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Abstract
We propose a novel computational strategy to partition the cerebral cortex into disjoint, spatially
contiguous and functionally homogeneous parcels. The approach exploits spatial dependency in
the fluctuations observed with functional Magnetic Resonance Imaging (fMRI) during rest. Single
subject parcellations are derived in a two stage procedure in which a set of (~1000 to 5000) stable
seeds is grown into an initial detailed parcellation. This parcellation is then further clustered using
a hierarchical approach that enforces spatial contiguity of the parcels.

A major challenge is the objective evaluation and comparison of different parcellation strategies;
here, we use a range of different measures. Our single subject approach allows a subject-specific
parcellation of the cortex, which shows high scan-to-scan reproducibility and whose borders
delineate clear changes in functional connectivity. Another important measure, on which our
approach performs well, is the overlap of parcels with task fMRI derived clusters. Connectivity-
derived parcellation borders are less well matched to borders derived from cortical myelination
and from cytoarchitectonic atlases, but this may reflect inherent differences in the data.
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Introduction
A cortical parcellation is a subdivision of the cerebral cortex into a set of areas that share
certain neurobiological properties. They thus provide fundamental maps for functional
neuroimaging and provide the first abstractions on which many models of brain function are
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based. Parcellations in which each region specifies a functionally distinct area are of
particular interest, as these encapsulate the fundamental neurobiological principles of
functional specialisation and segregation, and thus form a basis for connectomics (Sporns et
al., 2005). A reliable parcellation is especially important, because errors in the specification
of the “network node” regions can significantly confound the quality of brain network
estimates (Smith et al., 2011).

Several neurobiological properties can be used to derive parcellations, including
cytoarchitecture, sensory topography, functional homogeneity and connectivity. Cortical
areas delineated by architectonic and/or topographic (e.g., retinotopic or somatotopic)
criteria show several within-area commonalities, including their connectivity. However, in
the macaque, many cytoarchitectonically well-defined cortical areas also show within-area
heterogeneity. As this can exceed the connectivity differences between topographically
corresponding locations in neighbouring areas, parcels based on internal homogeneity of
functional connectivity can reveal organisational principles different from those captured by
anatomically delineated cortical areas (Van Essen and Glasser, submitted for publication).

Properties of fMRI data acquired during “rest” (rs-fMRI) can provide evidence of both
functional homogeneity and functional connectivity (Biswal et al., 1995). There is now an
extensive literature on rs-fMRI based parcellation (recent examples include Bellec et al.,
2010; Craddock et al., 2011; Kim et al., 2010; Lashkari et al., 2010; Mumford et al., 2010;
Power et al., 2011; Shen et al., 2010; Yeo et al., 2011; Zhang et al., 2011; a longer list can
be found in the Supplementary material.). As these approaches are able to reveal
organisational principles not captured by other modalities, they now complement traditional
parcellation approaches such as postmortem studies of cytoarchitecture (Zilles and Amunts,
2010), in vivo studies of myelin content (Glasser and Van Essen, 2011) or methods that look
at brain connections using diffusion MRI and tractography (Behrens et al., 2003).

Our aim here is to develop a robust and fully automated technique that uses rs-fMRI data to
produce reliable parcellations of the entire human cerebral cortex, ideally on a single subject
basis. These parcellations are envisaged to delineate fundamental functional subdivisions of
the brain and thus better reflect subject-specific brain organisation. Such parcellations would
thus provide more appropriate models of brain organisation for further connectivity analysis,
which are currently often defined using cytoarchitectonic atlases or gross anatomical
landmarks, and thus fail to accurately reflect a subject's functional anatomy.

After an extensive survey, we found that current methodologies do not yet satisfy the above
requirements. Whilst many algorithms are able to reliably parcellate several relatively small
cortical regions, even for single subjects, parcellation of the entire cortex is a much more
complex task. We found that the methods that worked well on small regions did not provide
the same robustness and reproducibility when applied to the entire cortex.

One reason for this failure is likely to be found in the high inter-subject variability in
functional brain organisation in many brain regions, which prevents larger multi-subject
data-sets to be leveraged effectively to enhance parcellation accuracy. These problems are
further exacerbated by the fundamental difficulties inherent in the lack of a ground truth that
would provide a reliable and clear-cut basis on which to evaluate different methods.

We therefore set out to (i) design a parcellation approach that could be applied robustly
across the whole cerebral cortex, and could be applied to individual datasets, and (ii) design
a set of measures that could be used to evaluate the success of this parcellation scheme and
compare it with alternative approaches.
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We address (i) through an approach based on region-growing and spatially constrained
hierarchical clustering. This method forces parcels to be spatially homogeneous, a
requirement that has been found to be advantageous in cortical parcellation before
(Craddock et al., 2011; Lu et al., 2003; Bellec et al., 2006; Heller et al., 2006).

An initial outline of the approach presented here has been previously presented at MICCAI
(Blumensath et al., 2012). The current paper provides a more detailed description of the
approach and a larger body of evidence to demonstrate its performance.

Methodology
Subjects and data acquisition

To evaluate our approach, we used two different data sets, both generated at the University
of Minnesota as part of the initial stages of the NIH-funded Human Connectome Project.

The first data set was originally used in Smith et al. (2012). The data-set was acquired in six
sessions from 5 different subjects (ages 18–25, 3 males, one subject was scanned twice, i.e.
in two different sessions). During each session, six 10-min fMRI datasets were acquired
from each subject using the accelerated protocol described in Feinberg et al. (2010),
providing whole brain coverage at a TR of 0.8 s and with an isotropic spatial resolution of 3
mm. Data was acquired on a 3 T scanner (Siemens Trio). In each scanning session, a single
EPI reference image was acquired between each of the 10 min blocks. A1 × 1 × 1 mm
resolution structural image (T1-weighted) was acquired.

The second data set consisted of 14 scanning sessions acquired from 10 different subjects (4
subjects being scanned twice) (ages 20–49, 6 females). Each scan consisted of a 23 min
eyes-open resting state fMRI scan using a 4-fold Multi-band accelerated EPI protocol as
described in Feinberg et al. (2010). The scan parameters were as follows: 2 mm isotropic
resolution, TR = 1370 ms, TE = 36 ms, flip angle = 68°, echo spacing = 0.55 ms. We also
acquired B0 field-map images and an additional fully-relaxed “single-band” reference EPI.
Data was acquired on the HCP's customised 3 T scanner (Siemens Skyra) using a 32-
channel head coil. For each subject two 0.8 mm resolution structural images (T1-weighted,
MPRAGE) and two 0.8 mm resolution structural images (T2-weighted) were acquired to aid
registration. Each of the sessions also included a set of task fMRI scans acquired using the
same EPI sequence as the rs-fMRI acquisition. The tasks included four 6 min working
memory paradigms, one 5 min motor task, one 6 min biomotion task, two 6 min language
tasks and two 6.5 min social cognition tasks.

Preprocessing
Data set 1 was preprocessed as follows. FSL (FMRIB's Software Library) (Smith et al.,
2004) was used for 1) head motion correction and 2) full width 200 s temporal high-pass
filtering and 3) T1 images were segmented using FreeSurfer (Dale et al., 1999) and the
functional data was projected onto the cortical surface using FreeSurfer's mri_vol2surf
functionality.

Data set 2 was preprocessed using a preliminary version of the Human Connectome
Project's structural and functional minimal preprocessing pipelines, final versions to be
published separately (Glasser et al. unpublished). Briefly, this involved 1) brain extraction
based on FNIRT registration and registration of T2w to T1w image using FLIRT, bias field
correction using the square root (T1w × T2w) (Rilling et al., 2012), and final registration to
MNI152 space with FNIRT. Then data were fed into FreeSurfer cortical surface modelling,
with final surface placement adjustment using the full high resolution T1w image, and dura
and blood vessels removed using the high resolution T2w image. Surfaces were transformed
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nonlinearly into MNI space, registered to the 164 k vertex fs_LR atlas (Van Essen et al.,
2011) and downsampled to 32 k vertices. Myelin maps were generated as presented
previously (Glasser and Van Essen, 2011). Functional (R-fMRI and T-fMRI) data were
motion corrected, distortion corrected and EPI to T1w registration with FLIRT + BBR
(Greve and Fischl, 2009) applied, mean normalised and resampled in a single spline
interpolation into 2 mm MNI152 space. fMRI data were mapped onto the cortical surface
using a cortical-ribbon-based volume to surface mapping method (that excludes voxels with
locally high temporal coefficient of variance) and transformed from the native mesh to the
32 k registered mesh. Surface smoothing of 2 mm FWHM was applied.

All fMRI data-sets were de-noised using FSL's spatial-ICA tool MELODIC (Multivariate
Exploratory Linear Optimised Decomposition of Independent Components) (Beckmann and
Smith, 2004) as described in Smith et al. (2012). In short, spatial-ICA with automatic
dimensionality estimation was run on each data-set. Using two heuristics (fraction of power
above 0.2 Hz and extent of a component's spatial map overlapping low-intensity voxels in
the original raw data), each ICA component was automatically classified into “definitely-
artefact” vs. “signal-or-artefact”. The full space of all “definitely-artefact” time-series was
then regressed out of the pre-processed fMRI data.

All of our processing was carried out on the cortical surface. For the work presented here,
we discarded the data associated with subcortical structures, though our approach does not
rely on this and could utilise this data in addition to cortical data.1 Data-set 1 included the
data from the “medial wall” (i.e. the data on the FreeSurfer surface that is not within the
cortical mask), whilst this data was masked out when processing data-set 2. Our processing
pipeline thus starts with a cortical mesh representation, which specifies the spatial location
for each vertex and also defines its neighbourhood structure. Our approach is not specific to
surface representations and can be used for volumetric processing and even for joint surface
and volume based data representations (Marcus et al., 2011). All that is required is that for
each BOLD time-series, there be an associated spatial location and a structure that defines
the neighbourhood.

After preprocessing and de-noising, each BOLD time-series was normalised by (1)
subtracting its temporal mean and (2) re-scaling to unit variance.

Single subject parcellation
Our single-subject algorithm attempts to improve on previous approaches in several ways.

1. We grow the regions from a large (~1000 to ~5000) number of seed locations, each
of which is selected based on two criteria, (a) a seed location is centred within a
small functionally homogeneous region and (b) a seed has a representative time-
courses for its region.

2. Initial regions are further clustered using a hierarchical approach that again
enforces spatial cluster contiguity. This hierarchical framework not only produces a
final parcellation, but an entire parcellation tree, reflecting our perspective that
there is no single “correct” resolution, but a spectrum of meaningful parcellations.

The main steps in the clustering approach are visualised in Fig. 1 and described in more
detail below.

1The inclusion of subcortical areas in the definition of connectivity fingerprints might be beneficial for cortical parcellation; however,
as we found fingerprint-based approaches to perform similarly to correlation based approaches, we here concentrated on the latter and
excluded subcortical data.
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Defining locally stable seeds
We propose an approach that tries to estimate cortical locations that lie inside functionally
homogeneous brain regions and whose BOLD time-series are representative of local BOLD
activity. This is done through the estimation of a stability map, whose local minima encode
these two properties. There are several methods available to estimate local regional
homogeneity in functional MRI data and a recent review can be found in Zuo et al. (2013).
We here use an approach that calculates stability maps as the root mean square error
between all time-series in an ROI and the ROI's mean time-series. The ROI's radius then
influences the smoothness of the resulting stability map.2 Due to the normalisation of the
fMRI time-series, our approach produces similar results to those achieved using correlation
based regional homogeneity measures.

A surface-based Gaussian kernel smoother with a full width half maximum of 2.35 mm (σ =
1 mm) was used to further smooth the stability maps. Seed locations were then identified as
the local minima of the stability map.3 An evaluation of the influence of the reliable
identification of initial seed locations is presented in the Supplementary material.

Growing the seeds
Each seed is grown into an initial cluster by an iterative process in which neighbouring
vertices are attached to a cluster if the correlation between their time-courses and the
region's time-course4 exceeds 0.9 times the maximal correlation between all region time-
courses and associated neighbourhood vertex time-courses.5 If a vertex neighbours more
than one region, then it is assigned to the region to which it is most correlated.

Clustering the seed regions using a spatial constraint
The initial region-growing step produces a single parcel for each seed. These are then
clustered further using a hierarchical clustering algorithm that ensures spatial contiguity of
clusters. The hierarchical algorithm builds up an entire cluster tree in which neighbouring
regions are joined if their similarity is maximal among all pairs of neighbouring regions.

We calculated initial cluster similarity using the correlation between the mean time-courses
extracted from a 3 mm radius ROI centred on the region's seed vertex. When joining
neighbouring clusters, the similarity matrix is updated using Ward's linkage rule (Ward,
1963), even though Ward's method was developed under the assumption of Euclidean
distances instead of correlations. Different similarity measures and hierarchical clustering
rules were explored and the results are presented in the Supplementary material.

Parcellations of different granularities can then be derived by cutting the tree at different
levels.

Performance measures
Cortical parcellations are difficult to evaluate given the lack of ground truth data. The
relationship between anatomical atlases and functional specialisation is one of the questions

2We here used ROIs with (Euclidean) radius of 3 mm, so that each ROI typically only included the direct neighbours of a vertex on
the cortical surface.
3Stability map smoothness determines to some extent the number of seed locations, though, as shown below, the influence of this on
the final parcellation was small.
4We here pre-assign to each region a time-course by averaging the seed's time-course with those time-courses within an ROI of 3 mm
radius. See the Supplementary material for evaluation of different strategies.
5The value of 0.9 was chosen empirically and was found to offer a significant increase in computational speed with only a small loss
in performance.
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we would like such an approach to elucidate, so the use of cytoarchitectonic atlases for the
verification of a functional parcellation might potentially lead to circular arguments.

To measure the quality of a parcellation, we instead resorted to a range of different
measures, each of which can shed light on a different aspect of the approach. Of particular
interest are measures that allow us to quantify the reproducibility of a parcellation. However,
when looking at reproducibility alone, care must be taken. Any fMRI driven parcellation
will be a compromise between fMRI data dependent constraints and algorithmic specific
constraints. For example, a parcellation algorithm that returns the Brodmann atlas (i.e.,
ignores the fMRI data) will obviously give highly reproducible parcellations, yet these are
not driven by the fMRI data at all. This is obviously an extreme example; however, the same
can happen to a lesser extent with other methods. Many methods include explicit or implicit
constraints that can have a large influence on the parcellation found. When using explicit
constraints care has to be taken to ensure that these are sensible. Implicit constraints are
even more difficult to deal with, as these might not be apparent a priori and only a careful
analysis of the results might reveal inherent bias.

Given these difficulties, it is desirable to find measures that are less sensitive to biases
introduced by the clustering approach itself. We therefore generated subject-specific
functional clusters from task fMRI studies. As these came from the same subjects, they
should reflect the same functional brain architecture, but, as they were derived from a
different modality using well established analytical tools, they are not liable to be affected
by biases in the same way that parcellation reproducibility is.

As different parcels are presumed to represent distinct functional areas which are assumed to
exhibit a different functional activation pattern and different functional connectivity, we
expect that parcellation borders should align well with changes in functional connectivity.
Whilst this is difficult to quantify, visual inspection of the change in correlation across
borders was found to be a useful indicator.

Dice similarity (parcellation overlap)
To measure parcellation reproducibility we use Dice similarity (Dice, 1945)

(1)

where X is the index set of the vertices in one parcel and Y is the vertex set in the other
parcel. X ∩ Y is the set of all vertices that are in both parcels and | • | indicates the size of
this set.

Two parcellations can then be compared by (1) matching parcels in different parcellations
based on their Dice similarity and (2) averaging the Dice similarity between all matched
parcels. Parcel matching is done iteratively. The two parcels with the largest overlap are
matched in each iteration (where already matched parcels are no longer considered in
subsequent iterations). If two parcellations have different numbers of parcels, the remaining
parcels after matching count as zero in the dice averaging.

Our parcellations are hierarchical; hence a common parcellation resolution must be set to
allow fair comparisons between methods. Consider two random spatially contiguous
parcellations. In this scenario, parcellations with few larger parcels will have a smaller
similarity measure than parcellations with many smaller clusters. Dice similarity is thus
easiest to interpret if different methods use a comparable number of parcels.
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It can happen that individual parcels are split into two or more parcels in one parcellation
whilst they form a single cluster in another parcellation. In order to take this effect into
account, when reporting Dice similarity in this paper, we not only report the parcellation
similarity at one resolution, but also report similarity results after a “joining” step. The
joining step we use is again iterative. Given two parcellations, we calculate the Dice overlap
between each parcel in one parcellation and each parcel in the other parcellation. Any parcel
that overlaps with a parcel in another parcellation by more than 50% is matched to that
parcel. If there is more than one parcel in one parcellation that is matched in this way to the
same parcel in the other parcellation, then all of these matched parcels are combined into
one larger parcel.

Comparison to task activation clusters
The task fMRI data of data-set two was analysed using two alternative approaches. After
temporally concatenating the data of the ten different task-paradigm scans for each subject,
we used the MELODIC ICA tool (Beckmann and Smith, 2004) to extract 20, 30, 40 and 50
spatially independent components respectively. Activation clusters were identified using
MELODIC's mixture model and a threshold of p = 0.5 (Beckmann and Smith, 2004).6 The
thresholded ICA maps were then sub-split into distinct spatially contiguous clusters, and
only the largest 3 * d clusters were kept (where d is the number of ICA components
extracted).

We also analysed the t-fMRI data using a general linear model (GLM) using FSL's FEAT
analysis tool (Smith et al., 2004). For each task, the GLM included the task timing and its
temporal derivative. As we are not interested in a traditional statistical analysis of the task-
data and are thus not unduly concerned about proper control of false positives, we used a
threshold of p = 0.05 (uncorrected for multiple comparisons) to derive thresholded activation
maps. The thresholded statistical maps were again split into contiguous clusters from which
only the largest clusters were retained.

Each t-fMRI cluster was then matched to a cluster in each of the rs-fMRI parcellations using
Dice similarity. For each parcellation, a measure of overlap between task clusters and rs-
fMRI parcellation could then be calculated by averaging over all Dice similarities between
matched clusters.

Results
Scan-to-scan repeatability

We evaluate the region growing approach in terms of its single-subject reproducibility and
compare the results to those achievable with several other approaches. This was done using
a subset of data-set 1. Data-set 1 contained data from one subject which was scanned twice
(on different days) and it was this subject's data that was used here. In each of the scanning
sessions, six 10-min rs-fMRI scans were performed as outlined in the Methodology. This
provided a total of twelve 10-min rs-fMRI scans, which were partitioned into two different
sets. For each set, data was temporally concatenated before parcellation. To reduce potential
variability in the results due to scanning day or order effects, we used the first, third and fifth
scans from session one together with the second, fourth and sixth scans from session two to
generate the first parcellation. The second parcellation was derived from the remaining six
scans.

6Note that this is not a null-hypothesis type 1 error threshold, but a probability threshold where both the error distribution and the
signal distribution in the mixture are equally likely.
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Fig. 2A plots the Dice similarity (y-axis) for different parcellation resolutions (x-axis) whilst
Fig. 2B shows similarity after parcel joining (The standard deviation of dice similarity over
different parcels is shown in Fig. 11 in the Supplementary material.). We here compare the
region growing approach based on two different levels of the initial stability map
smoothness, leading to ~1000 and ~3000 seeds (no additional smoothing). Fig. 3A
demonstrates visually the high reproducibility of our approach. A visual comparison
between the results for 9 different subjects can be found in Fig. 12 in the Supplementary
material and a more detailed evaluation of the influence on parcellation results due to scan
day and scan length effects is provided in Fig. 10 in the Supplementary material.

We also tried many other parcellation approaches and found that the region growing
approach outperformed most of these over the entire range of parcellation resolutions and all
of them over a wide range of resolutions, especially after parcel joining (red and orange
curves in Fig. 2B). We show a subset of these results here. The next best performing method
was based on normalised CUTS clustering using a locally constrained similarity measure
(Craddock et al., 2011). We also show results for a spectral clustering approach to optimise
network modularity (Newman, 2006) and a hierarchical clustering approach based on
Ward's linkage rule (Ward, 1963), both again with a locally restricted correlation similarity
measure. The results obtained by the same approaches with a sparser version of the
similarity matrix (a correlation matrix in which values were thresholded so that only 1% of
the entries in each column/row were non-zero (Power et al., 2011)) are also shown.

The only other approach that performed as well as our method in terms of DICE similarity
was the locally constrained normalised cuts (NCUTS) spectral clustering method when a
spatially constrained similarity matrix was used. Looking at these results, it is apparent that
NCUTS produced parcels that were all of comparable shape and size, something that was
not observed for the parcels derived with our approach (compare the histogram inlays in Fig.
3). The stark difference seems to be mainly due to NCUTS being strongly biased towards a
parcellation with uniformly sized clusters. For example, even when we run NCUTS on
random data (see the supplementary material), similar parcellations emerged that remained
highly reproducible. We also note from the left panel in Fig. 2 that Dice reproducibility
increases with increasing parcellation resolution for most approaches, whilst it decreases
with increased resolution for the NCUTS algorithm with spatial constraint. This is likely due
to the fact that NCUTS reproducibility is driven to a large extent by the spatial constraint
and the restriction on cluster size. These constraints have a decreasing influence on
reproducibility when the size of the parcels is reduced. We also observed this phenomenon
when using NCUTS with random data, a case in which reproducibility is entirely driven by
the reduction in the degrees of freedom. For the other approaches we observed the expected
behaviour of Dice similarity increasing with an increase in the number of parcels.

When comparing results before and after joining, cluster similarity improves significantly
for our approach whilst the same increase is not observed for the NCUTS algorithm. This
suggests that some of the parcellation mismatch observed for our approach is due to
inconsistent cluster splitting at different granularities.

Borders represent changes in the connectivity profile
To test whether the borders of the derived parcellations indicate changes in functional
connectivity, we drew a path along the cortical surface (shown for the same subject used
above in Fig. 4A and C). We drew this path such that it crossed parcellation borders at
roughly a right angle. We here show a path that was optimised to some extent for the
NCUTS parcellation (i.e., we tried to ensure that the path crosses from one parcel into the
other at roughly a right angle in the NCUTS based parcellation). However, we also tried to
keep this requirement consistent with the same requirement in the region growing
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parcellation. We then calculated correlations between the time-series of the vertices along
this path (the correlation matrix (thresholded at ±0.4) is shown in the lower left corner of the
matrix in Fig. 4B and D). In addition to direct correlation, we also compared correlation
between connectivity fingerprints along the path. Correlation fingerprints were calculated as
vectors of r-to-z transformed correlations between the vertex time-series and the time-series
of 1000 randomly chosen but fixed target vertices on the cortical surface (shown in red in
the figures). The correlation between these connectivity feature vectors is shown as the
upper triangular part of the matrix. The parcellation borders are indicated by black lines. The
correlation and connectivity profiles shown here were calculated from a different data-set
(but from the same subject) to that used to derive the parcellation itself. Parcel borders
derived with our approach (Fig. 4A and B) align significantly better with significant changes
in connectivity than those derived with NCUTS (Fig. 4C and D).

To quantify these results, we measured similarity in connectivity within the parcels. This
was done by averaging the connectivity fingerprints along the path within each parcel (after
a Fisher r to z transform) and then calculating the root mean square error between a parcel's
mean connectivity and the connectivity at each vertex on the path. To compare different
parcellations, we also need to account for the overall number of parcels along the path. This
is done using the Akaike Information Criterion (AIC) which modifies the root mean square
error with a model complexity term. For the path in Fig. 4 we observed a 9% improvement
in AIC for our region growing method over the NCUTS parcellation. Similar improvements
were observed over 8 other paths, 4 of which were optimised to go through parcel centres in
the NCUTS parcellation whilst the other 4 where optimised for our approach. Mean
improvement was 4.5% (std. 3%).

Parcellation borders align with task activations
Data-set 2 also allowed us to compare individual parcellations to clusters derived from task-
data. Example task activation maps are shown in Fig. 5 (p < 0.05, uncorrected), and Fig. 6
shows four maps derived using spatial ICA analysis of the task data. The white borders in
Figs. 5 and Fig. 6 show the parcellation borders derived with the region growing method (at
a resolution of 400 clusters).

The numerical cluster overlap results are shown in Fig. 7, where the crosses are the average
Dice similarity (averaged over all matched parcels and all subjects) and where the triangles
are the mean Dice ± three standard deviations. In addition to the results for the region
growing method, we also show the results derived using several other methods. More
detailed results for the comparison to both GLM and ICA analysis for different thresholds
and ICA dimensionality can be found in Fig. 13 in the Supplementary material.

Parcellation borders align with cytoarchitectonic boundaries and anatomical atlases
To compare parcellation borders to cytoarchitectonic properties, we use data-set 2. For this
data-set, we also had cortical myelin maps generated as described in Glasser and Van Essen
(2011). Fig. 8 shows the borders of our parcellation at a resolution of 400 parcels overlaid
over the myelin map of the same subject. Numerical results at several resolutions are
provided in Figs. 14 and 15 in the Supplementary material, though due to the high variability
in the measures used, these results are less instructive. Nevertheless, many of the borders
found in the sensory-motor cortex, in the primary visual cortex, in the cingulate cortex and
around area MT align well with significant changes in cortical myelination. These are areas
in which similar alignment between myelination and rs-fMRI or task fMRI derived
parcellations have been reported previously (Glasser et al., 2011, 2012).
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The same borders are also shown on the composite atlas of Van Essen et al. (2011) in Fig. 9.
Again we observe the generally good correspondence between many borders in the sensory-
motor cortex to the borders found with our approach. However, there are some discrepancies
within somato-motor and visual cortex, similar to those reported by Yeo et al. (2011) and
Power et al. (2011), and in other regions as well (see Discussion).

Discussion
A subject-specific cortical parcellation based on resting state functional MRI data has many
applications in the study of neuroanatomy and functional brain connectivity. We have
proposed a new approach based on region growing and spatially constrained hierarchical
clustering. When applied to individual subjects, our approach shows high scan-to-scan
reproducibility and was able to derive parcellation borders that clearly follow changes in the
functional connectivity profile. Comparison of the parcellations to clusters derived from task
data also demonstrated a high overlap. In particular, we have compared our approach to a
range of other approaches suggested in the literature and found our method to outperform
other approaches on almost all measures we have used.

Another advantage of our approach is that it not only produces a single parcellation, but an
entire tree. This encodes rich information regarding the hierarchical structure of functional
organisation and can thus lead to more powerful tools to study functional brain anatomy.
However, this is at an early stage in the development and there are as yet no appropriate
tools available that would allow us to fully exploit this tree structure in further analysis.

One of the major challenges in the development of cortical parcellation methods remains the
difficulty of assessing and comparing the results. Several methods incorporate a range of
implicit or explicit constraints that effectively reduce the degrees of freedom, which in turn
will influence measures such as parcellation reproducibility. On the other hand, when
comparing rs-fMRI parcellations to neuro-anatomical atlases or task activation clusters, the
size of parcels does not always match cortical areas delineated in the atlas or task fMRI
derived regions, so overlap is generally lower and a direct comparison is more difficult to
interpret. Importantly, heterogeneity of connectivity within well-defined cortical areas is to
be expected, based on anatomical tracer studies in monkeys, so it is not surprising to
encounter such mismatches when analyzing human functional connectivity data (Van Essen
and Glasser, submitted for publication). Furthermore, comparisons with anatomically
derived atlases, whilst giving additional confidence in a method's ability to delineate
meaningful neuro-anatomical regions, are not able to capture a method's ability to capture
subject-specific variability.

In order to produce reliable single subject parcellations and to overcome the poor signal-to-
noise ratio in single subject data, prior constraints have to be exploited. We thus here
enforced spatial contiguity, a constraint explicitly enforced only in a small number of other
methods (Bellec et al., 2006; Craddock et al., 2011; Heller et al., 2006; Lu et al., 2003). We
found that our approach led to more reliable and interpretable parcellations compared to
these other approaches. For example, the approach of Craddock et al. (2011) restricts the
original similarity matrix to only include similarity measures for neighbouring vertices or
voxels. The similarity between non-neighbouring vertices can then only be assessed
indirectly though a chain of similarities of neighbouring vertices. Our spatially constrained
hierarchical approach does not suffer from this problem and calculates similarity between
distant vertices more directly. The approaches in Lu et al. (2003), Bellec et al. (2006), and
Heller et al. (2006) are more similar to our method. The main difference is that we use an
additional step in which stable seeds are identified. This step was found to further increase
robustness to noise and improve computational speed.
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An alternative to the hard constraint on spatial contiguity of clusters is the use of softer
constraints. Many other methods, whilst not doing so explicitly, still tend to encourage
spatial contiguity. However, this is typically achieved through extensive spatial smoothing
(see for example Goulas et al., 2012), which has the undesired side effect that the locations
of the boundaries between parcels become less well defined.

Single subject parcellations are useful for the study of between-subject variability in
functional anatomy and we have here concentrated on the derivation of single subject
results. Whilst our approach demonstrates high within-subject reproducibility, comparing
parcellations across subjects (compare for example cross-subject reproducibility in Fig. 12
in the Supplementary material to Fig. 3) does not yet seem to indicate the same level of
inter-subject alignment. It remains to be seen if this is an artefact of the algorithm or whether
this is an inherent property of subject-to-subject variability in functional brain organisation.
Nevertheless, our method outperforms other methods in terms of within-subject
reproducibility and thus seems to be a step in the right direction also for group studies. We
here deliberately choose to avoid excessive smoothing of data so that the results are not
influenced by the biases introduced through this. However, between subject reproducibility
is likely to improve with increased smoothing, though at the cost of increased bias and a
reduction in neuroanatomical detail and interpretability.

There are several ways in which our single subject approach could be extended to group
data. A common approach to group analysis is based on averaging (or concatenating) of
single subject data or connectivity information. Whilst such approaches will improve the
signal-to-noise ratio, subject-to-subject variability will also blur fine spatial detail. This is
further compounded through the use of spatial smoothing applied normally in this setting.
For example, Yeo et al. (2011), who based their analysis on average connectivity
information, were only able to reliably estimate a maximum of 17 networks (~50 separate
parcels), even though they used 500 subjects. To overcome this limit, group approaches
need to be able to better capture and exploit single subject characteristics. For example, our
subject-specific parcellations could be used as a starting point in an inter-subject registration
process that is driven by functional rather than gross anatomical similarity. Such a
registration approach could not only improve the derivation of more accurate group
parcellations, but could also improve the analysis of task data, as functional areas would be
better aligned across subjects than is currently possible with traditional registration
algorithms. Using such a group approach, it would then be desirable to be able to go back to
the subject level to generate subject level parcellations. A potential advantage of such an
approach would be that it would allow the subject-level parcellations to exhibit a
correspondence inherited from the group parcellation, so that the approach would become
more easily applicable to the study of brain network variation across groups of subjects. We
have not explored this aspect here in any detail; however several standard approaches could
be used in conjunction with our method. For example, a group parcellation could be derived
which could then either be matched to single subject parcels or mapped back to the
individual subjects using methods such as dual regression. We are currently looking into the
adaptation of these standard approaches to also take into account the tree structures of our
approach.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
After preprocessing, clustering proceeds in four steps. In step (1) a slightly smoothed
stability map is computed (black: more stable, red: less stable). Local optima are identified
in step (2). The locations of these optima will be the seed regions used in the next step. In
step (3) the seeds are grown into disjoint clusters, giving the finest clustering. Finally, in
step (4), a spatially constrained hierarchical clustering method builds a cluster tree, giving
not only a single parcellation, but an entire spectrum of parcellations at different resolutions
(we here only show one of these).
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Fig. 2.
Average Dice similarity between matched parcellations vs. parcellation level, calculated for
parcellations from different datasets of the same subject before (A) and after (B) joining
split clusters. Reproducibility results are shown for the data-set one subject which was
scanned twice for 60 min. The number of parcels is the total across both hemispheres.
Region growing approach with ~1000 (RG1000) and ~3000 (RG3000) seeds outperforms all
other tested approaches over a range of parcellation resolutions, especially after parcel
joining (B). Also shown is a small subset of the results obtained with other methods
(including the next best performing method, NCUTS (NC IC) (Shi et al., 2000) used in
Craddock et al. (2011), a spectral clustering approach to optimise network modularity (MC
IC, black) (Newman, 2006), a hierarchical clustering approach using Ward's linkage rule
(HW1C) (Ward, 1963) and the infomap algorithm (IM IC) (Ward, 1963) as used in Power et
al., 2011, all with the same locally restricted correlation similarity measure. For comparison,
the results obtained by the same approaches with a sparser similarity matrix (a correlation
matrix in which values were thresholded so that only 1% of the entries in each column/row
were non-zero (Power et al., 2011)) are also shown ({NC, MC, HW} t0.01C).).
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Fig. 3.
Split-half parcellation reproducibility for the one subject from data-set one which was
scanned twice. Shown are joined clusters derived from six 10 min rs-fMRI scans (left) and
those derived from a different set of six 10 min rs-fMRI scans of the same subject (right).
(The original parcellation had a resolution of 400 clusters (~200 per hemisphere)).
Histogram inlays show the distribution of parcel sizes. Parcel colours have been matched to
ease comparison.
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Fig. 4.
Region growing results (A, B) and NCUTS results with locally constrained correlation
(Craddock et al., 2011) (C, D). Path drawn on the cortical surface together with the parcels
the path crosses (A, C) and the correlation (lower left part of the matrix) and connectivity
(upper right part of the matrix, where connectivity is measured to the vertices marked in red
in the figure) profiles along the path with parcel borders shown as blue lines (B, D). The
colour bar above the similarity matrix matches the parcel colour for each location along the
path. Shown are results for a typical subject.
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Fig. 5.
Comparison of rs-fMRI parcellation borders and four t-fMRI activation maps for two
different subjects. Region growing borders (at a resolution of 400 parcels) overlaid over four
example task contrasts (p ≤ 0.05, uncorrected).
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Fig. 6.
Comparison of rs-fMRI parcellation borders and t-fMRI ICA maps for two different
subjects. Region growing method borders (at a resolution of 400 parcels) overlaid over
example t-fMRI ICA maps derived from the same subject (ICA dimension = 20). ICA maps
were matched visually for comparison.
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Fig. 7.
Comparison of different methods. rs-fMRI cluster similarity to clusters derived from tfMRI
data for the same subject. Top: Dice similarity between rs-fMRI clusters and clusters found
with ICA applied to t-fMRI data. Bottom: Dice similarity between clusters from rfMRI to
clusters found with GLM from t-fMRI data. The plus symbol (+) indicates the Dice mean
(averaged over all parcels and over all subjects), whilst the triangles (⊳ and ⊲) indicate the
mean plus and minus 3 standard deviations across parcels. The results shown here are for the
region growing method, the infomap algorithm (Rosvall and Bergstrom, 2008) as used in
Power et al. (2011) but with the local correlation similarity measure of Craddock et al.
(2011), the NCUTS algorithm with a local correlation similarity measure (Craddock et al.,
2011), a spectral clustering approach to optimise network modularity (again with a local
correlation similarity measure) (Newman, 2006), a hierarchical clustering approach using
Ward's linkage rule and the local correlation similarity measure (Ward, 1963). Also shown
are results obtained by using spatial ICA followed by a winner takes all clustering in which
each vertex is assigned to that cluster for which its normalised ICA map had the largest
value and an iterative winner takes all algorithm, where a low-rank matrix decomposition is
constructed by iterating two steps, a winner takes all cluster assignment and a reduction in
approximation error.
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Fig. 8.
Visual comparison of parcellation borders derived from one subject's data with myelin maps
(Glasser and Van Essen, 2011) of the same subject. Solid white borders are borders at a
resolution of 400 parcels for both hemispheres.
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Fig. 9.
Region growing method borders (at a resolution of 400 parcels) overlaid over the composite
atlas from Van Essen et al. (2011), registered to the individual subject.
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