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Abstract
Despite the general acceptance that functional specialization plays an important role in brain
function, there is little consensus about its extent in the brain. We sought to advance the
understanding of this question by employing a data-driven approach that capitalizes on the
existence of large databases of neuroimaging data. We quantified the diversity of activation in
brain regions as a way to characterize the degree of functional specialization. To do so, brain
activations were classified in terms of task domains, such as vision, attention, and language, which
determined a region’s functional fingerprint. We found that the degree of diversity varied
considerably across the brain. We also quantified novel properties of regions and of networks that
inform our understanding of several task-positive and task-negative networks described in the
literature, including defining functional fingerprints for entire networks and measuring their
functional assortativity, namely the degree to which they are composed of regions with similar
functional fingerprints. Our results demonstrate that some brain networks exhibit strong
assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than
characterizing the contributions of individual brain regions using task-based functional
attributions, we instead quantified their dispositional tendencies, and related those to each region’s
affiliative properties in both task-positive and task-negative contexts.
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Advancing our understanding of neuroscience centrally depends on characterizing how
structure and function are related in the brain. The idea of functional specialization has led
to major success stories in neuroscience, as exemplified by the elucidation of the
organization of the visual system. Building on the findings of Hubel and Wiesel, work in the
1970s and 1980s described the visual system as comprising (at the time) 10–15 separate
regions exhibiting a fair degree of specialization, including regions with selectivity for
motion, color, and object processing (Zeki, 1993). The apparent success of the functional
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specialization framework is not confined to vision, but extends to other sensory modalities,
as well as motor control and cognition, as examination of standard textbooks will attest.
More recently, functional neuroimaging has also contributed to our understanding of
functional specialization in the brain, and has led to some stark examples of purported
selective processing tied to face processing and “place” processing, for example (Kanwisher,
2010).

Neuroscience also recognizes that brain regions are not islands but communicate with and
influence each other. In particular, characterization of the connectivity of the prefrontal
cortex with other parts of the brain helped solidify the idea that brain architecture might
support “parallel distributed networks” (Goldman-Rakic, 1988). In the past decade, work in
neuroimaging has also highlighted functional integration, and current techniques of network
science are popular in characterizing regional interactions. Yet, given the observed degree of
interaction, understanding functional specialization becomes considerably more complex.
Acknowledging these issues in structure-function mappings, Passingham and colleagues
(2002) proposed the idea of a functional fingerprint, namely a multidimensional
representation of area function based on a small set of “dimensions”. In the case of the
motor areas they investigated, they employed dimensions such as “motor coupling”,
“movement/muscle”, and “proprioceptive/cutaneous”.

In the present study, we sought to advance the understanding of functional specialization by
employing a data-driven approach that capitalizes on the existence of large databases that
summarize human neuroimaging findings. This type of data has been used in a growing
number of meta-analytic studies (Laird et al., 2011; Yarkoni et al., 2010). Like Passingham
and colleagues (2002), we determined functional fingerprints as a way to characterize the
roles of brain regions in a multidimensional manner. Related approaches have been
described by Fox and collaborators in studying specific brain regions (Narayana et al., 2012;
Robinson et al., 2012), as well as Poldrack and collaborators (2009) in performing whole-
brain analysis. Here, functional activations were classified in terms of task domains as
defined in the BrainMap database (Laird et al., 2005). The functional fingerprint for a given
region thus represented both the set of domains that systematically engaged the region and
the relative degree of engagement. From these fingerprints, we calculated a diversity index
to further characterize the degree of functional diversity. A brain region with high diversity
would be one engaged by tasks in many of these domains, whereas a low-diversity region
would be engaged by a few domains. Furthermore, quantification of functional fingerprints
allowed us to probe properties of brain networks, including the degree to which they are
composed of regions with similar functional fingerprints. In general, the proposed approach
permits a nuanced exploration of both local function and functional cooperation in networks,
opening–we hope–new avenues for future work.

Materials and methods
Functional fingerprint and diversity analysis

To estimate functional fingerprints and diversity, we analyzed studies from the BrainMap
database (Laird, et al., 2005). As there are no widely accepted ontologies of mental
processes (Price & Friston, 2005; Yarkoni, et al., 2010), we employed the BrainMap
taxonomy, which has undergone considerable refinement in the past decade (Fox et al.,
2005; Fox & Lancaster, 2002; Laird, Lancaster, et al., 2009). Twenty task domains were
considered, spanning perception, action, cognition, and emotion, an approach similar to that
employed in recent studies (e.g., Laird et al., 2009; Smith et al., 2009). All studies
considered involved healthy adults and used a within-subjects, whole-brain, univariate
design. That is, brain activity during an experimental task was observed over the whole
brain and compared voxelwise to activity observed in the same participant during a control
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task. Here, we use the term “observation” to refer to the pairing of a reported activation and
a task domain. For example, for an experiment filed in the database under both “emotion”
and “vision” domains (due to the task manipulation), each reported activation would count
as two observations (one per domain) at its activation site.

A functional fingerprint was defined as a 20-dimensional vector, each dimension
corresponding to a task domain. Each of the 20 values represented the proportion of local
observations in the corresponding task domain (local number of observations divided by the
number of observations over the entire database), normalized (i.e., all 20 values summed to
1). See Figure 1 for illustration of the process. The 20 domains employed were as follows
(the term following the hyphen corresponds to the more general domain category):
Execution-Action; Imagination-Action; Inhibition-Action; Motor Learning-Action;
Observation-Action; Preparation-Action; Attention-Cognition; Working Memory-Cognition;
Reasoning-Cognition; Memory-Cognition; Language Semantics-Cognition; Language
Other-Cognition; Anger-Emotion; Disgust-Emotion; Fear-Emotion; Happiness-Emotion;
Sadness-Emotion; Audition-Perception; Somesthesis-Perception; Vision-Perception.

For cortex, functional fingerprints were calculated in a voxelwise manner using a spherical
searchlight. In other words, a spherical region was moved voxel by voxel along cortex, and
the resulting fingerprint determined. Because of this, a fair amount of “smoothness” would
be expected in the resulting maps, as indeed seen in Figure 3. Note, however, that despite
the overlap between adjacent “searchlights”, the results also reveal many zones of
considerable “contrast”. In other words, the method clearly demonstrates a landscape of
“low”, “intermediate”, and “high” diversity brain regions. Voxel size was 3 mm isotropic. A
probabilistic gray matter mask was applied to prevent consideration of activations that fell
either outside of the brain or within white matter. Only activations with at least 25%
probability of being in gray matter were retained (based on the Talairach atlas provided in
the AFNI package; specifically, the TT_caez_gw_18 mask). Any activation observed within
the searchlight was considered to contribute to the voxel’s functional fingerprint. The results
shown here were obtained with a searchlight with a 10-mm radius. Various searchlight radii
were investigated and yielded qualitatively similar results for radii ≥5 mm. For subcortical
regions, all activations within the region (as defined via AFNI’s Talairach atlas) were
considered. When considering the functional fingerprint of an entire network, the same
procedures were applied after pooling the activations of the constituent regions.

For the network analyses (see Figures 5–7), we employed regions of interest (ROIs) from
published papers describing several task- positive and task-negative networks (Tables 1 and
S1). Initial ROI coordinates were transformed to Talairach space via the icbm2tal routine
provided with the BrainMap database (Lancaster et al., 2007). Because having a sufficient
number of activations is critical to producing reliable fingerprints, the initial seed
coordinates of the ROIs for the networks in Table 1 were automatically shifted to nearby
voxels (within 6 mm) that had the highest number of activations.

The literature is replete with measures of diversity, particularly in biology and economics
(e.g., Magurran, 2004). The Shannon diversity, H, of a fingerprint was defined as (Shannon,
1948)
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where S = 20 was the number of task domains and pi corresponded to the ith domain
proportion. As Shannon diversity is negatively biased (i.e., it tends to underestimate
diversity), as proposed by Chao and Shen (2003), the correction term (S − 1)/(2n) was added
to H, where n was the number of observations used in the determination of the fingerprint.
This correction is suggested if n > S; thus, voxels with fewer than 21 observations were
excluded from further analysis.

Functional fingerprint highest density interval
Functional fingerprints and respective diversity values were determined for all voxels/
regions with more than 20 observations. Although this threshold allowed us to apply bias
correction as described above, not all voxels/regions contained the same number of
observations. Consequently, we determined the range of possible estimates of functional
fingerprints and diversity via a bootstrapping procedure. For fingerprints, bootstrap
resampling was performed on the set of observations defining the fingerprint. Specifically,
the observed proportions for each task domain were used to estimate the population discrete
probability distribution from which resampled fingerprints were obtained. A total of 10,000
resampled fingerprints were generated and bootstrapped diversity indices were generated
directly from the bootstrapped functional profiles. For Figures 2 and 3B, the “highest density
interval” was defined as the central 80% of the distribution (i.e., from the 10th to the 90th

percentile). Note that we use the highest density interval as a way of summarizing the
bootstrapped distribution (Krushke, 2010), and not in terms of making a yes/no decision, as
in standard inferential statistics.

Zero occurrence problem
Several research areas face the so-called “zero occurrence problem”, such that a sample may
lack observations of a certain kind. In the present context, the problem is that domains with
no reported observations for a given voxel/region would have an associated pi = 0, implying
that bootstrapped fingerprints would never have observations in that domain. This is
equivalent to placing absolute faith in the claim that the voxel/region is not involved in that
domain because it was not observed in the sample. A common solution to this problem is the
“smoothing” method proposed by Jelinek and Mercer (1980). The method adjusts the
observed proportion pi for domain i by combining it with a “prior” proportion qi according
to a weighted average:

For our “prior”, we used task proportions as observed in the initial database. In other words,
the prior proportion was defined as if the entire brain were a region of interest. The observed
proportions were adjusted by weights according to a sigmoidal function dependent on the
number of observations n. We created a logistic equation ranging in value from .5 to 1, with
inflection point at n = 40 observations (λ(40) = .75). The exponent was scaled so as to
obtain λ values around .5 for ~20 observations and λ values near 1 for 80 observations:

In this way, for example, for n ≈ 20, p̂i was approximately the average of the proportion
observed in the voxel/region and that observed in the entire database; when n = 40, p̂i, was
¾ based on the observed proportions and ¼ based on the database; and when n ≥ 80, p̂i was
nearly 100% based on the observed proportion.
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Comparing brain networks
To contrast brain networks to each other in terms of the functional fingerprints of the
component regions, we employed a multivariate test based on “statistical energy” (Aslan &
Zech, 2005). Briefly, statistical energy was used to evaluate whether two sets (i.e., networks)
of fingerprints were drawn from the same parent distribution. As stated, the functional
fingerprint for each constituent ROI within a network was represented as a 20-dimensional
vector. The statistical energy metric compared distances of fingerprints within the same
network relative to distances of fingerprints between different networks. Formally,

φXY = Statistical Energy between networks X and Y

PD(a,b) = physical distances between centers of ROIs “a” and “b”

where xi and yj corresponded to the functional fingerprint of the ith and jth member regions

of networks X and Y, respectively. An overbar indicates the mean of a set (e.g.,  is the
mean of set DXY). The function PD(a,b) was used to censor the comparison of regions that
were too close to each other (here, r = 10 mm). This was particularly important to avoid
comparing two ROIs from two networks that were effectively the “same” (e.g., a
dorsolateral PFC ROI in network X that was very close to a dorsolateral PFC ROI in
network Y). As suggested by Aslan and Zech (2005), the distance function R was a
transform of the input Euclidean distance, here chosen as

where ε is simply a very small constant to avoid the d = 0 case (the precise value of ε has
only a negligible effect on results).

The statistical energy provided a single point estimate of the multivariate distance between
two networks. To characterize the magnitude of the distance, we employed a percentile
permutation method. Specifically, we determined the distribution of possible distances by
randomizing the labels of the regions. That is, the assignment of a given region to a specific
network X or Y was randomized. By repeating this process 10,000 times, the “null”
distributions shown in Figure 5 were generated. The final index of distance corresponded to
the percentile of the actual observed distance within the permutation distribution (i.e., the
null distribution).

Assortativity index
Assortativity is a concept that conveys the extent to which elements that group together are
similar to one another (Crow and Felsenstein, 1968; Burley, 1983). A common measure of
assortativity in network science is defined as the Pearson correlation coefficient of node
degree (for a binary network, this amounts to the number of connections of a node) between
pairs of linked nodes (Newman, 2002). An assortative graph is one in which, for instance,
well-connected nodes link with well-connected nodes. Because we were interested in region
function, we propose a different framework here. Specifically, a positively assortative
network was one in which the distances within the network were smaller than distances
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between regions of that network and regions outside that network. In other words, functional
fingerprints within an assortative network were relatively similar to each other and relatively
dissimilar to fingerprints from other networks. We adapted the concept of statistical energy
to create such an assortativity metric. Simply, the assortativity of a network X was defined
as

where Dx and Dxy were defined as above. Network Y, in this case, was generated as the
union of all networks in Table 1 with the exception of network X itself.

To characterize the magnitude of the assortativity index, we used the permutation method
described in the previous section. Our assortativity measure was thus defined in a relative
manner. To illustrate it here, we considered the 8 networks of Table 1. Thus, on average, 62
regions comprised the “comparison network” Y. More generally, the framework allows one
to evaluate assortativity relative to different sets of regions: for example, a given network X
relative to all other nodes in the brain; or a given task-negative network relative to a large
group of task-positive networks; and so on. In cases in which the evaluations are based on
specific hypotheses, the percentile index can be directly interpreted as a p value.

Task-based co-activation map
We wished to analyze the findings by Toro and colleagues (2008), who described a task-
positive and a task-negative network based on an analysis of task-based co-activation of
BrainMap studies. To avoid any circularity in the analysis process, we defined these
networks here by seeding the same regions as Toro and colleagues, but by computing task-
based co-activation from a separate collection of neuroimaging studies available as part of
the Neurosynth database (Yarkoni et al., 2011). Neurosynth contained 144,680 activation
peaks from 4,393 studies (as of the access date of January, 2012), after removing duplicates
with BrainMap. A given voxel was considered active in any experiment where an activation
peak was reported within 6 mm of its location. Co-activation was defined as the correlation
between voxel pairs. Only significant correlations were considered (False Discovery Rate
correction, q < .00005). Local co-activation peaks were identified via AFNI’s 3d Extrema
command. Peaks were required to be at least 15 mm apart. Finally, we examined the
neighborhoods of each peak, looking for peaks that were part of well-sized clusters. Local
clusters were required to have a volume of at least 25 mm3.

Results
This section is organized as follows. First, we describe how functional fingerprints can be
generated for voxels in cortex, as well as subcortical regions. Functional fingerprints are
multidimensional representations that allow the description of cortical and subcortical areas
in terms of their “functional diversity” –essentially, how broad is an area’s functional
fingerprint? Second, we compute functional diversity across cortex and in subcortical
regions, thus generating “diversity maps”. Third, we show how the idea of functional
fingerprint can be used to refine the characterization and understanding of brain networks.
To do so, we studied the extent to which regions within a network exhibit similar functional
profiles. One possibility is that “like goes with like”, namely that regions comprising
commonly identified networks share functional patterns. Alternatively, networks could be
comprised by relatively heterogeneous regions that might functionally complement one
another. Finally, we briefly illustrate how the multidimensional representation of a
functional fingerprint can be extended straightforwardly to networks of brain regions.
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Functional fingerprints and diversity
Initially, we sought to characterize the functional repertoire of sites across cortex and of
subcortical regions. To do so, we computed functional fingerprints, which were defined as
20-dimensional vectors, each dimension corresponding to a task domain. Specifically, each
dimension corresponded to the proportion of the total observed activations of the region that
were due to tasks in the associated domain. These corresponded to “mental domains” (see
Figure 2) adopted in the BrainMap database and chosen to represent a range of mental
processes, including perception, action, emotion, and cognition (see Methods, and Figure 1).
Fingerprints were calculated for every voxel in the brain by considering all voxels within a
local neighborhood of the voxel (10-mm radius). Thus, all studies with peak coordinates
within this “searchlight” contributed to the voxel’s functional fingerprint. The analysis was
based on 2,603 neuroimaging experiments collectively reporting 21,553 locations of peak
activation obtained from statistical contrasts (see Experimental Procedures). Figure 2
illustrates fingerprints from two sample regions.

Fingerprints exhibited a multitude of “shapes”, some encompassing more domains than
others. To evaluate functional diversity of a fingerprint, we computed Shannon’s
information index. The idea is that diversity (or entropy) can be measured in a way that is
similar to the information contained in a code or message. Thus, the Shannon diversity, H,
of a fingerprint captures “uncertainty” or“informational content” (see Methods). Diversity
varied considerably across cortex (Figure 3), with “hot spots” apparent in dorsomedial
prefrontal cortex (PFC), dorsolateral PFC, and anterior insula, among others; “cool spots”
were observed in lateral temporal cortex, parts of posterior medial frontal/parietal cortex,
and ventral medial PFC/orbitofrontal cortex, among others. Diversity of subcortical regions
varied considerably, too (Figure 4). Other measures of diversity as well as other searchlight
radii produced qualitatively similar results. In particular, maps based on the Simpson
diversity index, which is also a popular measure, were very similar (thus not shown here).

Brain networks
In recent years, investigators have amassed considerable support for the functional
significance of several brain networks, including general “task-positive” and “task-negative”
networks, as well as more specific ones, such as “dorsal attention”, “ventral attention”, and
“executive control” networks. Our next objective was to investigate the relationship between
the functional repertoires of regions belonging to a given network. In other words, how
homogeneous are the set of fingerprints of a specific network? Are fingerprints from
network X more similar to each other than to those from network Y? Addressing this
question is important because it may help advance our understanding of the structure of
brain networks, and possibly reveal common principles of organization.

We investigated a sample of networks discussed in the literature (see Tables 1 and S1 for a
complete list). Based on a meta-analysis of co-activation task data, Toro and colleagues
(2008) identified a large task-positive network and a large task-negative network. We
employed similar networks here but generated them based on co-activation results that
employed a different database to avoid any potential circularity issues. We call these
networks FrontoParietalN (seeded via the left intraparietal cortex) and CinguloParietalN
(seeded via the rostral anterior cingulate cortex); the subscript “N” reminds the reader that
they were obtained from Neurosynth data. Four networks, DorsalAttentionC,
VentralAttentionC, ControlC, and DefaultC, were defined via resting-state data and labeled
according to their purported function (Yeo et al., 2011). For these four networks, we
considered only the six “core” regions listed by Yeo and colleagues, which summarize the
key nodes of these networks (we use the subscript “C” to remind the reader of this
convention). The two final networks were first proposed based on activations studies
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(Dosenbach et al., 2006) and correspond to a fronto-parietal “adjustcontrol” network
(FrontoParietalD) and a cingulo-opercular “maintain task set” network(CinguloOpercularD).
The coordinates employed here were defined via resting-state data (Dosenbach et al., 2007)
(the subscript reminds the reader of the first author’s last name). It is important to emphasize
that our goal was not to investigate a unique set of networks, but instead consider possibly
related (or even closely related) networks defined by different research groups and
approaches, including meta-analysis, resting-state, and task-based approaches. We believe
this is important given current efforts to discover and characterize brain networks by
employing diverse strategies. Naturally, future studies may target other networks.

In studying the set of fingerprints of the regions within a network, it is valuable to draw
upon the concept of assortativity, a concept extensively utilized in network science (e.g.,
Christakis and Fowler, 2007). Assortativity refers to the tendency of “like to connect with
like”. Are brain networks assortative? Networks defined via task-based co-activation
history, by construction, would be expected to exhibit some assortativity–as co-activation
means that the regions of the network were engaged by the same task. However, it is less
clear that the same would be observed for networks defined via resting-state data. But,
because resting-state connectivity may reflect, at least in part, the co-activation history of
two regions, it is possible that resting-state networks display assortativity, too.

We investigated network assortativity in two ways. First, we asked if brain networks tend to
be comprised of regions that are relatively cohesive in terms of functional fingerprints by
“contrasting” networks (see Methods). Here, for illustration, we compared all networks in
Table 1 to each other (Figure 5), although in some cases they may have constituted different
“versions” of the same presumed network (such as CinguloParietalN and DefaultC, both
versions of the “default” network; FrontoParietalN and FrontoParietalD, related versions of
dorsal “task-positive” networks). Several network pairs were found to be fairly distinct
(shown in red) or modestly distinct (shown in magenta). In Figure 5, each box shows the
estimated null distribution and the observed difference between two networks (blue vertical
line): the more extreme the observed difference relative to the null distribution, the greater
the difference between two networks. To index the strength of this difference, the percentile
of the observed difference was determined relative to the null distribution (which
corresponded to the set of potential differences between networks that one would obtain “by
chance”, namely without knowledge of the correct network affiliation of a given region). For
instance, a clear difference was detected between FrontoParietalN vs. CinguloParietalN, task-
positive and task-negative networks, respectively, defined via task co-activation data.
Naturally, percentile values of the observed distance between two networks that are
sufficiently large (say, > 95%) can be used to signal “significant” differences when this
method is employed inferentially in the case of specific hypotheses (with correction for
multiple comparisons when appropriate). In any event, the results demonstrate that common
networks employed in the literature, in many instances, are distinct from one another under
the task domain structure investigated here. The findings are also informative insofar as they
illustrate that, based on the functional repertoire of their components’ nodes, some of the
networks that have been distinguished from one another in the past are not strongly distinct.
As an example, FrontoParietalD and CinguloOpercularD were not found to be strongly
distinct (see Discussion).

The strategy of the previous paragraph was used to compare pairs of networks. But how
does a specific network compare to a set of other networks? The method used previously can
easily be generalized (see Methods). To illustrate the idea, we again considered the set of
networks in Table 1 and compared each network to the set of all “other” networks (Figure
6). In this analysis, three of the networks exhibited robust positive assortativity (here taken
as values above the 95th percentile): FrontoParietalN, DorsalAttentionC, and FrontoParietalD.
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Interestingly, one version of the task-negative network, CinguloParietalN, was somewhat
dis-assortative (note the relatively “extreme” [low] percentile value). That is, its regions
tended to be more dissimilar to each other that to those of other networks.

Network functional fingerprints
The concept of functional fingerprint can be extended to networks, too. In this case,
fingerprints can be computed by simultaneously considering all nodes within a network.
Several definitions of network fingerprint are possible. Here, we illustrate the notion by
using one that considered activations engaging any of the constituent regions of the network,
a type of “union” operation (similar results were observed when a mean profile was
computed). Figure 7 shows the functional fingerprints of the networks considered here. It is
noteworthy, for instance, that the task-positive FrontoParietalN network and the task-
negative CinguloParietalN network exhibited fairly complementary profiles, matching the
intuition that these networks are at times “anti-correlated” (Fox et al., 2005).

Discussion
In the present study, we employed a data-driven approach to investigate the functional
repertoire of brain regions based on a large set of functional MRI studies. The function of
brain regions was characterized in a multidimensional manner via their functional
fingerprint. To determine the diversity of fingerprints across the brain, Shannon’s
information measure was computed in a voxelwise manner. The cohesiveness of functional
fingerprints within networks discussed in the literature was assessed by studying network
assortativity. Finally, we illustrated how the idea of functional fingerprints can be extended
to brain networks themselves.

Great advances in neuroscience have been made by investigating the function of individual
local circuits and computations. The continuation of these advances is guaranteed by the
development of new genetic and molecular techniques, such as optogenetics. For instance, in
a recent paper, Lin and colleagues isolated a functional circuit in the ventrolateral
hypothalamus that was described as an “aggression locus” (Lin et al., 2011). A
complementary approach investigates a large corpus of studies, all considered
simultaneously. From the perspective adopted here, a brain region is characterized not by a
specific function but via its functional fingerprint, a multidimensional vector spanning
multiple task domains.

Our analysis revealed that functional diversity varied considerably across the brain. Regions
with high diversity (top 10%) were found in parietal, frontal, and insular cortices, among
others. Prominent regions of high diversity comprised the medial PFC, anterior insula, and
parts of lateral parietal and lateral PFC (the latter two especially on the left hemisphere). The
only high-diversity subcortical regions were the thalamus bilaterally and the left putamen.
Regions with low diversity (bottom 10%) were also found across the brain, including lateral
temporal cortex, right lateral inferior PFC, and ventral medial PFC/orbitofrontal cortex.
Low-diversity subcortical regions comprised the dentate and amygdala (but see below for
discussion of the latter).

To further study functional diversity in the brain, we investigated a sample of common
networks discussed in the literature. Our objective was to characterize functional
fingerprints both within and between networks. In network science, assortative networks are
those in which highly connected nodes are themselves preferentially connected to high-
degree nodes (Newman, 2002). Unfortunately, this type of description completely neglects
node function. Here, we proposed an evaluation of assortativity that incorporates function by
utilizing the information contained in functional fingerprints. These ideas were illustrated in

Anderson et al. Page 9

Neuroimage. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



a set of networks commonly identified in the human neuroimaging literature. Before
discussing some of our findings, we discuss a more general point.

Brain networks have been investigated for many decades and different tools have been
employed to characterize them. Networks offer distinctive interpretational challenges. For
example, concluding a particularly lucid discussion of large-scale networks, Mesulam (1990,
p. 610) commented: “Pathways that carry information from sensory receptors toward motor
effectors have a self-explanatory purpose. But what about the luxuriant web that interlinks
limbic, paralimbic, and association areas in almost every possible permutation?” As
descriptions of networks have proliferated in the literature, we believe that additional tools
are needed to understand and characterize them. Furthermore, the framework presented here
may help in parsing some of the emerging results in the literature. For instance, what is the
relationship between the “salience network” (Bressler and Menon, 2010) and the “ventral
attention network” (Corbetta and Shulman, 2002)? How should we understand the
relationship between the potentially multiple components of the “default mode network”
(Andrews-Hanna et al., 2010)? And so on. The description of brain networks in terms of the
functional repertoires of component regions lends itself to several potential analysis
strategies. In particular, networks can be contrasted to each other in terms of their purported
functions. The idea of contrasting networks can be extended via the assortativity measure
introduced here–which summarizes the “functional distance” between pairs of regions
within a network relative to the distance to other regions/networks of interest. In addition,
automated tools such as those associated with the BrainMap database further expand the
types of functional/behavioral analysis at the investigator’s disposal (Lancaster et al., 2012).

Our analyses revealed that three versions of fronto-parietal task-positive networks exhibited
robust assortativity values (Figure 6). One of the fronto-parietal networks (FrontoParietalN),
following the strategy used by Toro and colleagues (2008), was defined by “seeding” the left
intraparietal sulcus and computing a task-based co-activation map. Although Toro and
colleagues labeled the resulting co-activations as “fronto-parietal attention network”, the
overall co-activation obtained by our analysis, like theirs, was extensive and included
ventral occipital cortex, inferior parietal lobule, and cerebellum, in addition to more
common fronto-parietal sites. Despite the broad set of regions, our analysis suggests that this
network is assortative, that is, it is comprised of regions with similar functional tendencies.

For networks identified in the literature via task-based co-activation, functional similarity of
component regions is perhaps relatively unsurprising. This is because, if regions frequently
co-activate, they would be expected to be engaged by similar tasks, at least in part. It is thus
instructive to consider the co-activation network obtained by seeding a site in the rostral
anterior cingulate cortex (again, as done by Toro and colleagues (2008); CinguloParietalN).
This seed co-activated with regions commonly interpreted as the “resting-state/default”
network observed during the absence of overt tasks (regions included the posterior cingulate
cortex and superior frontal cortex). Importantly, although this network was also defined via
task-based co-activation data, it had a negative assortativity value. Indeed, the percentile
score indicates that the network tended in fact to be dis-assortative, namely its regions
exhibited functional profiles that tended to be more dissimilar to each other than to
fingerprints of the other networks.

We further note that the dorsal attention “core” network (DorsalAttentionC) exhibited a high
level of assortativity. Unlike the FrontoParietalN network, this network was based on
resting-state data. Taken together with the findings of the preceding paragraphs, the results
illustrate that assortativity is not a simple consequence of the method used to identify a
network. For one, a network derived from task co-activation data can exhibit high or low

Anderson et al. Page 10

Neuroimage. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assortativity; and networks can exhibit high assortativity when identified via task co-
activation (FrontoParietalN) or resting-state data (DorsalAttentionC).

Of the four resting-state networks investigated by Yeo and colleagues (2011) that we studied
here, as stated, only the dorsal attention was found to be robustly assortative. This finding is
intriguing in light of the fact that the dorsal attention network is a “generalist” network that
is engaged by a broad set of experimental tasks requiring effortful, attentive processing. In
contrast, the ventral attention network is engaged by a more narrow set of conditions
involving “reorienting”, as observed in exogenous attention tasks (Corbetta et al., 2008).
Intriguingly, VentralAttentionC was found here to be mildly assortative. The Default
network, another version of the “resting-state” network exhibited near- zero assortativity.
This result, together with the negative assortativity of the CinguloParietalN network
discussed above, is consistent with the notion that task-negative networks are relatively
heterogeneous. Along these lines, recent work has suggested that task-negative networks can
be subdivided in a number of ways (Andrews-Hanna et al., 2010). Finally, although Yeo and
colleagues (2011) interpreted their Control resting state-based network as a “fronto-parietal
control” network, the locations of the nodes make it difficult to interpret this network as a
typical “control network” found in the literature. Because of this, it is difficult to comment
on the observed assortativity value.

The determination of assortativity offers one way to characterize a network. As formalized
here, assortativity captures the relationship between within-network fingerprint differences
relative to between-network differences. The network comparison quantification displayed
in Figure 5 provides a complementary illustration of assortativity by contrasting specific
pairs of regions. Take, for instance, the comparison of the dorsal attention and ventral
attention networks defined via resting-state data. The observed separation matches the
existing knowledge that dorsal and ventral attention networks are largely functionally
distinct (Corbetta & Shulman, 2002) (though note that the difference did not quite reach the
95% percentile). Contrast this situation to that of the fronto-parietal “adjust control” network
(FrontalParietalD) and the cingulo-opercular “maintain task set” network
(CinguloOpercularD) described by Dosenbach and colleagues (2008). Based on our results,
these networks were only weakly distinct from each other (68th percentile when 50th would
be expected if they completely “overlapped”). Finally, note that two versions of the “resting-
state” network, were fairly similar, although these were defined via different methods,
namely via resting-state data (DefaultC) and via co-activation data (CinguloParietalN).

It is noteworthy that our results do not align themselves cleanly with the suggestion of
distinct fronto-parietal and cingulo-opercular networks by Dosenbach and colleagues
(2008). Whereas we do not have a clear answer for this discrepancy, it is interesting to note
that the two “core” nodes of the cingulo-operacular network as identified by Dosenbach and
collegues were the dorsal ACC and the anterior insula. They note that these two regions
“were set apart from other brain regions, in that they carried start-cue [the core feature of
their fronto-parietal network] and sustained [the core feature of their cingulo-opercular
network] activity across most of the tasks included in our analysis” (pp. 803–804). They also
noted reliable error feedback activity in these regions. Thus, not only is there notable
functional overlap between the two networks, but the core regions of the Cingulo-Opercular
network have diverse functional repertoires (as shown in Figure 2). These might be some of
the reasons that our analysis did not identify them as strongly different from one another.

Functional assortativity, the tendency of regions with similar functional fingerprints to be
active in the same experimental conditions, appears to be a genuine feature of the functional
organization of some brain networks, although the strength of the relationship clearly varies.
Some of this variability will be driven by our ability to accurately measure the functional
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fingerprints of regions, but our results suggest that different levels of assortativity reflect
different organizational strategies of brain networks. Some networks are generally
comprised of functionally similar regions, while other networks make use of a relatively
diverse collection of regions. Interactions between regions may play a role here, for
instance, inhibition between functionally similar regions as they compete to influence
behavioral responses.

We also showed how networks can be characterized in terms of a network functional
fingerprint based on the domains of all of its constituent regions. More generally, network
fingerprints allow one to quantify and visualize the mixture of individual elements that
comprise the network. It is intriguing to consider the possibility that the profiles of those
elements need not reflect the functional selectivity of the network as a whole. Thus, for
instance, an attention network need not be built of purely attention-selective constituents.
This much is suggested by our finding networks with low assortativity scores, but a more
detailed investigation is left to future work. Specifically, it will be important to unravel how
individual regions precisely contribute to a network’s functional repertoire. It will also be
informative to characterize how alternative sets of task dimensions account for variance in
responsivity and connectivity across the brain (Poldrack, et al., 2009).

We highlight that our approach allows us to characterize and quantify functional properties
of regions and networks without attribution of a unique function. A growing number of
studies are finding evidence for the activity of brain regions across multiple task domains
(Anderson, 2010; Hanson & Schmidt, 2011; Poldrack, 2006). In many cases, this has led to
the attribution of a generic function to the local circuit, such as “multi-modal integration”
(Kurth et al., 2010). Our framework instead quantifies the dispositional tendencies of brain
regions across multiple task categories, with the understanding that this fingerprint indexes
the functional contributions of the region.

Our findings illustrate how data-driven approaches can contribute to unraveling functional
organization in the brain. However, there are a number of considerations that need to be
mentioned (see also Yarkoni et al., 2011). First, our methods do not take into account
methodological study details, such as type of paradigm (blocked vs. event-related design)
and type of statistical analysis (fixed vs. random effects). Second, the approach was
demonstrated for one task domain structure only (namely, that adopted by BrainMap).
Although empirically our findings appear fairly robust to changes in the task domains
considered, an in-depth evaluation of the impact of specific mental ontologies (Poldrack et
al., 2011; Poldrack, 2010) on the structure of functional organization in the brain awaits
further investigation. Third, our methods cannot account for confirmation bias present in the
literature. For example, researchers often associate amygdala activation with emotion and
are thus more likely to publish results reflecting this association. This bias will increase the
association between amygdala and emotion. Indeed, we attribute the rather low functional
diversity of the amygdala to just such bias. Support for this possibility comes from
considering several review papers that have highlighted the scope of amygdala mechanisms
– ranging from attention, valuation, reward processing, to decision making (Pessoa, 2010).
Whereas this is a limitation of the present approach, the problem is also present in other
meta-analytic methods and, in fact, in individual studies as well.

In summary, our investigation allowed us to characterize the contributions of individual
brain regions and networks of brain regions without using singular task- or role-bound
functional attributions. We described a quantitative property of networks—functional
assortativity—that can be useful in understanding the functional and compositional
similarities and differences between networks.
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Highlights

• Evaluated functional specialization via meta-analysis of human neuroimaging
findings.

• Established functional fingerprints to characterize the roles of brain regions.

• Approach permits nuanced exploration of functional cooperation in networks.

• Fingerprint diversity further characterizes the degree of functional diversity.

• Established assortativity metric for the functional similarities between networks.
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Figure 1.
Determination of functional fingerprints. To illustrate the process, only three task domains
are shown. The actual fingerprints used in the paper were 20-dimensional. The label
“regional” refers to voxels in cortex (via the searchlight), subcortical regions, or networks.
The final normalization step ensures that the fingerprint values all sum to 1.
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Figure 2.
Diversity profiles. The polar plots illustrate the diversity profile of two brain regions, the
dorsal anterior cingulate cortex (ACC) and the right anterior insula (AI). Each plot was
scaled separately. Each vertex corresponds to one of the domains investigated. See Table S1
for coordinates from the original study by Dosenbach and collegues (2007) and Methods for
full description of domains. The green line is the observed fingerprint. The red and blue
lines indicate the upper and lower values of the estimates for each domain (see Methods).
This range is provided to give an idea of variability, but should not be interpreted directly.
Because of normalization (proportions sum to 1), a very high proportion in one domain will
imply that other proportions need to be reduced; in other words, the values are not
independent of each other.
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Figure 3.
Functional diversity map. (A) Areas of higher diversity are shown in warm colors and areas
of lower diversity are shown in cool colors (color bar represents Shannon entropy values).
Locations without colors did not have enough studies for the estimation of diversity. (B)
Same as in part A, but masked so as to show only the locations where diversity was
estimated with greater confidence. This was the case when the variability in Shannon
diversity was less than 10% (specifically, the highest density interval did not exceed .3).
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Figure 4.
Subcortical diversity. Color scale and range as in Figure 3. For the dentate nucleus and
hippocampus, the right and left hemispheres were pooled so as to yield enough observations
for the determination of functional diversity. L, left; R, right.
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Figure 5.
Network comparison. A multivariate comparison with permutation testing was used to
compare pairs of networks. The distributions portray the null distribution of possible
differences between each pair. The blue vertical bars indicate the observed difference, which
is shown on top of each box in terms of its percentile relative to the null distribution (when
not shown, the bar was located to the right of the displayed area). For illustration,
comparisons with percentiles > 95% are shown in red and comparisons with percentiles >
90% are shown in magenta. For example: FrontoParietalN and CinguloParietalN were very
different, DorsalAttentionC and VentralAttentionC were distinct but to a lesser extent, and
CinguloParietalN and DefaultC were similar.
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Figure 6.
Network assortativity. Assortativity measures the extent to which functional fingerprints
from regions of the same network are more similar to each other than to fingerprints from
other networks. The percentile scores provide an indication of the degree of assortativity (or
dis-assortativity in the case of CinguloParietalN)
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Figure 7.
Network functional fingerprints.
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Table 1

Network definitions.

Network Abbreviation Function/label

Fronto-parietal, seeded from the left intraparietal sulcus as in (Toro, et al., 2008) FrontParN Task-positive

Cingulo-parietal, seeded from the anterior cingulate cortex as in (Toro, et al., 2008) CingParN Task-negative

Dorsal Attention (Yeo, et al., 2011) DorsAttC Goal-directed attention

Ventral Attention (Yeo, et al., 2011) VentAttC Stimulus-driven attention

Control (Yeo, et al., 2011) ControlC Control

Default (Yeo, et al., 2011) DefaultC Default

Fronto-parietal (Dosenbach, et al., 2007) FrontParD Rapid adaptive control

Cingulo-opercular (Dosenbach, et al., 2007) CingOperD Stable set control
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