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Abstract
Human brain matures in temporal and regional heterogeneity, with some areas matured at early
adulthood. In this study, the relationship of cortical structural developments between different
cortical sheet regions is systematically analyzed using interregional correlation coefficient and
network methods. Specifically, 951 longitudinal T1 brain MR images from 445 healthy subjects
with ages from 3 to 20 years old are used. The result shows that the development of cortex reaches
a turning point at around 7 years of age: a) the cortical thickness reaches its highest value and also
the cortical folding becomes stable at this age; b) both global and local efficiencies of anatomical
correlation networks reach the lowest and highest values at this age, respectively; and c) the
change of anatomical correlation networks reach the highest level at this age, and the convergence
of different anatomical correlation networks starts to decrease from this age. These results might
inspire more studies on why there exists a turning point at this age from different viewpoints. For
example, is there any change of synaptic pruning, or is it related to the starting of school life? And
how can we benefit from this in the real life?
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Introduction
Human brain matures at different rates across time and different regions, with some areas
matured at early adulthood. Specifically, the total size of the brain reaches approximately
90% of its adult size at 6 years of age (Giedd, 2004; Reiss et al., 1996). Cortical thickness
and volume have been shown to follow an inverted U-shaped developmental course, with a
period of initial childhood increase and a subsequent adolescent decline (Courchesne et al.,
2000; Giedd, 2004; Gogtay et al., 2004; Kennedy et al., 2002; Pfefferbaum et al., 1994;
Reiss et al., 1996; Shaw et al., 2008). The early cortical thinning may reflect pruning in the
form of use-dependent selective synapse elimination (Bourgeois and Rakic, 1993;
Huttenlocher and Dabholkar, 1997; Shaw et al., 2008), which could play a key role in
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shaping neural circuits and could be a biological basis for ongoing development of cognitive
abilities and behavior (Hensch, 2004; Knudsen, 2004). Thus, quantitative characterization of
brain maturation might be essential to reveal the relationship between cortical structural
connection and high-level functional development, and also for understanding neuro-
developmental disorders (Schlaggar et al., 2002; Stiles, 2000).

Longitudinal structural neuroimaging provides a powerful tool for developmental
neuroscience to measure anatomical changes over time (Raznahan et al., 2011). In recent
years, neuroimaging methods have provided fundamental insights into characterizing the
features of human brain maturation, and revealing the difference related to sex, cognitive
ability, genetic profile, and disease status during neuro-development (Giedd and Rapoport,
2010). Though the development of cortical structures shows regional heterogeneity in
humans in recent studies (Gogtay et al., 2004; Shaw et al., 2008; Sowell et al., 2004), the
underlying relationship between structural developments between different cortical sheet
regions still needs to be quantified (Raznahan et al., 2011).

Human brain could also be characterized as a complex anatomical and functional network
developing over the whole life (Achard et al., 2006; Eguiluz et al., 2005; Salvador et al.,
2005; Sporns et al., 2004; Stam, 2004; Stam et al., 2007). The functional network in human
brain has been explored extensively using electroencephalogram (EEG) (Micheloyannis et
al., 2006; Stam et al., 2007), magnetoencephalography (MEG) (Stam, 2004), and functional
magnetic resonance imaging (fMRI) (Achard et al., 2006; Eguiluz et al., 2005; Gao et al.,
2011; Salvador et al., 2005). The small-world property (Watts and Strogatz, 1998), which
indicates that most nodes in the network are not neighbors of one another, but can be
reached from every other by a small number of hops or steps, has been found in the
functional network of the adult brain (Achard et al., 2006; Eguiluz et al., 2005; Salvador et
al., 2005). Meanwhile, the network of anatomical connections in the human brain has also
been studied recently (Gong et al., 2009a, 2012; He et al., 2007; Sporns et al., 2004). The
correlations of cortical thickness between different regions across subjects have been
measured and formed as structural connections (He et al., 2007; Sporns et al., 2005). The
anatomical connection could also be estimated by regional diffusion-based anatomical
connectivity using probabilistic tractography (Gong et al., 2009a, 2012).

In this study, the relationship between cortical structural developments in different cortical
sheet regions is systematically analyzed using interregional correlation coefficient and
network methods. Specifically, 951 longitudinal T1 brain MR images from 445 healthy
subjects with ages from 3 to 20 years old are used, and for each subject at each time point its
cortical thickness and cortical folding are first calculated on its inner cortical surface (the
interface between white matter and gray matter) that has been parcellated into 78 regions of
interest (ROIs). Then, the correlation matrices for cortical thickness and cortical folding at
each time point and also at all time points are constructed, respectively, by computing the
interregional Pearson's correlation coefficient of any pair of ROIs across subjects.

To analyze the development of the interregional correlation coefficient, the development of
left/right hemispheric symmetry is particularly measured by the correlation value between
corresponding left and right regions at different longitudinal times. Then, by using the
interregional correlation coefficient as the regional similarity, the whole cortex is clustered
into several large regions with distinct structural developmental patterns by a clustering
method (Frey and Dueck, 2007).

Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is
constructed from each interregional correlation matrix, and its statistical and anatomical
properties, especially the small-world property and connectivity distribution using graph
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theoretical analysis, are adopted to analyze the longitudinal development of anatomical
networks.

Methods
Subjects and image acquisition protocol

Data were obtained from the Pediatric MRI Data Repository (Release 4.0) created for the
NIH MRI Study of Normal Brain Development (Evans, 2006), a multi-site longitudinal
project aimed at providing a normative database to characterize healthy brain maturation in
relation to behavior. This database includes subjects from neonates to 21 years of age who
underwent extensive cognitive, neuropsychological and behavioral testing along with
multiple MRI brain imaging sessions. 951 sessions from 445 subjects with ages from 3 to 20
years old were used here. As this study aimed to study healthy subjects, exclusion criteria
included (but were not limited to) prior history of medical illnesses with CNS implications,
IQb70, and intra-uterine exposure to substances known or highly suspected to alter brain
structure or functions (Evans, 2006; Waber et al., 2007).

A three-dimensional T1-weighted (T1W) Spoiled Gradient Recalled (SPGR) echo sequence
from 1.5 Tscanners was obtainedoneach participant, with 1 mm isotropic data acquired
sagittally from the entire head. Slice thickness of ∼1.5 mm was allowed for GE scanners due
to their limit of 124 slices. In addition, T2-weighted (T2W) and proton density-weighted
(PDW) images were acquired using a two-dimensional (2D) multi-slice (2 mm) dual echo
fast spin echo (FSE) sequence. Total acquisition time was about 25 min and was often
repeated when indicated by the scanner-side quality control process.

Image processing
In order to measure cortical attributes for each session, T1-weighted images were adopted.
For each T1-weighted image, the skull stripping was first performed to remove non-cerebral
tissues, and also the cerebellum and brain stem were further removed (Smith, 2002). Then
the brain image was segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) regions (Zhang et al., 2001). After topology correction of the WM
volume, the inner and outer cortical surfaces were reconstructed and represented by the
triangular meshes, composed of a set of vertices and triangles (Liu et al., 2008). Based on
the automated anatomical labeling template (Tzourio-Mazoyer et al., 2002), each cortical
surface was parcellated into 78 regions of interest (ROIs) by a high-dimensional nonlinear
hybrid volumetric/surface registration method (Liu et al., 2004; Shen and Davatzikos, 2002).
The 78 cortical surface regions of interest defined by the template are provided in Table S1.

Cortical thickness can be measured by various distance metrics between inner and outer
cortical surfaces, such as the linked distance (Kim et al., 2005), curved streamline distance
(Jones et al., 2000) and shortest distance (Fischl and Dale, 2000; Li et al., 2012). For our
ROI-based study, cortical thickness was measured in the native space using the shortest
distance between inner and outer cortical surfaces at each vertex. For each session, regional
cortical thickness was defined as the average thickness of all vertices belonging to the same
ROI. The curvedness (Koenderink and Vandoorn, 1992) of the inner cortical surface was
adopted to characterize the local cortical folding as did in Nie et al. (2012). Recent
comparison on the curvature-based measurement and the gyrification index (Rodriguez-
Carranza et al., 2007) shows that these two types of measurements perform similarly on the
inner cortical surfaces. For each session, regional cortical folding was defined as the average
curvedness of all vertices belonging to the same ROI.
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Measurement of correlations between ROIs
The statistical similarity between two cortical regions can be measured by computing the
interregional Pearson's correlation coefficient of cortical properties across subjects after
removing the effects of multiple confounding variables. Since the anatomical features of
brain might not develop uniformly during this age range (3 to 20 years of age), statistical
similarity between two cortical regions might change with ages. Thus, the interregional
correlations across all ages and at each age are calculated as below.

Correlations across all ages
A linear regression analysis was performed at each cortical region across all sessions (with
one session defined as a scan of a subject, thus each subject probably having several
sessions at different ages) in order to remove the effects of multiple confounding variables:
gender, and overall mean cortical thickness and curvedness (He et al., 2007). The residual of
the regression was treated as the raw value of each ROI. Then, the statistical similarity
between two cortical regions was measured by computing the interregional Pearson's
correlation coefficient of cortical thickness or cortical folding across all sessions. Since the
variable age is not removed in the linear regression, the calculated correlation could
represent the similarity between regions across all ages.

Correlations at each year
Another potential analysis method is to calculate the correlation coefficient at each year, and
then measure the change of correlations with the age. However, since the number of sessions
at certain ages (such as 4 and 5 years of age) is small as shown in Fig. 1, the correlation
value might not be estimated accurately at these ages. Thus, a weighted correlation
coefficient (Bland and Altman, 1995) is adopted herein to include more sessions at each year
(t) by assigning small weights to sessions at other years:

(1)

where xi and yi are the anatomical properties of session i at regions x and y, respectively,

and  is the weight for session i at year t, which is defined as:

(2)

where ti is the age of a subject in session i, λ is the smooth parameter which is set as 0.1 in
our experiment, and (t − tr, t + tr) is the range of years we used to estimate the correlation at
year t. Thus, the sessions with ages in the range (t − tr, t + tr) are included for calculating the
correlation at year t, and their importance is weighted by the respective age difference. Note

that, when setting  for all sessions, the weighted correlation coefficient becomes the
traditional Pearson's correlation coefficient.

Construction of cortical-thickness and folding correlation networks
The construction of the anatomical connection matrix is a key issue in characterizing the
human brain network (Sporns et al., 2005). In this study, the anatomical connection as
statistical associations in cortical anatomical properties between cortical regions was defined
similarly as in the previous studies (Gong et al., 2012; Lerch et al., 2006; Worsley et al.,
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2005). In this way, the interregional symmetric correlation matrices (78 × 78) of cortical
thickness can be constructed from 3 to 20 years of age, respectively, as shown in Fig. S1.
Similarly, the correlation matrices of cortical curvedness can also be computed from 3 to 20
years of age, as shown in Fig. S2.

The above processing results in multiple 78 × 78 symmetric correlation matrices for each
year. For conceptual simplicity, our present study focused on a presence/absence pattern
(i.e., binary pattern) of connections. Similar to the previous studies (Achard and Bullmore,
2007; Bassett et al., 2008; Gong et al., 2012), we employed a sparsity-based thresholding
approach, where the sparsity was defined as the ratio of the number of actual connections to
the number of possible connections (78 × (78 − 1)/2 = 3003) within the network.
Specifically, we applied the same sparsity threshold to all matrices, ensuring the same
number of supra-threshold regional pairs.

To compare the similarity between the cortical-thickness and curvedness correlation
networks at the same age and also the similarity between networks at different ages, we
calculated the percentage of convergence (PC) via dividing the number of convergent
regional pairs (Ncon) by the number of all supra-threshold regional pairs (Nsup):

(3)

The convergent regional pair is defined as the connections that exist in both networks. Since
the same sparsity threshold is applied to both networks, the number of all supra-threshold
regional pairs is identical for both networks.

Measurement of network topological properties
Previous studies have demonstrated the small-world topology of both diffusion and
thickness correlation networks, characterized by highly efficient information transfer both
locally and globally (Gong et al., 2009a; He et al., 2007; Iturria-Medina et al., 2008). Herein,
the network global efficiency is defined as the inverse of the harmonic mean of the shortest
path length (dij) between each pair of nodes within the network:

(4)

And the local efficiency for each node could be calculated as the global efficiency of the
neighborhood subgraph Gi of the node. Then, the local efficiencies across all nodes within
the network are further averaged to estimate the network local efficiency:

(5)

In the study of functional network, a small number of regions (hubs) with an unusually large
number of connections have been identified (Eguiluz et al., 2005). Usually, the nodes with
the smallest mean shortest path length, or the largest degree (number of connections to the
node), were considered as the hubs of the network (Achard et al., 2006). As described in
Gong et al. (2009b), to measure the connections of each node (i), the regional efficiency
Er(i) is defined as:
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(6)

Thus the regions were identified as the hubs in correlation networks if their regional
efficiency was at least one standard deviation (STD) greater than the average regional
efficiency of the network.

Results
The development of correlation matrices from 3 to 20 years of age

The changes of correlation matrices can directly reflect the development of different
anatomical properties. The cortical-thickness and curvedness correlation matrices at
different ages show similar patterns but with small difference at overall absolute correlation
value as shown in Figs. S1 and S2. Both cortical-thickness and curvedness correlation
matrices show the decrease of absolute correlation value over ages at most regions, which
indicates that the regional difference increases during the development. However, compared
to the curvedness correlation matrices, more negative correlations and higher overall
absolute correlation values are found in the cortical-thickness correlation matrices. This
result indicates that there might be stronger connection in the cortical-thickness correlation
networks than the curvedness correlation networks.

The hemispheric asymmetry of development from 3 to 20 years of age
After obtaining the correlation matrices, the development of hemispheric asymmetry is
analyzed by the correlation values between the corresponding left and right regions and its
changes over time. The cortical thickness and curvedness symmetry correlation values, from
3 to 20 years of age, are mapped onto the cortical surface as shown in Figs. S3 and S4,
respectively. The linear regression is also performed on the symmetry correlation values
from3 to20 years of age to analyze the increasing or decreasing developmental pattern of
each ROI. The linear developmental patterns of the symmetry cortical-thickness and
curvedness correlation are shown in Figs. 2(a) and (b), respectively. The strong asymmetries
appear at the occipital (negative correlation) and frontal lobes (with correlation value less
than 0.4) at early childhood in both cortical-thickness and curvedness correlations, as shown
in Fig. 2. During the adolescence and early adult phases, the corresponding thickness and
curvedness symmetry correlation values become stable as shown in Figs. S3 and S4,
respectively. As we can see, visual cortex shows the strong increase of symmetry in both
cortical-thickness and curvedness correlations, even though strong asymmetry could be
found in this area at early childhood as shown in Fig. 2. Temporal cortex also shows the
similar trend of symmetry changing with the age in cortical-thickness and curvedness
correlations, with the superior and middle temporal gyri decreasing symmetry and the
inferior temporal gyrus increasing symmetry. Certain differences could also be found in the
cortical-thickness and curvedness correlations. For example, the symmetry of cortical
thickness in the frontal lobe generally increases, while the symmetry of curvedness generally
decreases in this region. Compared to the curvedness, higher overall hemispheric symmetry
correlation values are found in the cortical thickness.

The cortex parcellation based on the correlations across all ages
To further analyze the developmental pattern of cortical anatomy, the affinity propagation
clustering method (Frey and Dueck, 2007) is adopted to cluster ROIs into several large
regions, each containing similar structural developmental patterns. Affinity propagation is a
clustering algorithm that takes as input the measures of similarity between pairs of data
points and simultaneously considers all data points as potential exemplars. The similarity
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(sij) between regions i and j in our experiment is defined as sij = (1 + rij)/2, where rij is the
correlation value between regions i and j. Given the similarities, affinity propagation
iteratively updates the responsibilities (qik) and availabilities (aik) between point i and the
potential exemplar k by:

(7)

For point i, the value of k that maximizes aik + qik either identifies point i as an exemplar if
k = i, or identifies the point that is the exemplar for point i. Affinity propagation can
automatically determine the number of clusters based on the input preference that a data
point could be chosen as an exemplar. In our experiment, the input preference sii is set as
0.3.

After clustering using affinity propagation, 8 and 5 clusters are found in the cortical-
thickness and curvedness developmental patterns, respectively, as shown in Figs. 3(a) and
(b). The left and right hemispheres show strong symmetry, so only left hemisphere is shown
in Fig. 3. As we can see, the cortical surface is parcellated as spatially coherent clusters,
although no spatial neighboring information was adopted for clustering. It is also interesting
to find that both cortical-thickness and curvedness developmental patterns could be roughly
distinguished by lobes, especially that pre- (motor cortex) and post-central (somatosensory
cortex) gyri, which belong to the frontal and parietal lobes, respectively, are clustered into
two different developing patterns. Also, the parieto-occipital sulcus that separates the
parietal lobe and occipital lobe is identified as a border in the parcellation of both cortical-
thickness and curvedness developmental patterns. These results indicate that there are
certain essential anatomical similarities within brain lobes.

The development of the mean values and variances of cortical-thickness and curvedness at
each cluster over age are also shown in Figs. 3(a) and (b), respectively. As we can see, the
trajectories of average thickness in different clusters are distinct. However, they all follow
an inverted U-shaped developmental course with a period of initial childhood increase and a
subsequent adolescent decline. The highest average thickness value appears at around 7
years of age in all clusters, which is consistent with the observation that the total brain size
reaches approximately 90% of its adult size at 6 years of age (Giedd, 2004; Reiss et al.,
1996) and the total cortex volume reaches its highest value at about 7 to 8 years of age
(Group, 2012). Similarly, the trajectories of cortical folding in different clusters are also
distinct, with each region following an overall decreasing trajectory. The cortical folding
becomes stable at 6 to 7 years of age in most regions.

The development of network topological properties
The developments of global and local efficiencies on cortical-thickness and curvedness
correlation networks at each age are shown in Fig. 4 (sparsity = 0.234). The global and local
efficiencies of cortical-thickness and curvedness correlation networks reach the lowest and
highest values at 6 to 7 years of age, respectively. After that, the changes of the global
efficiency in both cortical-thickness and curvedness correlation networks are non-significant
as shown in Fig. 4(a), and the local efficiency in curvedness correlation networks slightly
decreases during the brain development as shown in Fig. 4(b). This result also indicates the
important change of network efficiency at 6 to 7 years of age.

We also compared both global and local efficiencies between different types of correlation
networks. The two correlation networks show similar global efficiency value (with
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difference of about 0.01) as shown in Fig. 4(a). On the other hand, the curvedness
correlation networks show lower local efficiency (about 0.70 at sparsity = 0.234), compared
to cortical-thickness correlation networks (about 0.76 at sparsity = 0.234), as shown in Fig.
4(b).

The convergence of networks during development
The convergence of cortical-thickness and curvedness correlation networks is shown in Fig.
5. The percentage of convergences (PC) between each age t (t = 3, …, 19) and its next age t
+ 1 is calculated for cortical-thickness and curvedness correlation networks, with the results
shown in Fig. 5(a). As we can see, the cortical-thickness correlation networks show even
higher PC value compared to the curvedness correlation networks, although both networks
show high PC value (larger than 0.8). This result indicates that both network architectures
remain similar during the development from early childhood to early adult, except that the
change of anatomical correlation networks reach the highest level at 6 to 7 years of age as
shown in Fig. 5(a).

To further compare the difference of correlation networks, the percentage of convergence
(PC) was calculated between the two correlation networks at each age, as shown in Fig.
5(b). As we can see, the PC values of the two correlation networks decrease from 7 years of
age to early adult. This result indicates that the two cortical anatomical networks have
different developmental patterns, especially after 7 years of age.

The development of hub regions in correlation networks
The hub regions of cortical-thickness and curvedness correlation networks from 3 to 20
years of age are shown in Figs. 6(a) and (b), respectively. Inthe cortical-thickness correlation
networks, the superior and middle temporal gyri are identified as a hub region consistently
duringthe development, andthe hub regionsinthe parietal lobe appear during childhood and
adolescent agesasshown in Fig. 6(a). The hub regions in the temporal lobe also remain
consistently in the curvedness correlation networks during the development, while the hub
regions in the frontal lobes appear during early childhood and adolescent ages as shown in
Fig. 6(b). By comparing the hub regions in the cortical-thickness and curvedness correlation
networks, we find that the temporal lobe is consistently identified as a hub region in both
cortical thickness and curvedness correlation networks at each age.

Discussions
Our results show that the cortical thickness still increases at the early childhood, and starts to
decrease after 7 years of age. Meanwhile, the curvedness decreases fast before 7 years of age
and becomes stable after that. However, different developmental patterns could be identified
in different lobes, as shown in Fig. 3. This result suggests that the development of cortical
thickness is highly correlated with the development of brain functions which could also be
separated by lobes. For example, the temporal lobe, which is highly related to the long term
memory (Kolb and Whishaw, 2003), increases its thickness fast before 7 years of age. While
the occipital lobe (visual area), which is developed earlier, has lower cortical thickness value
(such as less than4 mm at the highest value) as shown in Fig. 3(a).

The cortical-thickness and curvedness correlation networks are very stable during this
developmental stage. The percentage of convergence (PC) of cortical-thickness correlation
networks (about 0.90) during this developmental stage is much higher than the
corresponding PC at 1 to 2 years of age (about 0.5), and the percentage of convergence (PC)
of curvedness correlation networks (about 0.85) during this developmental stage is also
much higher than the corresponding PC at 1 to 2 years of age (about 0.65) (Wang et al.,
2011). The hub regions at different ages do not change much as shown in Figs. 6(a) and (b).
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This result also suggests that both cortical-thickness and curvedness correlation networks are
well established during these ages.

However, the PC between cortical-thickness and curvedness correlation networks increases
from 3 to 6 years of age and then decreases after that, as shown in Fig. 5(b). This result
suggests that the correlation networks have the similar developmental patterns in both
cortical-thickness and curvedness correlation networks until the early childhood, since the
cortical volume growth is the major development factor during this period, and other factors
such as functional development dominate the development of anatomical correlation
networks after that time.

Our result shows that the development of the cortex reaches a turning point at around 7
years of age. Although previous studies have also shown the decrease of cortical volume and
thickness starting at earlier childhood (Gogtay et al., 2004; Group, 2012), our result
indicates that cortical folding also starts to decrease at earlier childhood, with a similar
pattern as the cortical thickness. Moreover, the brain structure network also shows the
corresponding change at this age.

The reason that causes the change of the cortex development at this age needs to be further
studied. For example, it might be caused by the change of synaptic pruning, or it might be
related to the starting of school life. To further study this reason, longitudinal diffusion and
functional MRI could be adopted to the subjects around 7 years of age for studying the
change of structural and functional changes of the cortex.

These results might also provide certain useful information for further brain image analysis.
For example, the cortical symmetry information might be used to guide the segmentation
and registration of brain images. The changing speed of cortical thickness and folding might
help decide the age interval when constructing brain atlases. For example, since the cortical
thickness and folding change faster before 6 years of age (as shown in Fig. 2), the age
interval for constructing brain atlases should be smaller.

The two measurements used in our study might not be stable due to the drastic changes in
the cohort's age. Specifically, for the measurement of cortical thickness, the accuracy is
mostly determined by tissue segmentation method. We have visually checked all the tissue
segmentation and surface reconstruction results to ensure the reliability of cortical thickness.
On the other hand, for the curvedness measurement, the accuracy is highly depending on the
tissue segmentation and surface reconstruction methods. In our ROI-based study, we found
that the coefficient of variation (standard deviation/mean value) of curvedness (8.7%) is
smaller than the coefficient of variation of cortical thickness (10.7%), which means that the
curvedness is more stable in the cohort's age.

Since both the cortical thickness and curvedness are not scale-invariant, certain
normalization methods are adopted in this study. The linear regression analysis was
performed at each cortical region across all sessions in order to remove the effects of
multiple confounding variables: gender, and overall mean cortical thickness and curvedness.
Thus the scale change is normalized by removing the mean change of cortical thickness and
curvedness.

In this study, although we show only the development of networks calculated by a single
threshold (sparsity = 0.234), we also analyzed the network with other thresholds and
obtained the similar results. Since the strong correlation between two cortical regions does
not necessarily mean the actual connection, the tractography method should be included to
further study the development of cortical networks. Since the NIH Pediatric MRI Data
Repository has released DTI datasets associated with the MRI dataset, the tractography
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results obtained from the corresponding DTI images could provide the “actual” connection
between regions, and might further reveal the development of the relationship between the
structural correlation connections and the fiber connections.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The number of sessions at each year.
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Fig. 2.
The development of the hemispheric symmetry between corresponding left and right ROIs
from 3 to 20 years of age, using linear regression of correlation values (red: increase of
symmetry; blue: decrease of symmetry). (a) Thickness correlation. (b) Curvedness
correlation.
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Fig. 3.
The parcellation of the cortex by the similarity of developmental patterns in ROIs. (a)
Thickness correlation. (b) Curvedness correlation.
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Fig. 4.
The development of global and local efficiencies on the thickness and curvedness
correlation networks (sparsity = 0.234).

Nie et al. Page 16

Neuroimage. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The change of percentage of convergence of the thickness and curvedness correlation
networks during the development.
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Fig. 6.
The development of hub regions in the thickness and curvedness correlation networks from
3 to 20 years of age. (a) Hub regions in the thickness correlation network, (b) hub regions in
the curvedness correlation network.
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