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Abstract

This paper presents a novel family of linear transforms that can be applied to data collected from
the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes
the previously-proposed Funk-Radon Transform (FRT), which was originally developed for
estimating the orientations of white matter fibers in the central nervous system from diffusion
magnetic resonance imaging data. The new family of transforms is characterized theoretically, and
efficient numerical implementations of the transforms are presented for the case when the
measured data is represented in a basis of spherical harmonics. After these general discussions,
attention is focused on a particular new transform from this family that we name the Funk-Radon
and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-
based analysis should yield significantly better orientation information (e.g., improved accuracy
and higher angular resolution) than FRT-based analysis, while maintaining the strong
characterizability and computational efficiency of the FRT. Simulations are used to confirm these
theoretical characteristics, and the practical significance of the proposed approach is illustrated
with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to
having strong theoretical characteristics, the proposed approach can outperform existing state-of-
the-art orientation estimation methods with respect to measures such as angular resolution and
robustness to noise and modeling errors.
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1. Introduction

We consider the design of linear transformations that can be applied to Fourier data sampled
on the surface of a sphere. In particular, we assume that we observe values of the three-

dimensional Fourier transform of an unknown real-valued function f (x) € -2 (R3) (where
4 () denotes the space of absolutely integrable functions):
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E(q) :fsz (x) exp (—i271qTx) dx. (1)

We assume that £(q) is only observed at points q from the 2-sphere of radius p, i.e.,

q € .72 where ;= {q € R32I|(1II52=10}. We additionally assume that 7(x) originates from a
class of functions with real-valued and non-negative Fourier transforms (i.e., it is necessary
that 7(x) = £(-x)).

We specifically consider the family of linear transforms R that map such spherical Fourier
data onto .77 according to

RAE@IW=[ E@G(u'a)da,

where u e .7} is an orientation parameter of the transform. The choice of the transform
kernel G () determines the characteristics of the transforms from this family, and is the main
focus of the present work. While the design of signals and filters on the sphere has been
considered previously in other contexts (e.g. Wei et al., 2011, and its references), the
specific inverse problem setting of (1) leads to a design problem that is quite distinct.

Spherical Fourier sampling is an accurate model of the data acquisition procedure in high
angular resolution magnetic resonance diffusion imaging (HARDI), and a special case of
(2), known as the Funk-Radon Transform (FRT), has been previously proposed by Tuch et
al. in this context (Tuch, 2002; Tuch et al., 2003; Tuch, 2004). In particular, the FRT uses
G(u’q) = 8u’q), where &(:) denotes the Dirac delta function. In this notation, the delta

function is being used to define a contour integral around the equator of ﬂpz that is
perpendicular to u. The FRT is useful in the context of HARDI data because it allows
computation of an approximate diffusion orientation distribution function (ODF), which
quantifies information about the amount of diffusion along any given orientation u. This
diffusion orientation information can be valuable in the study of anisotropic structures like
white matter fibers in the central nervous system (CNS), because the diffusion ODF for a
given voxel is often similar in shape to the distribution of white matter fibers within that
voxel (Seunarine and Alexander, 2009; Assemlal et al., 2011). The combination of the FRT
with HARDI data is also known as Q-ball imaging (QBI) (Tuch, 2004).

Many alternatives to the FRT have been proposed in recent years for estimating orientation
information from the same kind of HARDI data, including multi-tensor models (Alexander
et al., 2001; Tuch et al., 2002; Hosey et al., 2005; Kreher et al., 2005; Peled et al., 2006;
Behrens et al., 2007; Jian et al., 2007; Ramirez-Manzanares et al., 2007; Pasternak et al.,
2008; Melie-Garcia et al., 2008; Leow et al., 2009; Tabelow et al., 2012), higher-order
generalizations of tensor models (Alexander et al., 2002; Frank, 2002; Ozarslan and Mareci,
2003; Liu et al., 2004; Schultz and Seidel, 2008; Barmpoutis et al., 2009; Liu et al., 2010;
Florack et al., 2010), directional function modeling (Kaden et al., 2007; Rathi et al., 2009,
2010), spherical polar Fourier expansion (Assemlal et al., 2009, 2011), independent
component analysis (Singh and Wong, 2010), sparse spherical ridgelet modeling
(Michailovich and Rathi, 2010), diffusion circular spectrum mapping (Zhan et al., 2004),
deconvolution (Tournier et al., 2007; Anderson, 2005; Descoteaux et al., 2009; Patel et al.,
2010; Yeh et al., 2011; Reisert and Kiselev, 2011), the diffusion orientation transform
(Ozarslan et al., 2006; Canales-Rodriguez et al., 2010), estimation of persistent angular
structure (Jansons and Alexander, 2003), generalized g-sampling imaging (Yeh et al., 2010),
and orientation estimation with solid angle considerations (Tristan-Vega et al., 2009; Aganj
et al., 2010; Tristan-Vega et al., 2010). However, the FRT has a unique combination of
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useful characteristics: it does not require a strict parametric model of the diffusion signal, it
is linear and its theoretical characteristics can be explored analytically, and it can be
computed very quickly using efficient algorithms (Anderson, 2005; Hess et al., 2006;
Descoteaux et al., 2007; Kaden and Kruggel, 2011). Despite this, a significant disadvantage
has been that FRT-based orientation estimates can have lower resolution/accuracy relative to
some of the alternative processing methods (Alexander, 2005; Anderson, 2005; Jian et al.,
2007; Ramirez-Manzanares et al., 2007; Schultz and Seidel, 2008; Barmpoutis et al., 2009;
Descoteaux et al., 2009; Tournier et al., 2008; Rathi et al., 2009; Aganj et al., 2010; Tristan-
Vega et al., 2009; Michailovich and Rathi, 2010; Yeh et al., 2011; Canales-Rodriguez et al.,
2010; Yeh et al., 2010; Tristan-Vega et al., 2010; Assemlal et al., 2011), partly because the
approach is based on a sub-optimal definition of the ODF (Barnett, 2009; Aganj et al., 2010;
Tristan-Vega et al., 2009).

In this work, we show that by generalizing the FRT with (2), it is possible to significantly
enhance performance while maintaining the desirable characteristics of the FRT. A
preliminary account of this work was presented in Haldar and Leahy (2012).

1.1. Diffusion MRI and the Funk-Radon Transform

1.1.1. Diffusion MRI Basics—The statistical characteristics of molecular diffusion
within a single MR imaging voxel can be coarsely summarized using a probability density
function P (x, A) known as the ensemble average diffusion propagator (EAP) (Callaghan,
1991). The EAP quantifies the average probability that a water molecule, undergoing a
random walk over a time period of length A, will be found at a spatial displacement of

x € R? relative to its starting position. Under the assumptions of pure diffusion and that the
system is at thermal equilibrium, the EAP will be symmetric (i.e., P (X, A) = P(—x, A)) and
have zero-mean. Under the g-space formalism (Callaghan, 1991), the ideal measured DW-
MRI data is modeled as (1), where the g-space function £(q) corresponds to the signal
observed from the MR scanner as a function of diffusion gradient parameters g, and £(x) o
P (X, A).

In practice, the diffusion signal £(q) is measured over a finite set of different g values, and
a variety of different g-space sampling schemes have been proposed. One approach is to
densely sample g-space. For example, assuming the EAP is support-limited and the
sampling density satisfies the Nyquist criterion, then reconstruction of the full EAP is
possible via Fourier inversion (Wedeen et al., 2005). However, this kind of encoding can be
demanding on MR hardware, and can also be time consuming since experiment time is
proportional to the number of samples. At the other extreme, parametric models for the EAP
can be used to reduce g-space sampling requirements significantly. For example, the
conventional diffusion tensor imaging (DTI) model (Basser et al., 1994) is equivalent to
modeling the EAP as a zero-mean Gaussian distribution, and estimation of the
corresponding 3 x 3 positive semidefinite covariance matrix can be achieved with as few as
7 different g-space samples. However, it has become widely recognized that a simple
Gaussian model is insufficient to accurately model diffusion in complex biological tissues.
In the CNS, this is due in part to the fact that the simple Gaussian model can have at most
one dominant orientation, and is thus incapable of representing the EAPs that are observed
when a single voxel contains partial volume contributions from multiple crossing white
matter fiber bundles.

HARDI sampling, in which diffusion data is sampled densely on the surface of a sphere,
enables a more reasonable balance between data acquisition speed/complexity and the
capability to resolve crossing fibers. It has been shown that approaches using HARDI
sampling have only incrementally lower performance compared to Nyquist-rate Fourier
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encoding, but have significantly enhanced performance over DTI (Kuo et al., 2008; Zhan
and Yang, 2006).

1.1.2. Orientation Distribution Functions and the Funk-Radon Transform—An
important objective in DW-MRI is to derive fiber orientation information from HARDI data,
and there are different ways to define an ODF to quantify the orientations associated with an
EAP. In QBI (Tuch, 2004), an ideal ODF was defined as!

ODF , (u) =f;of (au) da
=1[" flawde (3
=17 Fu(0,0,2)dz

for orientation vectors u € ,5”12. The function £, (-) expresses f(-) in a rotated coordinate
system in which the orientation vector u is parallel to the z-axis. This definition of the ODF
computes radial projections of the EAP, which Tuch showed can be approximated by the
FRT. In particular, it can be verified that the FRT satisfies

f yzE Qo (uTq) dq

ZPIOHEu (p cos 6,p sin 6,0)do (4
2mpfff o fu(x,y,2) Jo (27Tp \/x2+y2) dxdydz

where £, (-) is the coordinate-rotated version of £(-) (cf. £, (-)and 7(-)), and J (*) is the
zeroth-order Bessel function of the first kind. Given that J (-) has most of its energy
concentrated at the origin, (4) can be viewed as a coarse approximation of (3), with the
approximation quality improving for larger values of the sampling radius p.

While the QBI definition of the ODF has been used with great success, an improved ODF
definition is given by (Wedeen et al., 2005; Barnett, 2009; Aganj et al., 2010; Tristan-Vega
et al., 2009)

ODF (u) =7 f (cw) o’da
=17 _f(ew)o?da (5)
=1 [T fu(0,0,2) Pdz.

Physically, this corresponds to radial integration of the EAP over a cone of constant solid
angle, and differs from (3) by including the appropriate volume element for radial
integration in spherical coordinates. And unlike (3), this ODF is proportional to the
probability distribution that would be obtained by marginalizing over the radial component
of the EAP. While (5) has better theoretical and practical characteristics than the QBI ODF
(Barnett, 2009; Aganj et al., 2010; Tristan-Vega et al., 2009; Assemlal et al., 2011), existing
methods to compute (5) from sampled data have either required additional modeling
assumptions (Tristdn-Vega et al., 2009; Agan;j et al., 2010; Tristdn-Vega et al., 2010;
Canales-Rodriguez et al., 2010; Assemlal et al., 2011), the application of nonlinear operators
(e.9., logarithmic-transformations) to the diffusion data (Tristan-Vega et al., 2009; Aganj et
al., 2010; Tristan-Vega et al., 2010; Canales-Rodriguez et al., 2010), or more complicated
non-spherical g-space sampling (Wedeen et al., 2005; Canales-Rodriguez et al., 2009).

1The ODF definition from (Tuch, 2004) included an additional dimensionless normalization constant, which we have not included
here to simplify notation.
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2. Materials and Methods

2.1. Linear Transforms of the Fourier 2-Sphere

By definition, any function 7(x) proportional to a valid probability density belongs to

2 (R3). As a result, the associated g-space function £ (q) will always be bounded and
uniformly continuous (Katznelson, 1968), and linear transformations obtained using (2) will

be well defined for transform kernels satisfying G (uT-) € (5”,)2) This occurs if and only

ifG (1) e 21 ([-p.p))

For any G (uT~) €4 («sz ) the action of (2) applied to noiseless data can be expressed as
R {E(q)} (w)
-J, (s e (-izmax) ix) (" )
:fR3 fx) (fqa%% G (uTq) exp (—i27qux) dq) dx
=/ f &)@ xdx,

(6)

where we have introduced

g(u,x) = fq . G (uTq) exp (—i27qux) dq. (7
2

The function g (u, x) can be interpreted like a point-spread function, and through (6),
provides a direct relationship between the transformed data, the EAP, and the kernel
function G (*).

Using the same unitary coordinate transformation as before to define g, (-) in terms of g (u,
1), we can also express (7) in rotated coordinates as

g.(x,y,2= f ‘ipG (1) B(x,y,7)exp (-i2n12) d7, (8)

with

B(x,y, 1) =2rpJy (27r \/ﬁ [42 +y2) . ©

The derivations leading up to (8) and (9) are shown in the appendix. Note that the integral in
(8) can be viewed as a combination of a Hankel transform and a Fourier transform, though
we will not use this fact in what follows.

As can be seen from (8) and (9), the functions g, (x, y, z) resulting from (2) can be expressed
as a linear combination of Bessel functions modulated by complex sinusoids and possess
axial symmetry about the z-axis. We list a few important g, (x, y,z) and G () pairs in Table
1, and illustrate G(u’q) and 24 (x,y,2) in Fig. 1. Note that while the transform kernels

involving delta functions are not in -Zi (Yﬁ), the contour integrals they imply are still well
defined.

Since f(x) is real-valued and symmetric, we can further restrict attention to functions g (u,
x) that are also real-valued and symmetric with respect to x. In turn, this restricts attention to
real-valued and symmetric kernel functions G (), so that all of the interesting g (u, x) that
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can be obtained with (2) can equivalently be expressed as linear combinations of cosine-
modulated Bessel functions in the form of the last entry of Table 1.

2.1.1. Fast Computation—The previous subsection described the class of interesting
transforms that can be obtained from (2). In this subsection, we will show that the
computation of this transform can be performed easily by making use of spherical

harmonics. The spherical harmonics form an orthonormal basis for .72, and are frequently
defined as (Descoteaux et al., 2007)

mon (21 E-m)! .
Y (w)= e @rm) ] P/ (cos 6) exp (im¢), (10)
where the harmonic degree /=0, 1, ..., o, and the harmonic order m=-/...,0, ..., ZIn

this expression, = € [0, ] is the polar angle and ¢ € [0, 2] is the azimuthal angle for the
vector u, and P}’ (-) is the associated Legendre function of degree Zand order m.

Use of spherical harmonic representations is common in the HARDI literature, partly due to
the observation that the spherical harmonics are eigenfunctions of the FRT (Anderson, 2005;
Hess et al., 2006; Descoteaux et al., 2007; Kaden and Kruggel, 2011). Thus, if £(q) is
represented through its coefficients {cg;} in the spherical harmonic basis as

co
E@=) > con¥ (@, @y

(=0m=-C

then we can efficiently compute the FRT through simple rescaling of each spherical
harmonic coefficient by the corresponding eigenvalue. While there are several methods of
deriving the eigenfunction relationship for the FRT, Descoteaux et al. (2007) used the Funk-
Hecke theorem as the basis for their derivations.

For this paper, we observe that the Funk-Hecke theorem indicates that spherical harmonics
will be eigenfunctions of (2) for most choices of the transform kernel G (9):

Theorem (Funk-Hecke, adapted from Freeden and Schreiner (2009)): Suppose that
G ) € & ([-p,p))- Then foranyu e 77,

[ .6(u"a) ¥ @da=A7Y7 ). )
€Sy

where the eigenvalue /1? is given by
G =2mp? [ I_IP[ ()G (pt)dt. (13)
PAY) in(13) is the Legendre polynomial of degree £

It follows from this theorem that (2) can be equivalently written for G (r) € £, ([—p, p]) in
terms of the spherical harmonic coefficients {cz,} as

L

RAE @} (=28 > con¥" (w). (14)

=0 m=-C
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It should be noted that G(§) = &(&¢€) (e.g., as used by the FRT) is not an element of

2 ([-p, p])- However, an eigenfunction relationship is also valid for the circular contour
integrals implied by these transform kernels. In particular, the eigenvalues corresponding to
the transform kernel G(9) = &§(&¢) are

A§=2mpP; (€[p). (15)
This result was proven for &= 0 in (Anderson, 2005; Hess et al., 2006; Descoteaux et al.,

2007) for use with the FRT, and the proof technique of Descoteaux et al. (2007) extends in a
straightforward manner for nonzero &.

2.2. The Funk-Radon and Cosine Transform

Based on the general class of transforms introduced in the previous section, we propose the
FRACT, which we define by the transform kernel

1
G () = soip (26(0) -6 (t+) -6 (1-8), (16)

for some & with 0 < £< p. The results of the previous section imply that the FRACT has

8u (x’ Y Z) =
0 (270 V24)?) (7)
_ﬁjo (2" ‘/,02 - &2 ,/x2+y2)cos (2néz),

with spherical harmonic eigenvalues given by

/l?:@ (2P¢(0) — P (&/p) = Pc(=€/p)) . (18)

An important characteristic of the FRACT is the behavior of g, (0,0, z) as a function of z In
particular, for small values of £z, the FRACT satisfies

~ 1 _
2.00,0,2) —Tzfz(l cos (2n1é7)) (19)

=~ Zz,

where the approximation is obtained by neglecting the higherorder terms in the Taylor series
expansion of the cosine. Substituting (19) into (6), we observe that the FRACT can be used
to compute an approximation of the ODF defined in (5), similar to the way in which the
FRT was used to compute an approximation of the alternative ODF defined in (3). It should
also be noted that, as with the FRT, the signal leakage associated with the finite width of the
Bessel functions in the response function of the FRACT will diminish with increasing
sampling radius p. However, it is important to keep in mind that using very large values of p
places significant demands on the gradient system of an MR scanner, and that the SNR of
E(q) typically decays exponentially as p increases. Note also that, while the relationship
between (19) and (5) has no explicit dependence on p, the interval over which (19)
accurately approximates (5) will diminish as p increases if £is chosen in proportion to p.

For a given p, the FRACT has a single parameter & that controls its behavior. The FRACT is
not very sensitive to small variations in & due to the fact that the FRACT spherical
harmonic eigenvalues in (18) vary smoothly as a function of £ because of the smoothness of
the Legendre polynomials, though larger changes in £ can lead to FRACTS with different
characteristics. Examples of G(u’q) and 24 (x,, 7) for different choices of £ are illustrated
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in Fig. 2. As can be seen, the ability of the FRACT to approximate 22 improves as &
decreases towards 0. However, it should also be noted that as & decreases towards 0, the
energy of g, (x) is being distributed further and further from the origin. Since EAPs typically
have concentrated signal energy at the origin, this frequently implies that the signal-to-noise
ratio for the FRACT also diminishes as & decreases. However, the value of the EAP in the
region farther from the origin will typically provide more information regarding oriented
anisotropic diffusion. For comparison, note that g, (x) for the FRT was illustrated in Fig.
1(b), and that unlike the FRACT, the signal from the FRT will generally be dominated by
the region of the EAP near the origin. As a result, the FRT would be expected to have higher
SNR than the FRACT, but could be less sensitive to tissue orientation due to signal leakage
from regions near the origin in the plane orthogonal to u. In the remainder of this paper, we
will frequently use the heuristic choice of &= 0.34p, since it yielded a reasonable balance
between resolution and SNR for the datasets we worked with, though other values of £
might be preferred for these and other datasets. Further examples of the impact of £ are
shown in the supplementary material.

Further perspective can be obtained by looking at the spherical harmonic eigenvalues for
different &, as shown in Fig. 3. Spherical harmonics have the property that higher Azalues

correspond to more oscillatory Y;" (). As a result, Fig. 3 indicates that the FRT can be
viewed as a form of low-pass filter, with a tendency to emphasize the smooth and/or
isotropic components of the spherical data. On the other hand, the FRACT family of
transforms can be viewed as bandpass filters that emphasize the higher-frequency aspects of
the data. This kind of filtering would be expected to enhance the angular resolution of
FRACT. It should also be noted that the FRACT nullifies the Oth-order spherical harmonic
coefficient, which corresponds to the isotropic component of the spherical function. While
this implies that the FRACT does not accurately estimate isotropic ODFs, the suppression of
the isotropic component can help to make the anisotropic ODF components more visible.
This aspect is explored in more detail in the supplementary material. Note also that as &
decreases, the FRACT tends to reduce the contribution of the low-degree spherical
harmonics. In addition, it is possible to obtain a more uniform high-pass eigenvalue curve
(with reduced eigenvalue oscillations) through the linear combination of two or more
FRACTSs with different values of &

2.3. Practical Implementation

The transforms considered so far have all been derived under the assumption that we have

access to £(q) forallq € 5/;,2. However, practical HARDI data only provides the value of £
(q) on afinite set of AVpoints. This discrepancy requires the use of special data processing
approaches. A common approach in the literature has been to assume that the true £(q) is
relatively smooth, such that it can be approximated by a truncated spherical harmonic series
with a maximum degree of L (Descoteaux et al., 2007; Anderson, 2005; Hess et al., 2006):

L
E@=~) > con?'@. (0)

{=0m=-C

Given this signal model, the harmonic coefficients can be estimated, e.g., by least-squares
fitting to the sampled data. In practice, this inverse problem can be ill-posed, and
Descoteaux et al. (2007) introduced a linear regularization scheme that uses the Laplace-
Beltrami operator to regularize the solution. The Laplace-Beltrami operator provides a
natural smoothness measure for functions on the sphere, and is efficient to use in this
context because its eigenfunctions are the spherical harmonics. In this work, we make use of
the same regularization framework with the same parameters suggested by Descoteaux et al.
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(2007) to estimate the spherical harmonic coefficients. In addition, we also modify the
spherical harmonics to be symmetric and realvalued as described by Descoteaux et al.
(2007) to ensure that the estimated £(q) also has these properties. This modified spherical
harmonic basis has the same eigenvalues as the original spherical harmonic basis. See
Descoteaux et al. (2007) for further details.

Given the fitted spherical harmonic coefficients, any of the transforms described in this
paper can be computed efficiently using (14). However, it is also important to consider how

truncation of the spherical harmonic series and finite sampling of 5/},2 influence the
characteristics of the transforms, and in particular, the shape of g (u, x). While the effects of
truncating the spherical harmonic series have been investigated in previous work
(Descoteaux et al., 2007; Anderson, 2005; Hess et al., 2006; Kaden and Kruggel, 2011), we
are not aware of any existing work that characterizes these effects in terms of g (u, x).

Fortunately, because we use a linear estimation technique to obtain spherical harmonic
coefficients from the sampled data and (13) also represents a linear operation, it is
straightforward to compute the response function g (u, x) for linear transforms of the
sampled data. In particular, after expressing the estimated spherical harmonic coefficients as
a linear combination of the measured data

N
Crm= an[mE (qn) (21)

n=1
for some coefficients {b,4,}, we have that the transformed data

R {E (@)} (W
L ¢ N
:[;O/I? _Z_KY? (u) ;lbnlmE (qn) (22)
:fRSf(x)g(u,X)dx

with

L ¢ N
g(u,x) =Z Z Z/lfbngmexp (—i27rq,fx) Y/ (u). (23

(=0m=-{n=1

Equation (23) can be viewed as a discrete three-dimensional non-Cartesian Fourier
transform, which we efficiently approximate using convolution gridding (Jackson et al.,
1991).

To analyze the effects of sampling and spherical harmonic truncation, we computed (23) for
a variety of different sampling schemes and a variety of different values of L. In the results
that follow, we will report findings for the four different sampling schemes shown in Fig. 4.
These sampling patterns were obtained using a model of electrostatic repulsion to distribute
the sampling locations as evenly as possible on the surface of the sphere (Jones et al., 1999).
Profiles illustrating typical behaviors for g (u, x) for the FRT and the FRACT are shown in
Figs. 5 and 6, respectively. As can be seen, both limited L and limited A/ can distort the
shape of g (u, x) for both transforms, though the response functions still maintain most of
the important features of the ideal FRT and FRACT when L is 8 or larger and Nis larger
than 64.
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Based on the theoretical results presented in the previous sections, we expect that the
FRACT could have significantly improved performance in resolving multiple orientations
from HARDI data. In the following subsections, we confirm this expectation using both
simulations and real experimental data. In all results, we show ODFs that have been min-
max normalized to enhance visualization (Tuch, 2004).

3.1. Simulations

A range of different numerical simulations was performed to compare the FRT and the
FRACT in a variety of practical situations. In all of the numerical simulations, data was
synthesized by modeling the EAP as the linear combination of multiple diffusion tensor
models, though similar behavior would be expected under alternative models of a multi-fiber
EAP (as will be shown later using real data). Each diffusion tensor component was given the
same relative volume fraction, and diffusion tensor eigenvalues of A1 = 1400 x 1076 mm?/s
and A, = A3 = 350x10~6 mm?/s (fractional anisotropy = 0.71). The relative orientations of
the principal eigenvectors of the different tensors were systematically varied to establish the
capabilities of each transform for resolving crossing fibers. Simulations were performed for
several different -values (a DW-MRI parameter proportional to o). Pseudorandom
Gaussian noise with mean zero and variance o was added to the data for different values of
o, and we report results for different SNR values, which we define as SNR= £ (0)/c. Due to
the approximately exponential decay of £(q) with respect to ||q|| 4, the SNR for each of the
simulated DW data samples will be significantly lower than our reported SNR value. To
match practical implementations, all processing methods were applied after discarding the
phase of the simulated noisy signal, resulting in a Rician signal distribution.

Figures 7 and 8 present representative comparisons between the FRT and the FRACT at 4
values of 1000 s/mm? and 2000 s/mm?, respectively, with the other simulation parameters
explained in the figure captions. As can be seen the FRACT can provide higher angular-
resolution than the FRT, as evidenced by the fact that the FRACT is able to successfully
resolve crossing fibers (i.e., the transform profile is multimodal, with maxima oriented along
the direction of the true tensor orientations) in several cases where the FRT only found a
single orientation maximum. As expected, the performance of both the FRACT and the FRT
improved with increasing £-value (i.e., increasing p). The simulations also verified that the
FRACT was relatively more sensitive to noise than the FRT. However, it is observed that
the FRACT is still significantly more capable of resolving tensor orientations compared to
the FRT, particularly when using larger b-values.

Quantitative results using this same two-tensor simulation setup are shown in Figs. 9-11,
where each figure explores a different region of the simulation parameter space. In each of
these figures, both the FRT and the FRACT were computed 1000 times with different noise
realizations for each of 20 different angular separations between the two simulated tensors.
Histograms were subsequently computed for the locations of the local maxima of the ODFs
in the plane spanned by the principal eigenvalues of the two simulated tensors.

Figure 9 illustrates the performance of the FRT and the FRACT as a function of the number
N of g-space samples. As can be seen, the FRACT successfully identifies the existence of
two different dominant orientations for a wider range of angular separations than the FRT
for all four g-space sampling patterns and both £-values, indicating that the higher angular
resolution of FRACT is not very sensitive to the data acquisition scheme, though it should
still be noted that both methods are more accurate when using the higher &-value. In
addition, the FRACT shows significantly less bias in the estimated locations of ODF
maxima compared to the FRT.
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Figure 10 demonstrates the effect of £ on the performance of the FRACT. As predicted, the
choice of &has a profound impact. In particular, relatively large values of £ are relatively
ineffective, and the FRACT can be significantly outperformed by the FRT when £ is not
chosen appropriately. These simulations also confirm the prediction that the capability of the
FRACT to resolve multiple orientations improves as & decreases to zero, since the FRACT
histogram is multimodal over the largest range when & takes the smallest value. However,
this figure also confirms that the FRACT with small values of £is more sensitive to noise
than it is with large values of &, as indicated by the increased width of the histogram peaks.

Figure 11 compares the effect of SNR on the FRACT and the FRT. These results illustrate
that the FRACT has higher accuracy (i.e., reduced bias and better ability to resolve multiple
orientations) but lower precision (i.e., larger variance around the different modes of the
histogram) than the FRT across a wide range of different SNR levels.

In sum, the two-tensor simulations shown in Figs. 9-11 validate the predicted characteristics
of the FRACT, and indicate that the FRACT leads to significantly improved orientation
estimates compared to the standard FRT. The supplementary material accompanying this
paper includes additional results that further examine the characteristics of the FRACT
involving: the harmonic order L, the fractional anisotropy and volume fraction parameters in
simulated multi-tensor data, the SNR and number of samples A, and the FRACT parameter

&

Figures 12 and 13 show comparisons between the performance of the FRT and the FRACT
with previously-proposed state-of-the-art nonlinear ODF estimation methods. In particular,
we compare with the nonlinear constant solid angle (CSA) QBI method (Aganj et al., 2010),
and the nonlinear non-negativity constrained spherical deconvolution (CSD) method
(Tournier et al., 2007). In these results, the FRT was implemented with L = 8, and the
FRACT was implemented with L = 8 and &= 0.34p. The nonlinear CSA method is
appropriate for estimating both isotropic and anisotropic diffusion ODFs, and computes the
ODF definition of Eq. (5) under the modeling assumption that the diffusion signal along
each direction decays exponentially as a function of b-value. We implemented CSA as
described by Aganj et al. (2010), using L = 8 and flexible thresholding parameters of &, = &,
= 0.001. The CSD method assumes that the measured diffusion data can be modeled as the
spherical convolution of a fiber orientation distribution with an ideal fiber response (i.e., the
diffusion signal that would be observed from an ideal isolated fiber bundle). We
implemented CSD with L = 12, and used a previously-described iterative approach to
enforce non-negativity constraints (Tournier et al., 2007). Following Tournier et al. (2007),
we chose CSD parameters of z=0.1 and A = 10. For these simulation examples, the ideal
fiber response used in CSD matched perfectly with the diffusion tensor used to generate the
data. This represents a best case scenario for CSD, since there would generally always be
some amount of mismatch between the assumed fiber response and the observed diffusion
signal in real applications.

Figure 12 shows simulation results for a two-tensor model at a £-value of 1500 s/mm? with
SNR=40 and NV = 256. As before, the FRACT has lower bias than the FRT. The FRACT
also demonstrates similar bias to the CSA method, but with lower variance. In addition, the
CSA method demonstrates a number of spurious ODF maxima, far away from the actual
tensor orientations (spurious signal variations occur along all orientations, but these
variations are more likely to become maxima along directions where the magnitude of the
noiseless ODF is small). This is likely the result of low SNR, combined with modeling
inaccuracies from the exponential decay assumption that underlies the CSA method, but
which is not valid for a multi-tensor diffusion model. These spurious peaks can be reduced
by applying additional regularization in the CSA method, though at the expense of angular
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resolution. As expected, the CSD method performs very well in this case, because the
estimation procedure incorporated perfect knowledge of the ideal fiber response for this
simulation scenario. However, it is also notable that the CSD method only has slightly
improved angular resolution compared to the FRACT.

Digital animations of these comparisons are included as supplementary material
accompanying the paper. The supplementary video clips use the MPEG-2 video format. All
videos show ODFs estimated using the FRT, FRACT, CSA, and CSD methods from
simulated data at a £-value of 1500 s/mm? with A= 256, using the same parameters
described above. The true fiber orientations are indicated using red lines. Clipl.mpg shows
results for a very high-SNR case (SNR=106), while Clip2.mpg shows results for a case with
SNR=40. Clip3.mpg is identical to Clip2.mpg, except that we augmented the CSA method
with Laplace-Beltrami regularization (A = 0.03) to smooth the ODF and reduce spurious
peaks (Descoteaux et al., 2007). While the spurious peaks are significantly reduced for the
CSA method, this comes at the expense of a loss in angular resolution.

An even more challenging simulation using a three-tensor model is shown in Fig. 13. Since
the estimation of three distinct coplanar orientations can be very challenging, we show
results for a large £-value of 5000 s/mm?. As can be seen, the FRACT is more successful
than the FRT in identifying and localizing the three different dominant orientations. In this
case, the CSA method yields somewhat higher resolution than the FRACT, though with
slightly higher variance in the estimated orientation, and a considerable number of spurious
ODF maxima. As in the two-tensor case, the CSD method is very accurate due to the use of
prior information, though is not substantially more accurate than the FRACT.

3.2. FiberCup Experiment Data

In this section, we demonstrate the performance of the FRACT when applied to real data
acquired from an experimental phantom. We made use of the publicly-available FiberCup
data (Fillard et al., 2011; Poupon et al., 2008). Briefly, the FiberCup data was acquired by
scanning a custom-built phantom with a 3T MRI magnet. The phantom was built using
thousands of water-filled acrylic fibers, which were organized into bundles and arranged to
have complex crossing structure. Our results make use of two different scans of this
phantom, one with a A-value of 1500 s/mm? and the other with a £-value of 2650 s/mm?.
Both datasets were acquired with 6 mm isotropic resolution and /=64 measured diffusion
directions, and edge-preserving filtering of the images (Haldar et al., 2012) was applied
prior to applying the FRT, the FRACT, CSA, and CSD methods. The fiber response for
CSD was derived by averaging diffusion profiles fitted from single fiber voxels
demonstrating the highest anisotropy (Tournier et al., 2007). Due to the uniformity of the
acrylic fibers used to construct the phantom, this estimated fiber response is expected to be
very accurate.

Figure 14 shows the ODFs reconstructed by these methods from a region of the phantom
where fibers cross at a 90° angle. As can be seen, the FRACT unequivocally demonstrates
the presence of multiple distinct orientations in the voxels where the fibers cross for both &-
values. In contrast, the ODFs obtained from the FRT do not demonstrate such prominent
separations between the two groups of crossing fibers, particularly for the #= 1500 s/mm?
data. Similar to previous simulations, the CSA method succesfully identifies distinct
orientations, though also demonstrates spurious ODF peaks that do not correspond to true
fiber orientations. As expected, the CSD method performs well for this dataset, and results
are comparable to those obtained with the FRACT.
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3.3. In Vivo Data

Finally, we illustrate the performance of the FRACT on real /n vivo human brain data. DW-
MRI data was acquired using a 3T MRI scanner equipped with a 12-channel head coil. The
acquisition sampled N = 144 directions at a £-value of 2500 s/mm?2. The acquisition covered
the whole brain at 2 mm isotropic resolution with a standard multi-slice single-shot EPI
readout, an echo time of 109 ms, and a repetition time of 7.9 seconds. Data was collected in
accordance with the Institutional Review Board of the University of Southern California.

Representative results from this dataset are shown in Fig. 15. While there is no gold standard
to compare to, these results are visually similar to the previous simulations and experiments,
and suggest that the FRACT can offer significantly sharper ODF profiles than the FRT,
enabling better identification of crossing fiber structure in regions of complicated tissue
architecture.

To illustrate the difference between the FRT, the FRACT, CSA, and CSD in the context of
realistic data with complicated structure, a crossing fiber dataset was synthesized through
the linear combination of real brain data from four different voxels demonstrating simple
single-orientation structure. CSD was evaluated using fiber responses estimated in three
different ways: CSD1 estimated the fiber response by averaging diffusion tensor profiles
fitted independently from each of the original single-orientation voxels shown in Fig. 16(a)-
(d); CSD2 and CSD3 estimated the fiber response from diffusion tensor fits to the single-
voxel data shown in Figs. 16(a) and (b), respectively. In contrast to previous cases, in which
the fiber response was expected to be very accurate due to the uniformity of the fiber
populations, fiber bundles in the brain can be more heterogeneous, with different
distributions of axon radii and different microstructural characteristics. As a result, the
tensors estimated for each voxel were slightly different from one another, and none of the
estimated fiber responses used for CSD perfectly match the data.

The results of applying the different methods to this data are shown in Fig. 16. Consistent
with the previous results, the FRACT is able to accurately untangle the orientation
information from this complicated dataset, while the FRT is more limited and does not
resolve all of the four original orientations. For this case, the FRACT and CSA demonstrate
similar angular accuracy in the estimation of the ODF maxima, though the FRACT has
sharper ODF peaks. While all of the CSD results qualitatively appear to be very sharp, they
are somewhat sensitive to the choice of the fiber response function, and the estimated
orientations are slightly worse than those of the FRACT and CSA, this can be attributed to
the relative inaccuracy of the assumed spherical convolution model in this kind of realistic
case with heterogeneous fiber structures. The sensitivity of the CSD method to the fiber
response function is also consistent with simulations based on synthetic data (not shown).

4. Discussion and Conclusion

This work introduced a new family of transforms for data sampled on the Fourier 2-sphere.
Compared to existing methods for processing such data, these transforms are linear, flexible,
and can be computed efficiently. We showed that the transforms have analytic
characteristics for continuous data, and introduced new mathematical machinery for
evaluating these kinds of transforms in the context of sampled data.

We also discussed one special case of this family of transforms, the FRACT, which can be
applied to HARDI data to estimate oriented diffusion. Compared to the existing FRT, the
FRACT has significant advantages in its ability to accurately resolve the angular orientation
of anisotropic structures from DW-MRI data. These advantages were confirmed with
extensive simulations and real MR data. The FRACT was also compared to state-of-the-art
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nonlinear ODF estimation methods. Results demonstrated that the FRACT can be as useful
or even more useful than these alternative approaches for estimating orientation information.
In addition, unlike the nonlinear approaches, the FRACT has analytic theoretical properties
and does not require the use of unrealistic modeling assumptions. This makes FRACT-based
ODF estimation attractive for practical /n vivo applications, where strong modeling
assumptions are unlikely to be satisfied.

Despite demonstrating significantly improved results using the FRACT, there still remain a
variety of unexplored directions. The FRACT is one of the most simple extensions of the
FRT, and we anticipate that more complicated choices of the G () kernel function could lead
to even better performance. For example, by using more than just one cosine-modulated
Bessel function, it would be possible to more accurately approximate 22, or to synthesize
functions to, e.g., approximate Z° for some value of p. The latter type of function could
enable characterizable linear transform methods to estimate the higher-order moments of the
EAP from HARDI data. In addition to considering alternate members of the family of
transforms that can be expressed by (2), it would also be of interest to explore families of
linear transforms that are more general than (2). For example, FRACT results could
potentially be even further improved by employing a deconvolution-based ODF-sharpening
approach that was previously proposed to improve the FRT (Descoteaux et al., 2009). As a
final example, there can be interesting generalizations of our family of transforms to the case
where diffusion data is sampled on the surface of multiple spheres (Wu and Alexander,
2007; Khachaturian et al., 2007).

We expect that the proposed transforms, and the associated theoretical tools that were
introduced for their analysis, will prove useful for future studies in this area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A
Derivation of (8) and (9)

fg (Z)KG(p cos ¢)exp(—i2n(xp cos @ sing+yp sin 6 sin ¢+zp cos (j)))p2 sin  ¢pdBOd.

The surface integral in (7) can be expressed in spherical coordinates as in (A.1). When u is
aligned with the zaxis, this integral reduces to (A.2). Under the change of variables = p

sin  ¢=

2 _ 42
cos ¢, and noting that © P™~ T (A.2) can be expressed as (A.3), which matches

the expressions in (8) and (9).

fg éﬂG(uxp cos 6 sin ¢+uyp sin 6 sin Ptup cos ¢)~exp(
—i2n(xp cos @ sin ¢+yp sin 6 sin ¢+zp cos ) p* sin pdodp.
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S lipf ?G (1) exp <—i27r (x Vpr =72 cos G+yp?—7* sin 9+ZT))pd0dT

=.0flipG (1) exp (—i27z7) fﬁ”exp (—i27r (x m cos O+y \/;Tﬂ sin 0)) dodr
=27Tpf€pG (T) exp (_izﬂ'ZT) .]0 (27'1' \/pz - T2 \/m) d‘["
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Figure 1.
Illustration of the function pairs listed in Table 1. In each subfigure, the left image shows

G(u’q) for g on the sphere, and the right image shows the magnitude of 2y (x,0,7)inthe x-z
plane, both for the case where u is oriented along the z-axis. Note that g, (x, y, z) is axially
symmetric about the zaxis. The function pairs are shown with (b) £=0and (c) £ = 0.36p.
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Figure 2.
Illustration of FRACT for different choices of £. In each subfigure, the left image shows

G(u’q) for g on the sphere, and the right image shows the magnitude of g, (x, 0, z) in the x-z
plane, both for the case where u is oriented along the z-axis.
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Figure 3.

Magnitudes of the spherical harmonic eigenvalues for different transforms as a function of
the spherical harmonic degree. Note that all of the eigenvalues in this plot are 0 for odd /
and that these values are not shown. The eigenvalues for the FRACT transforms have been
scaled by 27z£2 for better comparison with the FRT, and p was assumed to be 1.
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(a) N=64 (b) N=128 (c) N=256

Figure 4.
Sampling patterns with different numbers A of total measurements.
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(a) N=64 (b) N=128 (c) N=256 (d) N=1024

(e) N=64 (f) N=128 (g) N=256 (h) N=1024

Figurebs.

Images showing the magnitude of g, (x, 0, z) in the x-z plane for the FRT, in the presence of
finite sampling of the sphere and truncation of the spherical harmonic series. (a)-(d) Results
using L = 8. (e)-(h) Results using L = 32. Results can be compared to the ideal response
function shown in Fig. 1(b).
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(a) N=64 (b) N=128 (c) N=256 (d) N=1024
(e) N=64 (f) N=128 (g) N=256 (h) N=1024

Figure6.

Images showing the magnitude of g, (x, 0, z) in the x-z plane for the FRACT with parameter
£=0.51p, in the presence of finite sampling of the sphere and truncation of the spherical
harmonic series. (a)-(d) Results using L = 8. (e)-(h) Results using L = 32. Results can be
compared to the ideal response function shown in Fig. 2(b).
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(a) 47° angle (b) 57° angle (c) 76° angle (d) 90° angle

(e) 47° angle (f) 57° angle (g) 76° angle (h) 90° angle

Figure?7.

Qualitative comparison between the FRT and the FRACT at a #-value of 1000 s/mm?, in a

two-tensor simulation with SNR=20, /=256 directions, £ = 0.34p, and L = 8. Each image

shows the mean ODF (solid) and the mean ODF plus two standard deviations (transparent).
Results are shown for the (a)-(d) FRT and (e)-(h) FRACT, for crossing angles of (a,e) 47°,

(b,f) 57°, (c,g) 76°, and (c,g) 90°.
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(a) 47° angle (b) 57° angle (c) 76° angle (d) 90° angle

<o

(e) 47° angle (f) 57° angle (g) 76° angle (h) 90° angle

Figure8.

Qualitative comparison between the FRT and the FRACT at a #-value of 2000 s/mm?, in a
two-tensor simulation with SNR=20, /=256 directions, £ = 0.34p, and L = 8. Each image
shows the mean ODF (solid) and the mean ODF plus two standard deviations (transparent).
Results are shown for (a)-(d) the FRT and (e)-(h) the FRACT, for crossing angles of (a,e)
47°, (b,f) 57°, (c,g) 76°, and (c,g) 90°.
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Figure9.

Histograms for the locations of local maxima extracted from the FRT profiles (in blue) and
the FRACT profiles (in green) for two simulated tensors in the x-y plane with orientation
angles of —6and +8&in polar coordinates. The color scale is set to saturate at 250 counts in a
single histogram bin for improved visualization. The true orientations of the two tensors are
also indicated using red lines. All simulations used SNR=80, £=0.34p, and L = 8. The
images from left to right show results for different numbers N of g-space samples. Results
are shown for (a)-(d) a #-value of 1000 s/mm? and (e)-(h) a £-value of 2000 s/mm?.
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ODF Maxima Locations (degrees)
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(c) £ =0.34p (d) ¢ =0.05p
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(g) £=0.34p (h) ¢=0.05p

Histograms for the locations of local maxima extracted from the FRT profiles (in blue) and
the FRACT profiles (in green) for two simulated tensors in the x-y plane with orientation
angles of —6and +8in polar coordinates. The color scale is set to saturate at 250 counts in a
single histogram bin for improved visualization. The true orientations of the two tensors are
also indicated using red lines. All simulations used SNR=80, /=256, and L = 8. The
images from left to right show results for different values of the FRACT parameter &.
Results are shown for (a)-(d) a #-value of 1000 s/mm? and (e)-(h) a £-value of 2000 s/mm?2.
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Figure11.

Histograms for the locations of local maxima extracted from the FRT profiles (in blue) and
the FRACT profiles (in green) for two simulated tensors in the x-y plane with orientation
angles of —6and +8&in polar coordinates. The color scale is set to saturate at 250 counts in a
single histogram bin for improved visualization. The true orientations of the two tensors are
also indicated using red lines. All simulations used &= 0.34p, N=256, and L = 8. The
images from left to right show results for different SNRs. Results are shown for (a)-(d) a &
value of 1000 s/mm? and (e)-(h) a -value of 2000 s/mm?.
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Figure 12.

Histograms for the locations of local maxima extracted from the (a) FRT profiles, (b) the
FRACT profiles, (c) the CSA profiles, and (d) the CSD profiles for two simulated tensors in
the x-y plane with orientation angles of —@and +8&in polar coordinates. The gray scale is set
to saturate at 40 counts in a single histogram bin for improved visualization. The true
orientations of the two tensors are also indicated using red lines. All simulations used
SNR=40, = 256, and a #-value of 1500 ss/mm?2. Note that due to periodicity and symmetry
relationships, the histogram for 6 € [45°, 90°) is a reversed and circularly-shifted version of
the histogram for 6 € [0°, 45°).
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Figure13.
Histograms for the locations of local maxima extracted from the (a) FRT profiles, (b) the

FRACT profiles, (c) the CSA profiles, and (d) the CSD profiles for three simulated tensors
in the x-y plane with orientation angles of -6, 0, and +&in polar coordinates. Note that,
unlike the previous histograms, the separation angle for these histograms is & rather than 26.
The gray scale is set to saturate at 100 counts in a single histogram bin for improved
visualization. The true orientations of the three tensors are also indicated using red lines. All
simulations used SNR=80, /= 256, and a 4-value of 5000 s/mm?.
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(e) CSA, b = 1500 s/mm? (f) CSA, b = 2650 s/mm? (g) CSD, b = 1500 s/mm?> (h) CSD, b = 2650 s/mm?

Figure14.

ODFs reconstructed by applying (a)-(b) the FRT and (c)-(d) the FRACT to the FiberCup
data. (a),(c) show results for the #= 1500 s/mm? data, while (b),(d) show results for the &=
2650 s/mm? data. The ODFs are color-coded by orientation.

Neuroimage. Author manuscript; available in PMC 2014 May 01.



1dudsnuey Joyiny vd-HIN 1dudsnuey Joyiny vd-HIN

1duosnuey JoyIny vd-HIN

Haldar and Leahy

Page 33

|

’
’
’
]
‘
[}
.
[
.
[}
| ]
-
.

® B & -«

& o0
- ph S0 s X
N Y P P o eo oo wa

> o> g0 o o 83 & > = &
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Figure 15.

Application of the FRT and the FRACT to /n vivo human brain data. (a) A 5= 0 s/mm?
image from a slice of interest. (b) The corresponding DTI fit, where image intensity
corresponds to the fractional anisotropy of the tissue, while the image color corresponds to
the orientation of the principal eigenvector of the estimated diffusion tensor. The yellow
boxes in (a) and (b) indicate a region of interest (ROI) from the white matter core of the
frontal lobe in which complicated fiber crossing patterns are known to occur. ODFs from the
ROI are shown for (c) the FRT and (d) the FRACT.
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(e) FRT (f) FRACT (error: 6.4°) (g) CSA (error: 6.4°)

(h) CSD1 (error: 8.8°) (i) CSD2 (error: 11.0°)  (j) CSD3 (error: 8.4°)

Figure 16.
Application of the FRT, the FRACT, CSA, and CSD to a mixture of fibers from in vivo

human brain data. Data was combined from image voxels displaying a single dominant
diffusion orientation, as shown in (a-d). FRT ODFs are shown for voxels corresponding to
(a,b) forceps major, (c) genu of the corpus callosum, and (d) corticospinal tract.
Reconstructions of the multi-fiber combined dataset are shown for () the FRT, (f) the
FRACT, (g) CSA, (h) CSD1, (i) CSD2, and (j) CSD3. The lines shown in each image
correspond to the dominant orientations estimated from (a-d). The figure captions show the
maximum angular error between the estimated ODF maxima from the combined data and
the ODF maxima from the original single-orientation data (this is not shown for the FRT,
since the FRT fails to resolve all of the ODF peaks).
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Table 1
Some Transform Kernel Pairs
Kernel Function G(t) Corresponding éu(x, Y, Z) Notes
1 47 sinc(2p(+y2+2)) See E;gcﬁgf'l'(%ooo)
with fixed pari(rggt)er £€[-p, pl 2”/”Jo(z p? =M xP+y 2) exp ( - iszz) FgT:, 2eyeleFI:jgs t{1(?3)
with fixes e ?E Lp. 4l 4an0(2 0% - X%+ 2 cos (2 ngz) See Fig. 1(c)
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