0.93 (0.72 – 0.97)
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