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Abstract
Many methods have been proposed for computer-assisted diagnostic classification. Full tensor
information and machine learning with 3D maps derived from brain images may help detect subtle
differences or classify subjects into different groups. Here we develop a new approach to apply
tensor-based morphometry to parametric surface models for diagnostic classification. We use this
approach to identify cortical surface features for use in diagnostic classifiers. First, with
holomorphic 1-forms, we compute an efficient and accurate conformal mapping from a multiply
connected mesh to the so-called slit domain. Next, the surface parameterization approach provides
a natural way to register anatomical surfaces across subjects using a constrained harmonic map.
To analyze anatomical differences, we then analyze the full Riemannian surface metric tensors,
which retain multivariate information on local surface geometry. As the number of voxels in a 3D
image is large, sparse learning is a promising method to select a subset of imaging features and to
improve classification accuracy. Focusing on vertices with greatest effect sizes, we train a
diagnostic classifier using the surface features selected by an ℓ1-norm based sparse learning
method. Stability selection is applied to validate the selected feature sets. We tested the algorithm
on MRI-derived cortical surfaces from 42 subjects with genetically confirmed Williams syndrome
and 40 age-matched controls, multivariate statistics on the local tensors gave greater effect sizes
for detecting group differences relative to other TBM-based statistics including analysis of the
Jacobian determinant and the largest eigenvalue of the surface metric. Our method also gave
reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the
Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry
studies, and may assist with image-based classification.
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1. INTRODUCTION
Computer-assisted diagnostic classification is becoming increasingly popular in
neuroimaging, especially given the vast number of features available to assist diagnosis in a
3D brain image. Early diagnosis and treatment of degenerative brain diseases, such as
Alzheimer’s disease, depends on the ability to identify disease in its earliest stages, when
brain changes may be subtle. In addition, there is interest in understanding which brain
imaging features are best for diagnostic classification, as well as biomarkers to measure the
severity of disease burden. Over the last decade, many methods have been proposed to study
the problem of diagnostic classification based on structural magnetic resonance imaging
(MRI) (Golland et al., 2001; Yushkevich et al., 2003; Fan et al., 2007; Vemuri et al., 2008;
Gutman et al., 2009; Sun et al., 2009a; Xiang et al., 2009; Cuingnet et al., 2010; Cuingnet et
al., 2011; Sabuncu and Van Leemput, 2011; Batmanghelich et al., 2012), positron emission
tomography (PET) (Chen et al., 2011; López et al., 2011), single photon emitting computer
tomography (SPECT) (Fung and Stoeckel, 2007) or a combination of multi-source datasets
(Calhoun and Adali, 2009; Chen et al., 2009; Correa et al., 2010; Jack et al., 2010;
Kohannim et al., 2010; Yang et al., 2010; Groves et al., 2011; Sui et al., 2011; Yuan et al.,
2012). Surface-based modeling is useful in brain imaging to help analyze anatomical shapes,
to detect abnormalities in cortical surface folding and thickness, and to statistically combine
or compare 3D anatomical models across subjects (Drury et al., 1996; Thompson and Toga,
1996; Fischl et al., 1999; Vaillant et al., 2007; Yeo et al., 2008; Wang et al., 2010c; Wang et
al., 2011b). Many surface-based morphometry studies describe structural differences at the
group level, i.e., between different diagnostic groups. More recently, morphometric maps
have also been used to classify individual subjects into diagnostic groups (Ferrarini et al.,
2008; Sun et al., 2009a; Kohannim et al., 2010; Wang et al., 2010b; Costafreda et al., 2011).
In one study (Sun et al., 2009a), maps of cortical gray matter density achieved 86.1%
accuracy in discriminating psychotic patients from control subjects, in leave-one-out tests. In
related work (Ferrarini et al., 2008), the notion of biomarker “nodes” was proposed, i.e.
regions on surface meshes that contribute most to diagnostic classification; the authors
tested their approach on ventricular surface models from Alzheimer’s disease patients and
matched controls. Overall, a set of surface-based morphometric features combined with a
machine learning algorithm may offer a promising way to improve the performance of
computer-assisted diagnostic systems.

An important question for diagnostic classification based on voxel-based or surface-based
morphometric maps is which statistics are best to analyze. Statistics derived from anatomical
surface models, such as gray matter thickness maps (Thompson et al., 2003; Thompson et
al., 2005), radial distances (distances from the medial core to each surface point) (Styner et
al., 2004; Thompson et al., 2004a; Carmichael et al., 2006; Carmichael et al., 2007b; a;
Carmichael et al., 2007c; Thompson et al., 2007; Chou et al., 2008; Chou et al., 2009; Morra
et al., 2009; Apostolova et al., 2010a; Apostolova et al., 2010b; Morra et al., 2010),
spherical harmonic analysis (Styner et al., 2005; Gutman et al., 2009), local area differences
(related to the determinant of Jacobian matrix) (Davatzikos et al., 1996; Woods, 2003;
Chung et al., 2008), Gaussian random fields (Bansal et al., 2007), Reeb graphs (another way
to compute radial distances) (Shi et al., 2009) have all been applied to analyze the shape and
geometry of various brain structures. Surface tensor-based morphometry (TBM)
(Davatzikos et al., 1996; Thompson et al., 2000a; Woods, 2003; Chung et al., 2008) is an

Wang et al. Page 2

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



intrinsic surface statistic that examines spatial derivatives of the deformation maps that
register brains to common templates, and can help to detect subtle differences in local
surface morphometry. In recent studies (Wang et al., 2008b; Wang et al., 2009a; Wang et
al., 2010c; Wang et al., 2011b), surface multivariate TBM (mTBM) was found to be more
sensitive for detecting group differences than other standard TBM-based statistics. As a
result, here we decided to use mTBM statistics as the surface statistics to be included in a
diagnostic classifier.

Three-dimensional statistical maps can detect consistent local differences in anatomical
surfaces. But, when they are applied to classification, the feature dimension is usually much
larger than the number of subjects in the sample being analyzed—the “high dimension/small
sample size problem”. When a vast number of variables are measured from a small number
of subjects, it is often possible to divide the subjects into groups based on the observed
features, but the resulting classification rules may generalize poorly to new observations. To
select the most useful features, feature reduction can be beneficial. Feature selection
approaches are widely used in machine learning, (e.g. (Stearns, 1976; Guyon et al., 2002;
Fan et al., 2005; Kuncheva and Rodríguez, 2010)). Even so, most methods still generate
very large numbers of features, making it difficult to state intuitively why features are being
used to make biological inferences. To address this, sparse learning methods have been
proposed to select the most biologically germane features (Tibshirani, 1996; Friedman et al.,
2008). Sparse learning methods enjoy strong theoretical properties (Donoho, 2006; Candès
and Wakin, 2008) and are receiving increased attention in many application areas (Candès et
al., 2006; Figueiredo et al., 2007; Beck and Teboulle, 2009; Wu et al., 2009). Sparse
learning has also been applied in neuroimaging to study genetic influences on the brain
(Vounou et al., 2010; Hibar et al., 2011; Kohannim et al., 2011; Le Floch et al., 2011;
Vounou et al., 2012; Wang et al., 2012a), functional connectivity (Huang et al., 2010; Ryali
et al., 2012), and for outcome predictions (Sun et al., 2009a; Shen et al., 2010; Stonnington
et al., 2010; Wang et al., 2010a; Wang et al., 2010b; Wang et al., 2011a). In many computer
vision, medical imaging and bioinformatics applications, using sparsity as a prior leads to
state-of-the-art results (Sun et al., 2009a; Wright et al., 2009; Liu and Ye, 2010a; Liu et al.,
2010b).

Here we developed a new approach, based on conformal slit mapping (Wang et al., 2009a),
multivariate tensor-based morphometry (mTBM), and sparse learning, to identify cortical
biomarkers for classification problems. We hypothesized that mTBM might improve the
accuracy for analyzing group differences in neuroimaging data, and for helping individual
classification, when used with a sparse learning classifier. We tested our hypothesis on a
dataset used in a prior work (Thompson et al., 2005): it consists of 42 subjects with
genetically confirmed William syndrome and 40 age-matched controls. The point of using
Williams syndrome data as a test is that the diagnosis can be verified using a genetic test.
Despite many years of research on brain differences in Williams syndrome - finding
differences widely distributed in the brain - no one known trait offers powerful group
classification on its own. As such, we chose this dataset as an interesting test case, as it may
also identify distinctive cortical features for further study.

Fig. 1 summarizes the steps we used to analyze cortical surface morphometry. The cortical
surface data was from our prior study (Thompson et al., 2005). With 10 selected landmarks
on each cortical hemispheric surface, we computed a conformal mapping from a multiply
connected mesh to the so-called slit domain, which consists of a canonical rectangle or disk
in which 3D curved landmarks on the original surfaces are mapped to parallel lines or
concentric slits in the slit domain (Wang et al., 2008a). In this canonical parametric domain,
cortical surfaces were matched by a constrained harmonic map (Wang et al., 2007).
Multivariate surface statistics were computed from the registered surfaces (Wang et al.,
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2010c). In one experiment, they were applied to identify regions with significant differences
between the two groups. In another experiment, cortical features were fed to a sparse
learning method to classify each subject into one of two groups by a leave-one-out test. We
also tested other possible surface morphometry statistics to compare them with our
multivariate surface statistics. Although the method is illustrated on Williams syndrome
data, it is intended to be useful for other disorders as well. Tests on more diverse datasets are
reserved for further work.

2. SUBJECTS AND METHODS
2.1. Subjects

We tested our algorithm on data from a prior study by Thompson et al. (2005). Subjects and
brain-scanning protocols were used exactly as in the study by (Reiss et al., 2004; Thompson
et al., 2005). Exclusion criteria included a history of medical conditions not typically
associated with WS, such as epilepsy or other neurological conditions. All WS participants
were evaluated at the Salk Institute (La Jolla, CA) as part of a program project on genetics,
neuroanatomy, neurophysiology, and cognition. WS diagnosis was genetically confirmed in
all cases by fluorescent in situ hybridization, which tested for deletion of one copy of the
elastin gene on chromosome 7. A total of 42 subjects with genetically confirmed Williams
syndrome and 40 age-matched healthy controls were included in the study. The studying
subject age and sex information is listed in Table 1. Wechsler Full-Scale intelligence
quotient (IQ) scores were available for 41 of the 42 WS subjects (mean, 68 ± 9; range, 46–
83); the untested subject exhibited similar levels of cognitive function on other measures. As
in the earlier studies (Reiss et al., 2004; Thompson et al., 2005), healthy control subjects
(with no history of major psychiatric, neurological, or cognitive impairment) were recruited
at both the Salk Institute and Stanford University. Control subjects were further screened to
rule out any history of learning, language, or behavioral disorder. The majority of controls in
the study did not have IQ testing performed. Those that did (n = 16) had a mean full-scale
IQ of 104 with an SD of 12 (range, 86 – 126). All procedures were approved by the
Institutional Review Boards of both institutions, and all participants provided informed
consent (and parents or guardians provided written consent where appropriate). 3D MRI
brain images were collected using a GE-Signa 1.5T scanner (General Electric, Milwaukee,
MI). The same 3D spoiled gradient echo pulse sequence was used for all participants, with
the following parameters: echo time, 5ms; repetition time, 24 ms; flip angle, 45° ; number of
excitations, 2; matrix size, 256 × 192; field of view, 24cm; slice thickness, 1.2 mm; 124
contiguous. Scans were analyzed at the University of California Los Angeles Laboratory of
Neuroimaging by image analysts blinded to all subject information, including age, gender,
and diagnosis (Thompson et al., 2005). All MR images were processed with a series of
manual and automated procedures to build brain cortical surfaces and trace landmark curves.
The procedure has been described in detail in earlier studies (Thompson et al., 2003;
Thompson et al., 2004b; Thompson et al., 2005). In order to extract the brain surfaces, first,
non-brain tissue (i.e., scalp, orbits) was removed from the images, and each image volume
was re-sliced into a standard orientation by a trained operator who “tagged” 20 standardized
anatomical landmarks in each subject’s image dataset that corresponded to the same 20
anatomical landmarks defined on the International Consortium for Brain Mapping-53
average brain (Mazziotta et al., 2001; Thompson et al., 2003; Thompson et al., 2005). Next,
a least-squares, rigid-body transformation spatially matched each individual to the average
of the healthy control group. In this way, every individual’s brain was matched in space, but
global differences in brain size and shape remained intact. Automated tissue segmentation
was conducted for each volume dataset to classify voxels as most representative of gray
matter, white matter, cerebrospinal fluid (CSF), or a background class (representing extra-
cerebral voxels in the image) on the basis of signal intensity. The procedure fits a mixture of
Gaussian distributions to the intensities in each image before assigning each voxel to the
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class with the highest probability (Shattuck et al., 2001). Then each individual’s cortical
surface was extracted and three-dimensionally rendered using automated software
(MacDonald, 1998). Each resulting cortical surface was represented as a high-resolution
mesh of 131,072 surface triangles spanning 65,536 surface points (Thompson et al., 2005).
An image analyst, blind to subject diagnosis, gender, and age, traced each of 10 sulci in each
hemisphere on each hemisphere surface (Sowell et al., 2003) rendering of each subject’s
brain*.

2.2. Overview of Surface Conformal Slit Mapping
To compute the multivariate statistics, the images need to be registered by an accurate and
efficient method, as is also true in the case of more standard morphometric mapping
methods, such as voxel based morphometry (VBM) (Ashburner and Friston, 2000) and
tensor based morphometry (TBM) (Hua et al., 2012). Thus the first step in our system is to
register the brain surfaces from different subjects onto a common template to establish
diffeomorphic (one-to-one, smooth) cross-subject correspondences. The surface
parameterization process allows us to compare and analyze surface data effectively on a
simpler parameter domain, instead of considering the complicated surfaces. A key direction
in brain surface registration is to compute a canonical parameter space that can maintain
certain properties of the 3D surface, such as geodesics and angles. The conformal slit map
(Wang et al., 2008a) method is a numerically stable and efficient method that can induce
parametric grids onto surfaces with complicated topologies (multiple boundaries). In this
work, we chose slit mapping to construct the canonical parameter space for surface
registration. In the Appendix, we briefly explain the mathematical background and
implementation details of surface conformal slit mapping.

Fig. 2 illustrates the procedure to compute conformal slit mapping on a left hemisphere
cortical surface. First, we converted the cortical surface to an open boundary surface by
cutting along 4 specific landmark curves. Fig. 2 (a) shows the landmark curves labeled by
blue color (the last landmark curve is on the back so it is invisible here). (b) shows a
computed exact harmonic 1-form. (c) shows the conjugate 1-form of the exact harmonic 1-
form in (b). The final conformal parameterization is illustrated by the texture mapping of the
check board image (d). Its circular conformal slit mapping result is shown in (e), where two
landmarks were mapped to inner and outer circles while the other two were mapped to two
concentric slits. The parallel conformal slit mapping result is shown in (f), where the four
landmark curves were mapped to the blue straight lines.

The slit mapping method conformally maps a multiply connected surface to an annulus or a
strip with two parallel boundaries. The choice of which boundary is outer is flexible. This
flexibility may be useful for selection of the most meaningful conformal parameterization
for certain applications. Fig. 3 illustrates a conformal slit mapping result of a left hemisphere
cortical surface with 4 boundaries. We selected 5 landmark curves with linking Callosal
Sulcus and Inferior Callosal Outline Segment. We cut along the selected landmarks to obtain
a genus zero surface with 4 boundaries. In Fig. 3, we show both circular and parallel slit
mapping parameterization results while selecting two different pairs of landmark curves as
the boundaries in the parameter domains.

2.3. Surface Registration by Constrained Harmonic Map
Brain surface deformation studies typically require the computation of dense
correspondence vector fields to match one brain surface with another. Many brain surface

*Note 72 landmark curves, as defined in (Sowell et al., 2003), were originally traced in (Thompson et al. 2005) but we only used 20 of
them here.
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registration methods have been proposed (Fischl et al., 1999; Thompson et al., 2000b; Van
Essen et al., 2001; Memoli et al., 2004; Vaillant and Glaunes, 2005; Wang et al., 2005; Qiu
and Miller, 2007; Durrleman et al., 2008; Tosun and Prince, 2008; Auzias et al., 2009;
Pantazis et al., 2010; Yeo et al., 2010; Zhong and Qiu, 2010). Here we propose to use the slit
mapping method to generate a canonical surface to match brain surfaces. Conformal
structure is intrinsic to surfaces. As landmark curves have similar geometric positions on
different cortical surfaces, the conformal structures of the converted multiply connected
components are relatively similar. As a result, their conformal parameterizations to the slit
domain are similar to each other.

We propose to compute a direct correspondence between any two surfaces by solving a
constrained harmonic map problem (Wang et al., 2007). A harmonic map is one of the most
broadly applied methods for registration of computational models of surfaces (Gu et al.,
2004; Joshi et al., 2007; Wang et al., 2007). Among its many advantages, the harmonic map
(1) measures the elastic energy of the deformation, so it has a clear physical interpretation;
(2) can be computed by solving an elliptic partial differential equation, so its computation is
numerically stable; and (3) it continuously depends on the boundary condition, so it can be
controlled by adjusting the boundary condition. Given two surfaces S1 and S2, their
conformal slit mappings are τ1 : S1 → ℝ2 and τ2 : S2 → ℝ2. We want to compute a map φ :
S1 → S2. Instead of a direct computation of φ, we can easily find a harmonic map between
their parameter domains, i.e. we look for a harmonic map τ: ℝ2 → ℝ2, such that

(1)

Then the map φ can be obtained by . Since τ is a harmonic map while τ1 and
τ2 are conformal maps, the resulting φ is a harmonic map. With the constrained harmonic
map in the slit parameter domain, we are able to obtain exact landmark matching across
subjects, which may boost the power of the multivariate statistics.

2.4. Multivariate Tensor-Based Morphometry (mTBM)
To study structural features of the brain, such as cortical gray matter thickness, complexity,
and deformation over time, there are two basic approaches: deformation-based morphometry
(DBM) (Ashburner et al., 1998; Chung et al., 2001; Chung et al., 2003; Wang et al., 2003)
and tensor-based morphometry (TBM) (Davatzikos et al., 1996; Thompson et al., 2000a;
Chung et al., 2008). DBM tends to analyze 3D displacement vector fields encoding relative
positional differences across subjects, while TBM tends to examine spatial derivatives of the
deformation maps registering brains to a common template, constructing morphological
tensor maps such as the Jacobian determinant, strain, torsion, or even vorticity.

We used multivariate statistics based on the surface deformation tensors to study cortical
surface morphometry (Wang et al., 2010c; Wang et al., 2011b). Suppose φ : S1 → S2 is a
map from surface S1 to surface S2. The derivative map of φ is the linear map between the
tangent spaces dφ : TM(p) → TM(φ(p)), induced by the map φ, which also defines the
Jacobian matrix of φ. In the triangle mesh surface, the derivative map dφ is approximated by
the linear map from one face [v1, v2, v3] to another [w1, w2, w3]. First, we isometrically
embed the triangles [v1, v2, v3] and [w1, w2, w3] onto the plane ℝ2; the planar coordinates of
the vertices of vi, wj are denoted using the same symbols vi, wj. Then we explicitly compute
the Jacobian matrix for the derivative map dφ (Wang et al., 2008b).

(2)
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In our work, we use multivariate statistics on deformation tensors (Brun et al., 2008; Leporé
et al., 2008) and adapt the concept to surface tensors. Let J be the Jacobian matrix and define

the deformation tensors as . Instead of analyzing shape change based on the
eigenvalues of the deformation tensor, we consider a new family of metrics, the “Log-
Euclidean metrics” (Arsigny et al., 2006). These metrics make computations on tensors
easier to perform, as the transformed values form a vector space, and statistical parameters
can then be computed easily using standard formulae for Euclidean spaces (Wang et al.,
2008b).

To compute group differences with mTBM, we propose to apply Hotelling’s T2 test
(Hotelling, 1931; Cao and Worsley, 1999; Thirion et al., 2000; Kim et al., 2012) on sets of
values in the log-Euclidean space of the deformation tensors. Given two groups of n × 1-
dimensional vectors, Si, i = 1,2, …, p, Tj, j = 1,2, …, q, we use the Mahalanobis distance M
to measure the group mean difference,

(3)

where S ̄ and T ̄ are the means of the two groups and Σ is the combined covariance matrix of
the two groups (Leporé et al., 2008; Wang et al., 2010c; Wang et al., 2011b). In our study, S

and T are the log-Euclidean metrics, e.g. , i = 1,2, …, p and , j =
1,2, …, q.

2.5. Structural Classification Feature Detection with Stability Selection
We used mTBM to detect structural features for group classification (here, i.e. WS vs.
controls). For a classification algorithm based on 3D images or surface-based features, the
feature dimension is usually much larger than the number of subjects in the sample, so some
feature reduction is necessary. There are many feature selection approaches in the data
mining literature (Kuncheva and Rodríguez, 2010). One unique challenge for mTBM based
feature detection on brain surfaces is the huge dimensionality of the dataset. Therefore,
feature selection is performed before the classification process.

Traditionally, feature selection methods, e.g., the recursive feature evaluation method
(Guyon et al., 2002; Fan et al., 2005), Sequential Forward Selection (SFS) (Stearns, 1976),
are largely based on the discriminative power of each individual variable. However, with
huge dimensionality, a feature can gain statistical significance just by pure chance, without
having any generalizability to new unseen datasets. In addition, many feature selection
algorithms tend to select a vast number of features, which may have no biologically
plausible interpretation. To address this problem, we used sparse learning to identify useful
features. Sparse signal representation has proven to be an extremely powerful tool for
acquiring, representing, and compressing high-dimensional signals (Candès and Tao, 2005;
Bruckstein et al., 2009).

For our problem, we consider the dataset d = {(ai, yi)|i = 1,2, …, n}, in which ai is the
feature vector, y = ±1 is the class label, and n is the number of samples. For a linear
classifier h = aw, we can learn it by solving the following optimization problem:

(4)
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This procedure is also called the “Lasso” (Tibshirani, 1996), in which λ is the regularization
term that balances between sparsity and training error. The only difference between the lasso
and the well-known ridge regression (Tikhonov and Arsenin, 1977; Kohannim et al., 2011)
is the second term. The ℓ1-norm regularization will induce an interesting property, i.e., in the
solution of the lasso problem, a portion of w will be exactly zero. This provides us a method
that will jointly select useful features, and this can be adapted to our high-dimensional
problem. After feature selection, the dataset is reduced to a reasonable size and classification
is performed. In this stage, we apply ridge regression (Tikhonov and Arsenin, 1977;
Kohannim et al., 2011) to discriminate between individuals with WS and healthy controls.

We employed Nesterov’s Accelerated Gradient Method (AGM) to solve the proposed
formulation (Eq. 4) (Nesterov, 2007). AGM achieves the optimal convergence rate among
all first-order methods (Nesterov, 2007). The core computation for AGM is the proximal
operator associated with different regularization Ω(·) (Combettes and Pesquet, 2009). We
have developed efficient algorithms to compute the proximal operators in our software
package, SLEP (Sparse Learning with Efficient Projections) (Liu et al., 2009). SLEP
achieves state-of-the-art performance for many sparse learning models (currently, the
package has around 4,000 active users from 17 different countries). The SLEP tools have
been applied successfully for stroke prediction (Khosla et al., 2010), craniosynostosis
classification (Yang et al., 2011), joint gene expression and network data analysis (Ji et al.,
2009; Liu and Ye, 2010b), to predict conversion from mild cognitive impairment (MCI) to
AD (Ye et al., 2012), and for brain network analysis in Alzheimer’s disease (Sun et al.,
2009b).

To validate the generalization of our model and selected biomarker sets, we changed
registering template surfaces and chose stability selection (Meinshausen and Bühlmann,
2010) to select the highest ranking features. Stability selection is a bootstrapping approach
to control for false discoveries in the case of finite samples and has been specifically
proposed for sparse predictive modeling (Meinshausen and Bühlmann, 2010). The key to
stability selection is to perturb the data many times and choose features that occur in a large
fraction of the resulting selection sets. Thus, choosing the right value of the regularization
parameter λ becomes much less critical and we have a better chance of selecting truly
relevant features.

In our experiments, for each feature, we maintain a counting number and put its initial value
as 0. The bootstrapping is done on random subsamples of {1, …, n} of size n/2, drawn
without replacement. In each step, we solve Eq. 4 and obtain a sparse solution. If a feature is
selected, we increase its counting number by 1. After we repeat this procedure s times (e.g.
10,000 times), we obtain a counting number, cxgi for each feature. We define its selection

probability as . For a cut-off πthr(0 < πthr < 1) and a set of regularization parameters,
Λ, the set Ŝstable of stable features k is defined by:

(5)

Using this method, we can determine a set of statistical significant features that may be
either used for classification or for visualization of some stable feature sets to explain
anatomical differences. The stability selection (Meinshausen and Bühlmann, 2010) is
appealing in that it has strong theoretical guarantees. Specifically, it has been shown that
subsampling/bootstrapping in conjunction with ℓ1-regularized estimation requires much
weaker assumptions on the data for asymptotically consistent feature selection than what is
needed for the traditional ℓ1-regularized scheme. It has been proven to improve estimation of
discriminative features significantly, even in cases when the necessary conditions for

Wang et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consistency of the original Lasso method are violated. It has been adopted by some recent
brain imaging research work (Ryali et al., 2012; Vounou et al., 2012; Ye et al., 2012).

3. RESULTS
We tested our method on cortical surface data from 42 subjects with genetically confirmed
WS and 40 age-matched healthy controls (Thompson et al., 2005). With the slit map
method, each cortical surface was conformally mapped to an annulus with concentric arcs.
We then computed a constrained harmonic map to register the surfaces to a template surface,
using Eq. 1. The template surface was chosen randomly from the control set. The
constrained harmonic map helped us build a direct correspondence between the cortical
surfaces.

Cortical surface models were cut along 10 landmark curves per hemisphere: the Central
Sulcus, Superior Temporal Sulcus (Main Body), Inferior Frontal Sulcus, Middle Frontal
Sulcus, Inferior Temporal Sulcus, Secondary Intermediate Sulcus, Transverse Occipital
Sulcus, Inferior Callosal Outline Segment, Superior Rostral Sulcus, and Subparietal Sulcus.
Landmarks were defined according to a detailed anatomical protocol (Sowell et al., 2002)
based on the Ono sulcal atlas (Ono et al., 1990). The written anatomical protocol is available
on the internet (Hayashi et al., 2002) and has been used in many published studies. After we
cut each cortical surface open along the selected landmark curves, the cortical surface
became topologically equivalent to a genus zero surface with 10 boundaries (10 landmark
curves). By computing a sequence of differential geometric features on these surfaces -
exact harmonic 1-forms, closed harmonic 1-forms, and holomorphic 1-forms - we built a
circular slit map, which conformally mapped each surface onto an annulus with 10
boundaries (similar to Fig. 2 (e)). We then matched all surfaces by the constrained harmonic
map (Wang et al., 2007). To study surface morphometry, the Jacobian matrices were
computed as Eq. 2.

Group Difference Results
We used the Hotelling’s T2 test (Hotelling, 1931) to identify between-group differences.
Specifically, for each point on the cortical surface, given p=0.05 as the significance level,
we ran a permutation test with 10,000 random assignments of subjects to groups to estimate
the statistical significance of the areas with group differences in surface morphometry. Fig. 4
shows the significance map of group differences detected between WS and matched control
groups, using mTBM as a measure of local surface area and the significance at each surface
point to be p=0.05. In Fig. 4, the non-blue colored areas show the areas with (uncorrected)
statistically significant differences between the two groups.

The overall significance of the map can be defined as the probability of finding, by chance
alone, a statistical map with at least as large a surface area and a statistical threshold more
stringent than the predefined level of p=0.05 (note that other methods are also possible, such
as those that control the false discovery rate). This omnibus p-value is commonly referred to
as the overall significance of the map (or of the features in the map), corrected for multiple
comparisons. It basically quantifies the level of surprise in seeing a map with this amount of
the surface exceeding a predefined threshold, under the null hypothesis of no systematic
group differences. We also computed the overall significance p-values, which were
p=0.0004 for the left and p=0.001 for the right hemisphere, respectively.

Classification Results
After we computed the Log-Euclidean metrics to establish a metric on the surface
deformation tensors at each point, we applied the ℓ1-norm penalty (Eq. 4) as the loss function
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to select sparse features for classification. We used the SLEP package (Liu et al., 2009) for
the computation.

In our experiments, we took a cross validation approach to set up free parameters in the
Lasso (λ in Eq. 4) and ridge regression method (λ). In our new experiments, in each round
of experiments, we divided the training data into four equally sized subsets. Among them,
we did cross validation to select the free parameters. Specifically, with a set of selected free
parameter values with Lasso and rigid regression classifier, we used three subsets for
training and tested the trained classifiers on the last subset. Continue this procedure, each
time omitting one subset from the training data and then testing on the omitted one part from
the training data and testing on the omitted part. Then the combined 4 part results are put
together to estimate the total error rates for the performance comparisons of the free
parameter values. We continuously tried all combinations of free parameters and selected
the free parameter values by choosing the ones which achieved the best total error rate on
the training dataset. Then we applied the chose regularization parameter set to test on the
testing dataset.

A leave-one-out method was used to evaluate our classification. First, we randomly removed
a sample from the dataset, and set up the free parameter values with a cross validation on the
remaining set. From the solution of the Lasso problem, we selected non-zero entries as the
useful features. Using only these features, we applied ridge regression to obtain the
classifier. Next, the previously removed sample was examined by the classifier. The
experiment continued in this leave-one-out fashion, and overall annotation accuracy was
calculated at the end. This procedure was repeated 82 times, each time with a different
choice for the test data. During the prediction of the ridge regression classifier, instead of the
immediate label, a test sample was assigned a score, s, where a positive s value was assigned
as WS class or to control (CTL, or typically developing) class. By observing the distribution
of the scores for both classes, we can obtain an intuitive impression of the classification
power.

In a series of experiments, the 82 results were used to compute overall performance
measures. Fig. 5 shows the classification scores for each subject in the prediction test. Fig. 5
(a) shows the scores for each subject with mTBM features only, on the right cortical
hemisphere; in this case, all control subjects were correctly classified while 17 WS patients
were incorrectly classified as control subjects. Fig. 5 (b) and (c) show the scores on each
subject, with mTBM on the left cortical hemisphere, and using both the left and right
cortical hemispheres, respectively.

The output of each classifier was compared to the ground truth, and a contingency table was
computed to indicate the number of particular class labels that were correctly identified as
members of one of two classes. The rows of the contingency table represent the true classes
and the columns represent the assigned classes. The cell at row r and column c is the number
of subjects whose true class is r while their assigned class is c. The possible true- and
detected-state combination is shown in Table 2. Four performance measures Sensitivity,
Specificity, Positive predictive value, and Negative predictive value were computed as
follows:
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The contingency table for mTBM features is shown in Table 3. Its performance measures
are shown in rows 2–4 of Table 8. We can find that the best specificity (100.00%),
sensitivity (59.52%), positive predictive value (100.00%) and negative predictive value
(70.18%) were achieved when we used mTBM features from the right cortical hemisphere
for the training and testing. Consistent with some data from prior WS studies (Thompson et
al., 2005), the right half of the brain may contain more diagnostically useful information
relevant to WS classification. This assumption is supported by our classification results.

Stability Selection for Verification of Feature Sets
In our leave-one-out experiments, we randomly selected a subject as the template and used it
to register other surfaces. We used this approach in our prior work (Wang et al., 2009a;
Wang et al., 2012b). Our earlier work (Wang et al., 2009b) indicated that it could give rise
to different performances to use different surfaces as the registering template. In Wang et al.
(2009b), we used surface Ricci flow method to conformally parameterize cortical surfaces.
We proposed to use conformal invariants to rank template surfaces and our empirical results
showed that it may provide some assistance for template surface selection (Wang et al.,
2009b). However, in general it is still challenging to address the optimal registering template
selection problem because of the variety of anatomical surfaces. The problem became even
more elusive here since conformal invariants proposed in (Wang et al., 2009b) are not
computable when we use conformal slit mapping to parameterize cortical surfaces.

To visualize the selected feature set with different registering template surfaces, here we
propose to apply the stability selection to select top features when we use six different
cortical surfaces as template for surface registration. Fig. 6 shows the selected top features in
these six experiments. The red pixels are selected by the stability selection method as
significant features for group discrimination and diagnostic classification at the individual
level: a total of 405, 429, 453, 451, 426 and 452 vertices selected in (a), (b), (c), (d), (e) and
(f), respectively (πthr=0.25); (a) is the result with the template surface we used in our leave-
one-out cross validation experiments. Since all surfaces are used by the stability selection
method, they are not the feature set used in each of the 82 leave-one-out experiments.
However, they are a set of statistical significant features that may be used for visualization
to help explain anatomical differences. As shown in Fig. 6, the selected vertices are
consistent among the six feature sets. This suggests that our method is relatively robust and
independent of the particular selection of template surface for surface registration. Although
how much a template surface in our surface registration framework affects the final
classification results requires careful validation for each application, the current results show
our method can select stable feature sets for classification.

Group Difference Comparison between mTBM and Other Surface Morphometry Statistics
To test the power of multivariate TBM statistics, we also conducted three additional
statistical tests based on different tensor-based statistics derived from the Jacobian matrix.
The other statistical tests evaluated were: (1) the pair of eigenvalues (EV) of Jacobian (J)
matrix, treated as a 2-dimesional vector; (2) the determinant of Jacobian matrix; (3) the
largest eigenvalue of Jacobian matrix. For statistics (2) and (3), we applied a Student’s t test
to compute the group mean difference at each surface point. In case of statistic (1), we used
Hotelling’s T2 test to compute the group mean difference. Fig. 7 shows the significance
maps of group differences detected between WS and matched control groups, using surface
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statistics (1)–(3) as a measure of local surface area and the significance at each surface point
to be p=0.05. In Fig. 7, the non-blue color areas denoted the statistically significant areas
between two groups. In the experiment, all group difference p-maps were corrected using a
permutation test with 10,000 random assignments of subjects to groups. In Figs. 4 and 7, we
can see that the detected significant areas are consistent for all four statistics. Table 4 gives
the permutation corrected p-values comparison.

In Fig. 8, the cumulative distribution functions (CDF) of the p-values observed for the
contrast of patients versus controls are plotted against the corresponding p-value that would
be expected, under the null hypothesis of no group difference, for the different scalar and
multivariate statistics. For null distributions, the cumulative distribution of p-values is
expected to fall approximately along the line (represented by the dotted line); large
deviations from that curve are associated with significant signal, and greater effect sizes
represented by larger deviations (the theory of false discovery rates gives formulae for
thresholds that control false positives at a known rate). We note that the deviation of the
statistics from the null distribution generally increases with the number of parameters
included in the multivariate statistics, with statistics on the full tensor typically
outperforming scalar summaries of the deformation based on the eigenvalues.

From Table 4 and Fig. 8, we can see that the mTBM feature (Sec. 2.5) performs better than
other two statistics, (2) and (3) - TBM and the largest eigenvalue of Jacobian matrix.
Between mTBM and statistic (1), the pair of eigenvalues of Jacobian matrix, we can see that
the latter has more significant permutation test results but mTBM has a steeper CDF curve
(Fig. 8), i.e. more deviation from the null distribution curve. Considering the pair of
eigenvalues is also a kind of multivariate surface statistics, we concluded that generally the
multivariate tensor-based morphometry method may be able to detect more surface
deformation compared with univariate statistics and produce comparable (or slightly better)
results relative to other multivariate statistical approaches.

Classification Performance Comparison with Other Brain Surface features and Volume
Features

We also performed additional classification experiments with other features. The features
we considered included tensor-based morphometry (TBM) – the determinant of Jacobian
matrix (Davatzikos et al., 1996; Thompson et al., 2000a; Woods, 2003; Chung et al., 2008),
the pair of eigenvalues of Jacobian matrix and the total volume of both left and right cortical
hemispheres. In the first two experiments, we first applied Lasso to select features, and then
we used ridge regression to do the classification. To set up the parameters of Lasso and ridge
regression, we took the same approach as the one used in mTBM experiments. In each
round, we divided the training dataset into four subsets. We performed a cross validation on
these four subsets with all possible combinations of the parameter values. The parameter set
which achieved the best classification accuracy rates on the training dataset was used as the
classifier parameters to classify the last testing dataset. We repeat all the procedure on all
data, each time omitting one subset from the training data and then testing on the omitted
one part from the training data and testing on the omitted part. Then the final classification
results were estimated by combining all leave-one-out experiments. Fig. 9 shows the
classification scores for TBM features on right hemisphere (a), left hemisphere (b) and both
hemispheres (c). Their contingency tables are shown in Table 5 and their performance
metrics are shown in rows 5–7 of Table 8. Fig. 10 shows the classification scores for pair
EV of J features on right hemisphere (a), left hemisphere (b) and both hemispheres (c). Its
contingency table is shown in Table 6 and its performance metrics are shown in rows 8–10
of Table 8.
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Fig. 11 shows the classification scores for the cortical volume features. For subject i, we

represented its volume as a 2×1 vector, ( ), where  and  are the volumes of its left
and right hemisphere, respectively. Then we directly applied ordinary least squares (Hastie
et al., 2001) for the training and classification. Its contingency table is shown in Table 7 and
its performance metrics are shown in row 11 of Table 8.

In our experimental results (Table 8), we can find that the best specificity (100%) and
positive predictive value (100%) were achieved when we used mTBM features from the
right cortical hemisphere for training and testing. The best sensitivity (71.43%) and negative
predictive value (75.51%) were achieved when we used TBM features from the right
cortical hemisphere for training and testing. To compare performance, we also generated
receiver operating characteristic (ROC) curves and computed area-under-the-curve (AUC)
measures. In Fig. 12, for the right cortical hemisphere, both mTBM and TBM achieved the
best AUC measures (92%), which are better than the results from two other statistical
features, i.e., the pair of eigen-values of the Jacobian matrix on the right cortical hemisphere
(88%) and cortical volume statistics (59%).

4. DISCUSSION
In this paper, our overarching goal was to detect differences in brain surface morphometry.
One traditional way to do this is to set up parametric grids on surfaces, and then use
differential geometry to come up with useful descriptors of surface features of interest, or to
summarize the geometry as a whole. Conformal maps help to induce particularly well-
organized grids on surfaces. This simplifies a number of downstream computations of
derivatives and metrics. In addition, the surface metric tensor, which is computable from the
conformal grid, has a multivariate structure that contains a great deal of information on local
surface geometry. Its components cannot simply be inserted into a standard Euclidean
multivariate statistical test, as the dependencies among the tensor parameters follow a log-
Euclidean law that affects their possible range of values and their statistical distributions. As
a result, we end up having to employ the log transform on a matrix, or - more precisely - on
a field of matrices or tensors that are defined at the coordinates of the surface grid. The
resulting set of surface tensor methods practically encodes a great deal of information that
would otherwise be inaccessible, or overlooked. The empirical question is then to see if this
extra information is helpful for classification of disease, and if so, under what
circumstances.

Our study has two main findings. First, it is possible to detect the subtle difference between
or classify people with high accuracy into diseased versus healthy control groups by
analyzing surface deformation tensors computed from a set of parametric surfaces using
concepts from a limited number of conformal parameterizations. Our current method
enforces an exact landmark curve matching on the cortex, using topology optimization.
Compared to other cortical surface registration methods based on conformal
parameterization, our method eliminates all singular points in the parameterization domains.
The analysis of parametric meshes for computational studies of cortical structures can be
made more powerful by analyzing the multivariate information inherent in the surface. This
type of improvement was shown in group difference analyses. Second, our current
experimental results show ℓ1-norm penalty (sparse learning) methods - that use sparsity as a
prior - lead to reasonable classification results. Stability selection method is used to visualize
the consistency of selected feature points. The sparsity induced by sparse learning methods
may help us to account for biological differences using efficient sets of predictors.

We validated our proposed work in a dataset used in our prior work (Thompson et al., 2005).
Our earlier work (Thompson et al., 2005) focused on local surface-based cortical thickness
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differences, while here we explored more complex surface descriptors related to local
surface area and the metric tensor. Although these two approaches might be expected to be
highly related, in fact – and perhaps surprisingly – recent work by Winkler and colleagues
(2010) shows that the genetic influences on cortical surface thickness and regional cortical
volume (which depends on surface area as well as thickness) are almost completely non-
overlapping. Although this is somewhat non-intuitive, the genetic factors that drive
differences in relative area and cortical thickness seem to be very different. This was
established using a quantitative genetic model that separates common and distinct sources of
genetic variance. As a result, some biological processes may preferentially affect cortical
thickness without greatly affecting the relative areas of parts of the cortex, and vice versa.
Our current study demonstrated that it is possible to use only surface morphometry
information to achieve group classification, offering a new method to determine when
human diseases are associated with characteristic neuroanatomical variation.

Comparison with Two Other Conformal Parameterization Methods
The work reported here used parametric surface approaches to register brain anatomical
surfaces (Davatzikos, 1996; Bakircioglu et al., 1999; Thompson et al., 2000b) and, as such,
is related to ongoing research by ourselves and others on conformal mapping of brain
surfaces. Brain surface parameterization has been studied intensively (Schwartz et al., 1989;
Angenent et al., 1999; Timsari and Leahy, 2000; Gu et al., 2004; Hurdal and Stephenson,
2004; Wang et al., 2006; Wang et al., 2007; Wang et al., 2008b; Wang et al., 2008a; Hurdal
and Stephenson, 2009; Wang et al., 2012b). Most brain conformal parameterization methods
(Angenent et al., 1999; Gu et al., 2004; Hurdal and Stephenson, 2004; Joshi et al., 2004; Ju
et al., 2004; Ju et al., 2005; Hurdal and Stephenson, 2009) can handle the complete brain
cortex surface, but cannot deal with cortical surfaces that have boundaries. The holomorphic
flow segmentation method (Wang et al., 2007) can match cortical surfaces with boundaries
or landmarks, but the resulting maps have singularities, which lead to errors in practical
applications. Only the Ricci flow (Wang et al., 2006; Wang et al., 2008b; Wang et al.,
2012b) and slit map methods (Wang et al., 2008a) can handle surfaces with complicated
topologies (boundaries and landmarks) without singularities. The Ricci flow method is a
nonlinear optimization process, which is more time-consuming than the slit map method.
The Ricci flow method also has higher requirements for the quality of surface tessellations.
The slit map method uses a linear approach, which tends to be more efficient and robust. In
this paper, the slit map method (Wang et al., 2008a) is used to conformally map a multiply
connected domain to an annulus with multiple concentric arcs (called the circular slit map)
or to a rectangle with multiple straight lines (called the parallel slit map). It is a global
conformal parameterization method without needing the surfaces to be cut up into separate
components that are handled individually. Given appropriate boundary conditions, it can
compute a unique circular slit map up to a rotation around the center. The slit mapping
computes the intrinsic structure of the given surface, which can be reflected in the shape of
the target domain. Then the resultant parameterization is used for surface registration.

In our work, by cutting along specific landmark curves lying on the cortical surfaces, we
convert a cortical surface into a multiply connected surface. We call this topology
optimization. With topology optimization, we turn a limited number of important geometric
features into boundaries and match them by enforcing the boundary matching conditions
(Wang et al., 2008b) or analyze geometric feature statistics around these boundaries (Wang
et al., 2009b). Three conformal parameterization methods, the holomorphic flow
segmentation method (Wang et al., 2007), the surface Ricci flow method (Wang et al., 2006;
Wang et al., 2012b) and the slit mapping method, can parameterize brain cortical surfaces
with boundaries, i.e. multiply connected surfaces. Fig. 13 compares two conformal
parameterization methods, the holomorphic flow method (Wang et al., 2007) and the parallel
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slit mapping method. To compute the conformal parameterization, the holomorphic flow
method needs to use a “double covering” to turn the surface into a closed surface. The
resulting conformal parameterization has singularities which cause big distortions around
the singularity areas. Slit mapping works on open boundary surfaces, so that the
computational cost is lower. The result does not contain singularities and we also have the
flexibility to assign which of two boundaries comprise the outer and inner circles for the
circular slit mapping or two outer boundaries for parallel slit mapping. Fig. 13 (a) shows a
left hemisphere cortical surface with 5 landmarks: the Precentral Sulcus, Postcentral Sulcus,
Superior Temporal Sulcus (Main Body), and linked Callosal Sulcus and Inferior Callosal
Outline Segment. The resulting conformal parameterizations are shown by texture mapping
of a checkerboard onto the surface. Fig. 13 (b) shows the parameterization result based on
holomorphic flow (Wang et al., 2007) and (c) is the parallel slit map. In both pictures, the
right angles are preserved but there are two zero points on the holomorphic flow result.
However, there is no singularity on the parallel slit mapping result and the parameterization
result is relatively uniform over the whole surface. This uniformity is likely to be beneficial
for accurate assessment of brain morphometry.

Fig. 14 compares the surface Ricci flow method (Wang et al., 2006; Wang et al., 2012b) and
the circular slit mapping method, on a right cerebral cortical surface with 10 landmarks as
described in Sec. 3. After cutting along these landmark curves, the cerebral cortical surface
is turned into an open boundary surface with 10 boundaries. Ricci flow can also directly
work on the multiply connected surface. However, it is a nonlinear optimization process,
which is more time-consuming than slit mapping. Slit mapping involves solving a linear
system so the computation is easier and stable. The surface with 10 landmarks overlaid is
shown in Fig. 14 (a). The respective parameterization results are shown in (b) (circular slit
map) and (c) (Ricci flow). Neither result has any singularities, and both of them offer a
canonical space for cortical surface registration (Wang et al., 2008b). However, on the unit
disk, the single empty hole in the circular slit map occupies 0.07% of the unit disk area
while the 9 empty holes in the surface Ricci flow method result occupy 10.46% of the unit
disk area. When we use the unit disk for surface parameterization and registration,
intuitively, a parameter space without holes is better. When comparing these two unit disk
parameterizations for surface mapping, the circular slit mapping result may be more
practicable than using surface Ricci flow.

Stability of Conformal Maps in Longitudinal Scans
The proposed slit map method is based on solving a linear system of differential forms. The
differential forms can be easily represented as a vector associated with each edge in our
current surface representation. So the method is stable and can be readily extended to a
surface with multiple boundaries.

Fig. 15 shows (visually at least) that the parameterization is consistent on a pair of right
hemisphere cortical surfaces from the same healthy control subject (Thompson et al., 2003)
scanned twice, with a 3.1 years interval. Most of the surface shape was stable with slight
differences due to development. In prior work (Thompson et al., 2003), 35 landmark curves
were labeled on each cortical surface as detailed in (Sowell et al., 2002) and (Hayashi et al.,
2002). The cortical surfaces are shown in Fig. 15, with landmark curves in blue. As an
ongoing effort, we are studying the stability of the slit mapping method using different
numbers of available landmark curves. Computational results are shown on the last row in
Fig. 15. Each cortical surface is conformally mapped to an annulus with 33 concentric slits.
We can see that the positions and lengths of the slits are very similar in the two situations.
Although more data and computations are clearly necessary, this illustration suggests
feasibility and stability of using our conformal slit mapping method, with different number
of landmarks.
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Sulcal landmark curve selection
In our dataset, there are 36 sulcal landmarks on each hemisphere cortical surface and a total
of 72 sulcal landmark curves on the whole brain (Hayashi et al., 2002; Sowell et al., 2002).
When we initially defined these protocols, 10 years ago, we labeled every possible sulcus
from the Ono atlas that could be reliably defined on the brain surfaces of multiple people. A
committee of several neurologists and anatomists came up with a protocol that would be
feasible for trained anatomists to use reliably, with good inter-rater agreement, even for
tracers who had worked independently. In the end, because the protocol was so time
consuming to perform, not many investigators were willing to hand-landmark so many
curves, even though we did so for this dataset. This motivated us to reduce the total number
of sulcal curves used in the registration.

Different studies have historically used different choices of landmark curves. For example,
in Pantazis et al. (2010), a set of 26 landmarks was defined per hemisphere while 28
landmark curves were used in Joshi et al. (2012b) and only 14 sulcal curves were used in
Zhong and Qiu (2010). In this work, among 36 sulcal landmark curves per hemisphere, we
used 10 landmark curves: the Central Sulcus, Superior Temporal Sulcus (Main Body),
Inferior Frontal Sulcus, Middle Frontal Sulcus, Inferior Temporal Sulcus, Secondary
Intermediate Sulcus, Transverse Occipital Sulcus, Inferior Callosal Outline Segment,
Superior Rostral Sulcus, and Subparietal Sulcus. This set of landmarks includes many of the
major features of the brain, including landmarks that are scattered across all lobes, especially
including the longer sulci. Our experiments on both group difference and classification
demonstrated reasonable effectiveness with this selected landmark set. We agree that the
current empirical study does not prove that it is the best landmark subset for disease
classification, and it would certainly be interesting in the future to optimize the chosen set of
landmarks with respect to the classification performance. In the end, one would imagine that
classification performance would increase with the number of landmarks chosen, so long as
the additional landmarks were in areas that show differences between the groups being
classified.

Two-stage Lasso
In our classification experiments, we employed a two-stage approach where Lasso is used to
select features and a subsequent ridge regression for the classification. Lasso employs a
convex regularization term (ℓ1-norm) to approximate the combinatorial ℓ0-norm to make the
problem computationally tractable. However, Lasso is known to induce estimation bias due
to the convex relaxation; Lasso not only shrinks the coefficients of the irrelevant variables to
zero (these features are removed), but also shrinks the coefficients of the relevant variables.
In the literature, many methods have been proposed to correct the unnecessary shrinkage,
e.g., two-stage Lasso and multi-stage Lasso (Zou, 2006; Zhang, 2010). Since Lasso is
reasonably good at identifying relevant features, it is natural to apply a two-stage approach
like ours, in which the features are identified at the first stage and the coefficients are learnt
at the second stage to reduce the shrinkage effect. It is also common to add a small ℓ2-norm
to the Lasso formulation, which follows the elastic nets formulation (Zou and Hastie, 2005)
and overcomes the limitations of the Lasso method. For example, in our SLEP package (Liu
et al., 2009), we add a ℓ2-norm regularization to the Lasso formulation. Our experience
showed that it generally improved Lasso performance (Ye et al., 2012).

Leave-N-out Experiments
Besides the leave-one-out experiments, we also performed leave-N-out experiments to help
illustrate the mean classification accuracy and its standard deviation when varying the
training and testing datasets by random re-sampling. As our current dataset had only 82
subjects, we initially focused on leave-one-out experiments, to maximize the size of the
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training set. For completeness, we also performed leave-N-out experiments, with mTBM
and TBM features, to see how the mean accuracy in a larger test set depended on the test set
chosen. In our experiments, for each round, we randomly selected 10 out of 82 images for
testing and used the remaining 72 images for training. During training, a cross-validation
scheme was adopted to set up the parameter values. The selected parameter values were then
applied to test the classifier on the testing data. We further repeated this process 30 times.
For each time, an accuracy rate was calculated on the testing dataset. After all rounds of
experiments, we obtained a set of accuracy rates from the leave-N-out experiments. We
further estimated the mean accuracy rates and their standard deviations. We note that the
standard deviation here measures the accuracy on repeated random drawings of 10 subjects
from the sample, which were left out from the training set to guarantee independence and
avoid circularity. We performed experiments using both TBM and mTBM algorithms and
their experimental results (mean accuracies and standard deviations) are summarized in
Table 9.

In line with the leave-one-out experiments – right hemisphere features tended to perform
better in discriminating the two classes (2 sample t-test, right vs. left, p=0.0051; right vs.
whole, p=0.0136). As seen from the standard deviations, the classification accuracy rate did
not have a wide range. We computed 30 accuracy rates using different training/testing
partitions, but none of the comparisons was significant. Surprisingly perhaps, the
multivariate TBM method did not outperform the standard method. This may be due to the
relatively small size of the current dataset. It could be that the benefit of learning of the
multivariate parameters in TBM is either minimal, or requires a very large sample size to
detect.

Group Difference Performance vs. Classification Performance
Overall, these leave-one-out experiments correctly classified 67/82 cases for TBM and
65/82 cases for mTBM. A binomial proportion test can be performed on these two
proportions, with the null hypothesis that these two accuracy rates are the same. The p-value
from this test was 0.6935, which shows that no one method had statistically superior
accuracy. While mTBM achieved the strongest group difference, when compared to three
other TBM-based and volume features, it achieved classification accuracy comparable to
univariate TBM.

Based on the results, we have demonstrated that MRI-based disease classification can
benefit from surface parameterization with differential forms and tensor-based
morphometry, in the log-Euclidean domain, on the resulting surface tensors. The similar
classification performance of mTBM and TBM may be due to the limited sample size for the
dataset used in our current experiments, although we know that 82 subjects is an adequately
powered dataset to detect group differences, as we were able to detect them. It could be that
multivariate surface descriptors require a larger sample size to show benefits over the scalar
descriptors in classification accuracy, to more accurately learn their covariance structure. Or,
it may be that multivariate TBM can outperform scalar TBM in some contexts but not
others, or in some diseases but not others, depending on the type of surface differences there
are. A strong group difference result does not always guarantee a better classification power;
this is consistent with discoveries reported in some prior work (Lao et al., 2004; Chincarini
et al., 2011; Cuingnet et al., 2011). Our longer-term goal is to investigate how to best apply
surface tensor-based morphometry (Davatzikos et al., 1996; Thompson et al., 2000a;
Woods, 2003; Chung et al., 2008; Wang et al., 2010c) in disease classification research.
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Improvement of classification performance with spatial and anatomical regularization
Our current work proposed a surface-based framework which demonstrated that, by
analyzing the full surface deformation tensors computed from a set of parametric surfaces,
one may achieve improved group difference detection and group classification performance.
In our experiments, with the ℓ1-norm penalty (sparse learning) methods, we achieved
reasonable classification results. However, there is a potential to further improve
classification performance by considering spatial and anatomical regularization in medical
imaging research. Pioneering work has demonstrated that spatial and anatomical information
can enhance performance of typical classifiers, such as support vector machine (SVM)
(Fung and Stoeckel, 2007; Cuingnet et al., 2010), Adaboost (Xiang et al., 2009) and
Bayesian classifier (Sabuncu and Van Leemput, 2011), improve feature reduction efficiency
(Batmanghelich et al., 2012) and behavior prediction accuracy (Michel et al., 2011). The key
insight is that the underlying anatomical structures are smooth, i.e. features in biomedical
applications exhibit certain intrinsic structures, such as groups, graphs, and trees (Jacob et
al., 2009; Li and Li, 2010; Liu and Ye, 2010b; Liu et al., 2010a; Liu and Ye, 2010a); for
example, if a surface point shows significant difference between two groups, most likely its
neighboring surface points also have certain statistical discrimination power. More
importantly, a single surface point may not carry strong statistical power of its own, but a set
of such correlated points may do so. In other words, an association mapping approach may
“borrow strength” from correlated phenotypes and can potentially yield higher statistical
power (Ferreira and Purcell, 2009). Recently, we and other groups have developed
structured sparse learning formulations which incorporate the complex feature structures
into the sparse learning model; they have been applied successfully in many applications
including computer vision, medical imaging and bioinformatics (Zou and Hastie, 2005;
Yuan and Lin, 2006; Jacob et al., 2009; Zhao et al., 2009; Kim and Xing, 2010; Li and Li,
2010; Liu and Ye, 2010b; Liu et al., 2010a; Liu and Ye, 2010a; Wang et al., 2011a; Wang et
al., 2012a). In future, we plan to develop advanced structured sparse learning strategies for
surface-based disease marker identification with the potential of leading to major discoveries
in neuroimaging.

Alternatives for full deformation tensor information processing
In our work, we analyzed full deformation tensor information by using log-Euclidean
framework. However, there are other ways available to analyze the full tensor information.
A simple strategy is to directly use a Euclidean structure on square matrices to define a
metric on the tensor space. But the classical Euclidean framework has many defects, for
example, null or negative eigenvalues appear during Euclidean computation. To fully
circumvent these difficulties, affine-invariant Riemannian metrics have been proposed for
tensors (Fletcher and Joshi, 2004; Moakher, 2005; Pennec et al., 2006) and a class of tensor
interpolation paths, geodesic-loxodrome (Kindlmann et al., 2007), was proposed to
explicitly preserve clinically important tensor attributes. While the log-Euclidean framework
is the most computationally convenient, other approaches (Fletcher and Joshi, 2004;
Moakher, 2005; Pennec et al., 2006; Kindlmann et al., 2007) also provide valid, theoretically
rigorous alternatives for full anatomical deformation tensor analysis.

Beyond the current system
In this paper, we validated our proposed work in a dataset used in our prior work (Thompson
et al., 2005). In Thompson et al. (2005), an operator who was blind to the subject’s
pathological condition has normalized identified certain landmark points. In this scenario,
when a new subject was given to the system, the operator identified a set of landmark points
using the International Consortium for Brain Mapping-53 average brain (Mazziotta et al.,
2001; Thompson et al., 2005). The identified landmark points were used to compute a rigid-
body transformation that aligns brain volume images in a standard space for segmentation
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and cortical surface generation. The generated surfaces and 10 manually labeled landmark
curves on the surfaces were the input to our method to apply multivariate statistics for
analyzing the group difference and classification. However, our method is general enough to
process landmark curves that are either manually traced or automatically detected by some
other software tools. We are exploring the possibility to take the landmark curves detected
by BrainSuite (Joshi et al., 2012a) as input for conformal slit map based surface registration.
Our ongoing work (An et al., 2012) also tries to apply multivariate tensor-based
morphometry on cortical surface built by FreeSurfer (Fischl et al., 1999).

5. CONCLUSION
We presented an MRI-based computer-assisted diagnostic classification system that finds
vertices and local features on cortical surface models to best discriminate two groups of
subjects. Our system was based on mTBM and sparse learning, with the ℓ1-norm based
penalty. The mTBM captured the full deformation tensor information and performed better
than TBM (the determinant of Jacobian matrix) in both group difference and classification
studies. The sparse learning method selected a smaller, biologically plausible feature set,
consistent with prior knowledge of cortical anomalies features in WS. In leave-one-out tests,
with the same parameter settings, our surface-based method achieved better classification
results than those using the pair of eigenvalues of Jacobian matrix and the whole cortical
volumes as features. Ongoing work is testing this framework for studying structural imaging
biomarkers of other disorders, such as Alzheimer’s disease.
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APPENDIX
The following sections describe the mathematics underlying the slit mapping algorithm and
how we measure features on the cortical surfaces. Some concepts come from exterior
calculus and use the terminology of differential forms, which is useful for analyzing surfaces
represented as parametric meshes.

A.1. Theoretic background on holomorphic 1-forms
Suppose S is a surface embedded in ℝ3, with induced Riemannian metric g. S is covered by
an atlas {(U, φ)}. Let (x, y) be the local parameter on the chart (U, φ). If the metric g has the
representation g = e2λ(x,y) (dx2 + dy2), we say (x, y) is isothermal. An atlas consisting of
isothermal parameter charts is called a conformal structure.

The Laplace-Beltrami operator on a surface is defined as

(6)

A function defined on a surface f : S → ℝ is harmonic, if Δgf ≡ 0.

Mathematically, the differential form is a concept used in multivariable calculus that is
independent of any chosen set of coordinates - it has many applications in geometry,
topology and physics. The general setting for the study of differential forms is on a
differential manifold. A differential 1-form in the local parameters (x, y) may be defined as

(7)

where f, g are smooth functions. Differential 1-forms are naturally dual to vector fields on a
manifold. The algebra of differential forms along with the exterior derivative defined on it is
preserved under smooth functions between two manifolds. Specifically, ω is a closed 1-

form, if in each local parameter (x, y), . If ω is the gradient of another function
defined on S, it can be called an exact 1-form. An exact 1-form is also a closed 1-form. If a
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closed 1-form ω satisfies , then it is a harmonic 1-form. The gradient of a
harmonic function is an exact harmonic 1-form.

The Hodge star operator acting on a differential 1-form gives the conjugate differential 1-
form

(8)

Intuitively, the conjugate 1-form *ω is obtained by rotating ω by a right angle everywhere.
If ω is harmonic, so is its conjugate *ω.

Built upon the harmonic 1-form concept, the holomorphic 1-form is a differential form on a
manifold which can have complex coefficients. It consists of a pair of conjugate harmonic 1-
forms

(9)

If two harmonic fields are orthogonal everywhere, they form a holomorphic 1-form. An
intrinsic way to compute conformal parameterization is to search for a holomorphic 1-form
that satisfies certain properties. In conformal slit mapping, we shall find certain holomorphic
1-forms with special behavior on the boundaries of the surface.

Suppose S is an open surface with n boundaries γ1, γ2, … γn, we can uniquely find a
holomorphic 1-form τ, such that (Ahlfors, 1953)

(10)

Definition 1 (Circular Slit Mapping)
Fix a point p0 on the surface S, for any point p ∈ S, let γ be an arbitrary path connecting p0
and p, then the circular slit mapping is defined as φ(p) = e∫γτ.

Theorem 1
The function φ effects a one-to-one conformal mapping of surface S onto the annulus 1 < |z|
< eλ0−n − 2 concentric arcs situated on the circles |z| = eλi, i = 1,2, … n − 2.

The proof of the above theorem on slit mapping may be found in (Ahlfors, 1953). For a
given choice of the inner and outer circle, the circular slit mapping is uniquely determined
up to a rotation around the center. The parallel slit mapping can be defined in a similar way.

Definition 2 (Parallel Slit Mapping)
Let S̄ be the universal covering space of the surface S, π : S̄ → S be the projection and τ̄ =
π*τ be the pull back of τ. Fix a point p̄0 on S̄, for any point p̄ ∈ S, let γ̄ be an arbitrary path
connecting p̄0 and p̄, then the parallel slit mapping is defined as φ̄(p̄) = ∫γ̄τ̄.

In our work, we employ the concepts of holomorphic 1-form and conformal slit mapping to
compute a conformal parameterization of cortical surfaces. On the Euclidean parameter
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domain, the constrained harmonic map is computed to construct correspondences between
cortical surfaces.

A.2. Computation of Surface Conformal Slit Mapping
In engineering fields, smooth surfaces are often approximated by simplicial complexes
(triangle meshes). Major concepts in the continuous setting can be generalized to the
discrete setting. In this section, we briefly describe the algorithm implementation to compute
the 1-forms and slit mapping.

Suppose M is a triangle mesh with n +1 boundaries, denoted as ∂M = γ0 – γ1 –··· – γn. We
use vi to denote a vertex, which is also a 3D coordinate vector, [vi, vj] denote an edge
connecting vertices vi and vj, [vi, vj, vk] denote a triangle formed by vertices vi, vj, and vk.

The angle at vertex vi in triangle [vi, vj, vk] is denoted as . The discrete functions defined
on vertices, edges, and faces are called discrete 0-forms, 1-forms, and 2-forms, respectively.
The discrete divergence, discrete Laplace-Beltrami operator and discrete wedge operator can
be defined as reported in our prior work (Wang et al., 2008a; Wang et al., 2010c).

The algorithm pipeline is as follows:

1. Compute the basis for all exact harmonic 1-forms;

2. Compute the basis for all harmonic 1-forms;

3. Compute the basis for all holomorphic 1-forms;

4. Construct the slit mapping.

The detailed algorithms to compute 1-forms are reported in our earlier work (Wang et al.,
2008a; Wang et al., 2010c). Here we give a brief description of the pipeline implementation.
Without loss of generality, we map the boundary γ0 to the outer circle of the circular slit
domain, γ1 to the inner circle and all other boundaries to the concentric slits. Briefly, first,
for each inner boundary γ1, … γn, a harmonic function is computed by solving a Dirichlet
problem (Wang et al., 2008a; Wang et al., 2010c). By definition, the exact harmonic 1-form
ωk can be computed as the gradient of the harmonic function on boundary γk, (k = 1, 2, …,
n). We denote the exact harmonic 1-forms basis as {ω1, ω2, …, ωn}. Second, we compute
the closed but non-exact harmonic 1-form τk along the path connecting the inner boundary
γk, (k = 1, 2, … n) to outer boundary γ0 (Wang et al., 2008a; Wang et al., 2010c). The
closed harmonic 1-form basis is the union of the exact harmonic 1-forms basis {ω1, ω2, …,
ωn} and the closed but non-exact harmonic 1-forms basis {τ1, τ2, …, τn}. The computed
closed harmonic 1-forms basis is used to improve the computational accuracy of the
conjugate 1-form *ωk of the exact harmonic 1-form ωk because of the inaccuracy of directly
applying the brute-force Hodge star operator (Eq. 8). We denote the conjugate 1-forms basis
as {*ω1, *ω2, …, *ωn} (Wang et al., 2008a; Wang et al., 2010c). Then, the holomorphic 1-

forms basis is { } (Eq. 9). Next, for surface conformal slit

mapping, we need to find a special holomorphic 1-form , such that
the imaginary part of its integral satisfies

(11)

To get the coefficients λi, we solve the following linear system for λi, i = 1,2, …, n:
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(12)

where αjk = ∫γj*ωk.7

It can be proved that this linear system has a unique solution, which reflects the fact that γ1
is mapped to the inner circle of the circular slit domain. Further, the system implies λ1α01 +
λ2α02 + … + λnα0n = 2π, which means that γ0 is mapped to the outer circle in the circular
slit domain. The circular slit mapping is a complex-valued function φ : M → ℂ. Choosing a
base vertex v0 arbitrarily, and for each vertex v ∈ M choosing the shortest path γ from v0 to
v, the map can be computed as φ(v) = e∫γω. Based on the circular slit map φ, we can
compute a parallel slit map φ : M → ℂ as φ(v) = lnφ(v).
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Figure 1.
A flow chart shows how circular slit map conformal parameterization is used to model
cortical surface shapes. The resulting surfaces are analyzed using multivariate tensor-based
morphometry and sparse learning methods. After cortical surfaces are extracted from MRI
images and landmark curves are labeled either manually or automatically (Thompson et al.,
2005), we compute circular slit map conformal parameterizations for each cortical surface,
and register surfaces with a constrained harmonic map. The statistics of multivariate TBM
are computed at each point on the resulting matching surfaces, revealing regions with
systematic anatomical differences between groups. We also apply a sparse learning
algorithm to detect some structural features suitable for classification experiments.
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Figure 2. Conformal slit mapping
After cutting along several landmark curves, we turn a cortical surface to a genus zero open
boundary surface (a). By computing the holomorphic 1-form (d), this may then be
conformally mapped onto either a circle (e) or a rectangle (f) where the landmarks are
mapped to concentric or parallel lines in the slit domain. We then perform nonlinear surface
registration in these parameter domains.
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Figure 3. Slit mapping with different boundary settings
For a given cortical surface, we cut it open along 5 selected landmark curves and thus the
surface becomes a genus zero surface with 4 open boundaries (first row). The second row
shows two circular slit map conformal parameterization results with different landmark
curves as outer and inner circular boundaries. The third row shows their parallel slit map
conformal parameterization results with different landmark curves as the outer boundaries.
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Figure 4.
Statistical significance map (uncorrected p-map) shows group differences in regional
cortical surface area between 42 WS patients and 40 healthy controls (Thompson et al.,
2005). The local statistic analyzed is the multivariate TBM of the cortical parameterization.
On the color-coded scale, non-blue colors denote the vertices where there are significant
group differences, at the uncorrected p=0.05 level.

Wang et al. Page 35

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Classification scores obtained for both classes, using mTBM on the right hemisphere (a), left
hemisphere (b), both left and right hemispheres (c).
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Figure 6.
Feature vertices selected by the stability selection method (Meinshausen and Bühlmann,
2010) on the average right hemisphere with three different template cortical surfaces used in
the registration step. The red pixels are selected by the stability selection method as
significant features for group discrimination and diagnostic classification at the individual
level: a total of 405, 429, 453, 451, 426 and 452 vertices selected in (a), (b) (c), (d), (e) and
(f), respectively (πthr =0.25). The selected vertices are relatively consistent among three
feature sets. Although more careful validation is needed to explore how the template surface
selection affects the final classification results, the current results show our method can
select stable feature sets for classification.
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Figure 7.
Comparison of p-maps for group differences (between Williams syndrome and typically
developing participants) with the other three surface statistics.
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Figure 8.
Comparison of cumulative distribution functions for group differences, using different
surface statistics. Based on the FDR method, this type of QQ plot can be used to show if
there is aggregate evidence of a signal in a statistical map, across all statistical thresholds.
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Figure 9.
Classification scores obtained for both classes, using TBM features – the determinant of
Jacobian matrix (Davatzikos et al., 1996; Thompson et al., 2000a; Woods, 2003; Chung et
al., 2008) on the right hemisphere (a), left hemisphere (b), both left and right hemispheres
(c).
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Figure 10.
Classification scores obtained for both classes, using the pair of eigenvalues of Jacobian
matrix as features for the right hemisphere (a), left hemisphere (b), and for both left and
right hemispheres (c).
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Figure 11.
Classification scores obtained for both classes, using the cortical volumes as the features.

Wang et al. Page 42

Neuroimage. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Classification performance comparison with receiver operating characteristic (ROC) curves
and area under curve (AUC) measures. (a)–(d) show results for mTBM, TBM, pair eigen
values (EV) of Jacobian matrix and cortical volume statistics, respecitively. With the first
three statistics, the results using the right cortical hemisphere only are better than those with
left cortical hemisphere and both cortical hemispheres. Among all AUC measures, mTBM
on right hemisphere achieved the best performance (AUC=0.94).
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Figure 13.
Comparison of slit mapping to holomorphic flow segmentation, as a method to parameterize
the cortical surface. The first row shows a left cortical surface with 5 selected landmark
curves. The second row shows results of holomorphic flow segmentation (Wang et al.,
2007) and parallel slit mapping. Both algorithms work with surfaces that have boundaries.
However the holomorphic flow segmentation method generates singularities in the
parameterization results (large tiles in (b)).
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Figure 14.
Comparison of slit mapping with the Ricci flow, as methods to parameterize the cortical
surface. The first row shows a right hemisphere cortical surface, with 10 selected landmark
curves. The second row shows results of using the circular slit mapping and Ricci flow
methods (Wang et al., 2006). Both algorithms work with a surface that has boundaries.
However the Ricci flow is computed by solving a nonlinear system, so it is less efficient
than the slit map conformal parameterization method.
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Figure 15.
Slit mapping on longitudinal cortical surfaces, from the same subject scanned twice. A right
hemisphere cortical surface extracted from the same control subject at two different times in
our prior study (Thompson et al., 2003). All available landmarks (35 in total) are used as
cuts in the surface, allowing the entire surface to be mapped to a unit disk with 33 inner slits
and 1 inner circle. The two parameterization results are very similar. Although more
empirical data would be useful, this suggests the robustness of our proposed method if a
person is re-scanned.
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Table 1

Subject age, sex information within groups.

Patients of WS (n=42) Control (n=40)

Age mean ± SD 29.2 ± 9.0 27.5 ± 7.4

Age range 12–50 18–49

Male/female 19/23 16/24
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Table 2

Possible combinations of ground truth and predicted classifications for two classes. This matrix is used to
compute the classifier’s accuracy.

True Class

Assigned Class

WS CTL

WS Nww Nwc

CTL Ncw Ncc
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Table 3

Classification performance with mTBM features on right cortical hemisphere, left cortical hemisphere and
both cortical hemispheres.

mTBM on right cortical hemisphere

True Class
Assigned Class

WS CTL

WS 25 17

CTL 0 40

mTBM on left cortical hemisphere

True Class
Assigned Class

WS CTL

WS 15 27

CTL 2 38

mTBM on both cortical hemispheres

True Class
Assigned Class

WS CTL

WS 21 21

CTL 1 39
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Table 4

Permutation test results with four surface statistics.

mTBM Pair EV of J Determinant of J Largest EV of J

Left hemisphere 0.0004 0.0001 0.0006 0.0009

Right hemisphere 0.001 0.0003 0.0043 0.0033
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Table 5

Classification performance with TBM features (the determinant of Jacobian matrix) on right cortical
hemisphere, left cortical hemisphere and both cortical hemispheres.

TBM on right cortical hemisphere

True Class
Assigned Class

WS CTL

WS 30 12

CTL 3 37

TBM on left cortical hemisphere

True Class
Assigned Class

WS CTL

WS 22 20

CTL 6 34

TBM on both cortical hemispheres

True Class
Assigned Class

WS CTL

WS 18 24

CTL 6 34

Neuroimage. Author manuscript; available in PMC 2014 July 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang et al. Page 52

Table 6

Classification performance with pair of eigenvalues of Jacobian matrix on right cortical hemisphere, left
cortical hemisphere and both cortical hemispheres.

Pair EV of J on right cortical hemisphere

True Class
Assigned Class

WS CTL

WS 22 20

CTL 3 37

Pair EV of J on left cortical hemisphere

True Class
Assigned Class

WS CTL

WS 21 21

CTL 5 35

Pair EV of J on both cortical hemispheres

True Class
Assigned Class

WS CTL

WS 18 24

CTL 4 36
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Table 7

Classification performance with total cortical volume features.

TrueClass

Assigned Class

WS CTL

WS 26 16

CTL 19 21
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Table 8

Classification experimental result comparison with various feature groups.

Sensitivity(%) Specificity(%) Positive Value(%) Negative Value(%)

mTBM on right cortical hemisphere 59.52% 100.00% 100.00% 70.18%

mTBM on left cortical hemisphere 35.71% 95.00% 88.24% 58.46%

mTBM on both cortical hemispheres 50.00% 97.50% 95.45% 65.00%

TBM on right cortical hemisphere 71.43% 92.50% 90.91% 75.51%

TBM on left cortical hemisphere 52.38% 85.00% 78.57% 62.96%

TBM on both cortical hemispheres 42.86% 85.00% 75.00% 58.62%

Pair of EV of J on right cortical hemisphere 52.38% 92.50% 88.00% 64.91%

Pair of EV of J on left cortical hemisphere 50.00% 87.50% 80.77% 62.50%

Pair of EV of J on both cortical hemispheres 42.86% 90.00% 81.82% 60.00%

Volume of both cortical hemispheres 61.90% 52.50% 57.78% 56.76%
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Table 9

Mean accuracy and standard deviation results for leave-N-out experiments with mTBM and TBM. Results are
shown for two-sample t-tests that test whether the difference between the two average accuracy rates is
statistically different. These results are shown as p-values in the last column of the table. Interestingly, the
multivariate TBM method does not outperform the standard TBM method applied to surfaces.

mTBM TBM p-value

Left hemisphere 0.66 ± 0.150 0.68 ± 0.161 0.62

Right hemisphere 0.76 ± 0.113 0.77 ± 0.123 0.66

Whole brain 0.68 ± 0.130 0.65 ± 0.125 0.32
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