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Abstract
Animal studies indicate that different functional networks (FNs), each with a unique timecourse,
may overlap at common brain regions. For understanding how different FNs overlap in the human
brain and how the timecourses of overlapping FNs are modulated by cognitive tasks, we applied
spatial independent component analysis (sICA) to functional magnetic resonance imaging (fMRI)
data. These data were acquired from healthy participants while they performed a visual task with
parametric loads of attention and working memory. SICA identified a total of 14 FNs, and they
showed different extents of overlap at a majority of brain regions exhibiting any functional
activity. More FNs overlapped at the higher-order association cortex including the anterior and
posterior cingulate, precuneus, insula, and lateral and medial frontoparietal cortex (FPC) than at
the primary sensorimotor cortex. Furthermore, overlapping FNs exhibited concurrent but different
task-related modulations of timecourses. FNs showing task-related up- vs. down-modulation of
timecourses overlapped at both the lateral and medial FPC and subcortical structures including the
thalamus, striatum, and midbrain ventral tegmental area (VTA). Such task-related, concurrent, but
opposite changes in timecourses in the same brain regions may not be detected by current analyses
based on General-Linear-Model (GLM). The present findings indicate that multiple cognitive
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processes may associate with common brain regions and exhibit simultaneous but different
modulations in timecourses during cognitive tasks.
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Analysis

Introduction
Anatomical and electrophysiological studies from animal brain indicate that multiple neural
circuits, each with unique timecourse of functional activities, co-exist within the same
cortical regions (Brecht 2007; Lubke & Feldmeyer 2007; Quintana & Fuster 1999;
Verduzco-Flores et al 2009). Therefore, it is predicted that different functional networks
(FNs) with different timecourses may overlap with each other in the human brain (Fuster
2009; Quintana & Fuster 1999; Verduzco-Flores et al 2009). The knowledge of how
different FNs overlap and how the timecourses of overlapping FNs are modulated by
cognitive tasks are critical for understanding brain functional organization. However, studies
employing modern neuroimaging methods, such as functional magnetic resonance imaging
(fMRI), usually try to associate different brain functions with different brain regions (i.e.,
functional parcellation scheme) without considering potential overlap of different FNs,
partially due to their limited temporal and/or spatial resolutions.

With the growing interest in understanding FNs and functional connectivity, researchers
have recently started to assess FN overlaps by using different approaches. For example, an
approach termed Connected Iterative Scan (CIS), which is a graph-theoretic clustering
algorithm that assesses FN overlap by detecting the involvement of the same functional
clusters in different FNs, was applied to an fMRI dataset acquired at resting condition (Yan
et al 2011). Analyses suggested that the default mode network (DMN) overlaps with the
task-positive network at the posterior-cingulate and lateral parietal cortices. In another study,
the combination of temporal and spatial independent component analysis (sICA) was used to
analyze fMRI data acquired at rest using a high-speed scanning protocol (i.e., 0.8 s per
volume) (Smith et al 2012). The results suggested that the DMN consists of multiple
overlapping sub-networks. In the present study, we assessed FN overlap by applying sICA
to an fMRI dataset acquired during an attention task.

SICA: 1) assumes fMRI signal from each voxel represents a linear mixture of source
signals; 2) separates this signal mixture into spatially independent source signals using
higher-order statistics; and 3) groups all brain regions showing synchronized source signals
into independent components (ICs) (Calhoun et al 2002a; Calhoun et al 2009; McKeown et
al 1998a; McKeown & Sejnowski 1998). Therefore, all brain regions associated with an IC
can be treated as an intrinsically coherent FN with a unique timecourse. Any brain regions
generating more than one source signal associate with more than one IC with different
timecourses, and thus two or more FNs overlap at these brain regions. It is important to note
that the constraint of spatially independence of ICs generated by sICA does not mean
different ICs cannot overlap with each other in space. It actually means that the spatial
patterns (i.e., spatial distributions in the brain) of different ICs independent from each other
(Beckmann 2012; McKeown et al 1998b). However, this feature of sICA may constrain the
spatial extent of FN overlap; i.e., the overlap extent revealed by sICA may be smaller than
the extent discovered by temporal ICA (Calhoun et al 2012; Smith et al 2012). Therefore,
the degree of FN overlap revealed by sICA may represent an underestimate.
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Previous studies have demonstrated the capacity of sICA to assess FN overlap, although
most of these studies do not explicitly investigate this issue. For example, McKeown et al
found that most voxels contributed to 1 ~ 6 ICs (mean = 3.2) (McKeown et al 1998b). This
finding indicates that as many as six FNs share common brain regions. Calhoun et al showed
overlaps of several FNs in the prefrontal cortex (Calhoun et al 2002b), and each of them
showed different task-related modulation of timecourse. Recent ICA studies demonstrate
that the brain persistently organizes its intrinsic activity into multiple FNs both at rest and
during task performance (Beckmann et al 2005; Calhoun et al 2008; Fair et al 2010; Zhang
& Li 2012). Some of these FNs cover common, overlapping brain regions (Calhoun et al
2008; Kim et al 2009b; Leech et al 2011; Seeley et al 2007; Vincent et al 2008; Zhang &
Raichle 2010; Zhang & Li 2012). For example, the dorsal attention network (DAN), left
frontoparietal networks (LFPN), and right frontoparietal network (RFPN) subsume both
lateral and medial frontoparietal cortex (FPC) (Calhoun et al 2008; Seeley et al 2007;
Vincent et al 2008; Zhang & Raichle 2010; Zhang & Li 2012). Taken together, these studies
demonstrate that sICA can reveal FN overlaps.

This study applied sICA to fMRI data acquired from healthy participants while they
performed a visual target identification task with parametric loads of attention and working
memory. The specific aims were to assess: 1) which brain regions associated with multiple
FNs, and 2) how the timecourses of overlapping FNs were modulated by the task. We
hypothesized that multiple FNs would overlap at higher associative cortical regions such as
the FPC, and that the timecourses of overlapping FNs would show concurrent but different
task-related modulations.

Materials and Methods
Participants

Data were acquired from 28 healthy participants (ages 23 – 41 years, all right handed, 13
females) recruited from the community of the University of California Los Angeles (UCLA)
as described previously (Xu et al 2011). All participants gave written informed consent to
participate in this study, which was approved by the Institutional Review Board at the
UCLA.

Task Stimuli
The task is similar to the visual task used in a recent publication (Xu et al 2011). It uses 16
schematic faces as relevant stimuli and 64 scene pictures as background distractors (Fig. 1).
Faces were composed from different combinations of five facial features (shape of face,
eyes, nose, and mouth, and face color). Each facial feature had two different forms (i.e.,
shapes: round and oval; colors: yellow and blue). No single face was completely unique in
all facial features from other faces in the group, so that each face always shared one or more
features with other faces.

Task Design
The task used a block design. Stimuli for each task condition were grouped into blocks with
the same 16 faces used in every trial block. These 16 faces, each paired with a scene picture,
were presented one by one in a random sequence within each block. Each image was
presented once for 200ms in each block, the inter-stimulus interval (ISI) was 1.0s, and the
duration of each block was 19.2s (16 × 1.2s). The instruction, “Please identify,” was
presented for 5s before each task block above an instruction image specifying the facial
features for the targets in the following task block (Fig. 1). Participants were required to
identify targets specified for each block and to respond by pressing a button as soon as
possible after detecting a target. There were four targets randomly positioned in the
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presentation sequence in each block, and no two targets appeared on consecutive trials. For
the rest block (see below), the instruction was, “Please rest and look at the screen”.

The task has four block conditions, one for rest (L0) and the remaining three for low (L1),
medium (L2), and high (L3) levels of attention and working memory load. At L0,
participants were instructed to rest and look at the screen while 16 face-scene pairs were
presented one by one in sequence during the presentation block. At L1, any round face with
yellow color or oval face with blue color was a target. At L2, any round face with blue color
and elongated nose or oval face with yellow color and round nose was a target. At L3, any
round face with blue color, oval eyes and a straight mouth or oval face with yellow color,
round eyes and an oval mouth was a target. Therefore, participants needed to remember and
search two, three, and four facial features in conjunction to identify targets during the
presentation blocks for L1, L2, and L3, respectively. We expected that from L1 to L3 the
task would demand linearly increased attention and working memory for successful task
performance.

Four different scripts were prepared for the task. Within each script, each block condition
was repeated four times and the order of conditions was randomized. The whole script lasted
for 387.2s. Each task condition within one script (i.e., 4 blocks) consisted of 64 stimuli (i.e.,
16 × 4), and each of them had a different scene picture. The same 64 scene pictures were
used for the four different task conditions. Stimulus presentation was implemented with
Psychtoolbox (http://psychtoolbox.org/PTB-2/osx.html) and displayed on the screen of a
Macintosh laptop.

Imaging Data Acquisition and Analysis
Functional images were acquired using gradient-echo EPI scanning sequence (TR/
TE=1500/30ms, Flip angle=70°, 26 slices, 3mm thick with 1.2mm skip, 3.125 × 3.125 mm2

in plane pixels) with a Siemens Allegra 3T system. The scanning plane was off the AC-PC
line rostrally at 20°. The thin scanning slice and tilted scanning plane were used to reduce
susceptibility-related signal loss at the basal forebrain (Deichmann et al 2003). Each
participant had three functional runs, and each run used a different task script and acquired
258 volumes. The order of scripts was counterbalanced across participants.

ICA procedures
Each BOLD time series was motion-corrected, normalized to the MNI (Montreal
Neurological Institute) template, and smoothed with a 5-mm kernel using FMRIB’s
Software Library (FSL 4.1.4 (Smith et al 2004; Woolrich et al 2009)). Group ICA algorithm
(GIFT, http://icatb.sourceforge.net/, version1.3h) was used to extract spatially independent
components (ICs) (Calhoun et al 2001; Calhoun et al 2009). Data from all participants were
concatenated into a single dataset and reduced using two stages of principal component
analysis (PCA) (Calhoun et al 2001). The optimal number of ICs in the dataset was 23 as
estimated by the minimum length description (MLD) criteria implemented in GIFT (Li et al
2007). Accordingly, 23 ICs were acquired by using Infomax algorithm to decompose the
data from all subjects (Bell & Sejnowski 1995). Infomax algorithm generated a spatial map
and a timecourse of the BOLD signal changes for each IC. This analysis was repeated 50
times using ICASSO for assessing the repeatability of ICs (Himberg et al 2004)
(Supplemental Fig 1). Finally, IC timecourses and spatial maps were back-reconstructed for
each participant (Calhoun et al 2001; Meda et al 2009).

A systematic procedure was used to diagnose artifacts and FNs. We used the probabilistic
maps of white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM) in MNI space
provided with SPM5 (Statistical Parametric Mapping, Welcome Department of Cognitive
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Neurology, London) as templates, and Multiple Linear Regression (MLR) implemented in
the spatial sorting function of GIFT to compare the spatial pattern of each IC with these
templates. This analysis generated three correlation coefficients (r2) for every IC, one for
each template. Any ICs showing high correlations with CSF or WM were labeled as
artifacts. The threshold was set at r2>.05 based on previous publications (Kim et al 2009;
Zhang & Li 2012). Seven ICs (IC3, 13–15, 17, 20, 22) showed high correlations with CSF,
and one (IC23) with WM. All of them showed low correlations with GM (r2<.05) and
therefore were diagnosed as artifacts. IC21 was also labeled as artifact because it showed a
very low correlation with GM (r2<.001), even though it did not show high correlations with
CSF or WM. These nine ICs were excluded from further analysis. The artifacts appeared to
due to head motion, eye movement, ventricular pulsations, or other causes. The remaining
14 ICs (IC1, 2, 4–12, 16, 18, 19) showed low correlations with CSF and WM and high
correlations with GM, and were labeled as FNs for further analyses.

For defining significant brain regions associated with each IC, we normalized back-
reconstructed spatial maps of each IC into z-scores (Beckmann et al 2005). The z-score of
each voxel within a spatial map reflects its contribution to the associated timecourse. The
normalized spatial maps of z-scores of each participant were averaged together across the
three runs, and the averaged maps of z-scores were entered into second-level random effect
analysis (one-sample t test). Therefore, a group level t-map was generated for each IC, and
this t-map was used to identify the brain regions involved in the corresponding IC. The
significance threshold was set at voxel height p<.001, False-Discovery-Rate (FDR)-
corrected for multiple comparisons of voxel-wise whole-brain analysis (equivalent to t>4.2),
and in conjunction with k>5 (where k indicates the voxel cluster extent). Supplementary Fig.
2 and Table 1 show the spatial distribution of 14 ICs.

Assessing FN overlap
Since each IC has a positive and a negative component, the above-described t-map of each
IC contains significant clusters with positive and negative t values. In this paper, we call the
positive and negative clusters in the t-map as positive and negative sub-networks,
respectively, and each sub-network represents one FN. We used xjview (http://
www.alivelearn.net/xjview8/) to convert each sub-network into a binary mask. Only
significant voxels in each sub-network surviving the statistical threshold described above
were converted into voxels with a value of one in the output mask, while all other voxels
were converted into voxels with values of zero. Two masks were generated for each t-map:
one for positive clusters and one for negative clusters. Twenty-eight masks, each
representing one FN, were thus generated for 14 ICs. The 28 masks were added together for
assessing FN overlap. Within the output map, any voxels with a value of two or higher
indicate that two or more sub-networks (i.e., FNs) share this voxel, i.e., overlap at this voxel.
The total number of voxels with a value equal to or greater than a specific number indicated
the total volumes of overlapping regions of the specified number of FNs. For example, the
total number of voxels with a value of two or greater indicated the total volumes of brain
regions covered by two or more FNs.

Assessing task-related modulation over timecourses
To examine task engagement of each IC, a design matrix for each participant was
constructed using SPM5. This design matrix represents the onset of each task block,
convolved with a box-car hemodynamic response function. The five-second instruction
period before each block was modeled implicitly as task baseline. The temporal sorting
function from GIFT was used to perform a multiple regression analysis between IC
timecourse and the design matrix of each participant. For each IC, this regression generated
four beta-weight values for each functional run, one for each task condition (i.e., L0, L1, L2,
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and L3). These beta-weight values represent the correlations between IC timecourses and the
canonical hemodynamic response model of task conditions, and index the engagement of
FNs during specific task conditions (Meda et al 2009). An increase or decrease in beta-
weight values at one task condition relative to another indicates an increase or decrease in
task-related activity in the IC.

The beta-weights of each IC for each task condition across three runs of each subject were
averaged, and then the group means of averaged beta-weights for each task condition were
tested against zero using SPSS one-sample t-tests. A positive beta-weight significantly
different from zero indicates a task-related up-modulation of timecourse or increase in
activity of the IC during a specific task condition relative to the baseline condition (i.e., task
instruction), and a significant negative beta-weight indicates a task-related down-modulation
of timecourse or decrease in activity of the IC. The SPSS general linear model (GLM) for
repeated measures was used to assess the main effects of task loads on the beta-weight.
Significant task-load-related linear changes in beta-weights were interpreted as task-load-
related linear changes in activity in related ICs. The significance threshold was p<.01. Since
the positive and negative sub-networks of each IC showed opposite timecourses and
opposite task-related modulations, the positive sub-network of any IC with significant
positive values of beta-weight was termed a task-positive FN, while the negative sub-
network was termed a task-negative FN. The positive sub-network of any IC with significant
negative values of beta-weight was termed a task-negative FN, while the negative
subnetwork was termed a task-positive FN. Supplementary Table 2 shows the group mean
beta-weight of each IC at each task condition.

Assessing task-related changes in activity using SPM5
We used SPM5, a GLM-based analysis, to assess task-related changes in brain activity. We
used the same SPM5 design matrix created for temporal sorting as described above for this
analysis. For the first level analysis of each subject, we used contrast [−3 −1 1 3] to assess
significant linear changes in BOLD signal of each participant as task load increased from L0
to L1, L2, and L3. The con image generated from this contrast of each participant was
inputted into a second-level (random-effect) one-sample t-test. We employed cluster p<.05,
family-wise-error (FWE) corrected in conjunction with voxel height threshold p<.01 to
identify task-related significant changes in BOLD signal.

Results
Task performance

The means of target hits, commission errors, and reaction times (RTs) at L1 were 94.6%
(standard deviation, SD=5.1), 2.3% (SD=2.5), and 591.3ms (SD=52.2), respectively (Fig. 2).
The target hits linearly decreased while the commission errors and RTs linearly increased as
task load increased from L1 to L3, suggesting linearly increasing demands on attention and
working memory. These behavioral data did not show significant correlations with the beta
weights of any ICs after correction for multiple comparisons.

Consistent with previous described ICs
The 14 identified ICs showed high stability as indicated by repeated analyses using ICASSO
(all stability indices>.94, Supplementary Fig. 1). The spatial pattern of most of 14 ICs were
similar to previously described ICs generated by sICA from fMRI data acquired either at
rest (Beckmann et al 2005; Raichle 2011) or during the performance of cognitive tasks
(Calhoun et al 2008; Domagalik et al 2012; St Jacques et al 2011; Zhang & Li 2012) (for all
ICs please see supplementary Fig. 2 and Table 1). For example, the spatial patterns of ICs 2,
5, 6, and 12 were similar to the spatial patterns of the LFPN, RFPN, sensorimotor network,
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DAN, respectively, ICs 1, 7, 10, and 11 to the medial visual network, anterior portion of the
default mode network (DMN), lateral visual network, and posterior portion of the DMN,
respectively, and ICs 4, 8, and 16 to the insula, temporal, and saliency networks,
respectively (Beckmann et al 2005; Calhoun et al 2008; Fair et al 2010; Leech et al 2011;
Seeley et al 2007; Zhang & Li 2012).

Overlap of all FNs
The 28 FNs from 14 ICs together occupy 125920 voxels, which cover most cortical and
subcortical regions. The majority (78.2%) of this extensive region showed overlap of two or
more FNs, with a maximum overlap of 10 FNs at the dorsal anterior cingulate gyrus (ACC)
(Fig. 3 and Supplementary table 3). The medial superior frontal gyrus (mSFG), posterior
cingulate (PCC)/precuneus, insula and adjacent inferior frontal gyrus (IFG), middle and
superior temporal gyrus (MTG & STG), superior and inferior parietal lobules showed
overlap of 7 FNs, while the middle frontal gyrus (MFG), thalamus, and striatum showed
overlap of 5 FNs. A general trend is that the higher-order association cortex showed overlap
of more FNs than did the primary sensorimotor cortex.

Overlap of task-positive FNs
ICs 12, 18, and 19 showed significant load-dependent linear increases in beta-weight values
(Fig. 4, 7, supplementary Fig. 2, 3 and table 2). Therefore, their positive sub-networks
showed load-dependent increases in activity and were task-positive FNs. ICs 2, 4, 7, 8, and
9, showed significant load-dependent linear decreases in beta-weights (Fig. 5, 7,
supplementary Fig. 2, 3 and table 2). Therefore, their negative sub-networks showed load-
dependent increases in activity and were task-positive FNs. Beta-weights of ICs 5, 6, 10, and
11 were significantly negative at one or more task conditions even though they did not show
significant load-dependent linear changes. Therefore, their negative subnetworks showed
increases in activity at one or more task conditions and were task-positive FNs. Therefore,
there are 12 task-positive FNs, and they occupy extensive cortical and subcortical regions (a
total of 67712 voxels). These task-positive FNs showed extensive overlap (Fig. 4 and
supplementary table 4). The dorsal ACC showed overlap of 5 FNs, while the bilateral insula
and inferior parietal lobule showed overlap of 4 FNs. The medial and lateral prefrontal
cortex (PFC) and superior parietal lobule, thalamus, and striatum showed overlap of 2 ~ 3
FNs.

Overlap of task-negative FNs
Using the same logic as described in the above section, the negative subnetworks of ICs 12,
18, 19 and the positive sub-networks of ICs 2, 4, 5, 6, 7, 8, 9, 10, and 11 were task-negative
FNs. The 12 task-negative FNs together occupied extensive cortical and subcortical regions
(a total of 111937 voxels). These task-negative FNs showed extensive overlap (Fig. 5, 7 and
supplementary table 5). The bilateral STG showed overlap of 6 task-negative FNs, while the
medial SFG and precuneus/PCC showed overlap of 5 FNs. Perigenual ACC, IFG, inferior
parietal lobule, and thalamus showed overlap of 3 ~ 4 FNs.

Overlap of task-positive and negative FNs
The task-positive and task-negative FNs overlap extensively (Fig. 6). The overlapping areas
cover 58638 voxels, about 86.6% and 52.4% of the total volumes covered by task-positive
and negative FNs, respectively. They include the medial and lateral frontoparietal cortex
(FPC), insula, temporal cortex, and subcortical structures such as the thalamus, striatum, and
midbrain ventral tegmental area (VTA).
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As described above, ICs 2, 5, and 12 were similar to the LFPN, RFPN, and DAN in spatial
patterns, and the positive sub-networks of ICs 2 and 5 were task-negative FNs, while the
positive sub-network of IC12 was a task-positive FN (Fig. 7 and supplementary Fig. 2, 3).
These task-positive and negative FNs overlapped at the medial and lateral FPC, ACC,
insula, intraparietal sulcus, precuneus/PCC, thalamus, and caudate (Fig. 7 and
supplementary table 6).

Task-related activity revealed by SPM5
The present finding of overlap of task-positive and task-negative FNs raises the question of
whether concurrent, opposite changes of source signals in the same brain regions prevent
GLM-based analysis from detecting task-related changes in BOLD signal because opposite
changes in source signals may cancel out each other. To answer this question, we used
SPM5 to analyze load-dependent changes in BOLD signal in the original dataset. Several
regions including the lateral PFC, pre-supplementary motor cortex, insula, and parietal
lobules showed load-dependent linear increase in BOLD signal (Fig. 8, Supplementary
Table 7). Their total volume is 8055 voxels, about 11.9% of the total volume of the 12 task-
positive FNs generated by sICA. In addition, several regions including the medial FPC,
insula, and tempoparietal junction showed load-dependent linear decreases in BOLD signal
(Fig 8, Supplementary Table 7). Their total volume is 29356 voxels, about 26.2% of the total
volume of the 12 task-negative FNs generated by sICA.

Discussion
Recent studies have used sICA to extract FNs from BOLD (blood-oxygen-level-dependent)
time series acquired during resting conditions and report that about 10 FNs show consistent
spatial patterns across different populations and studies (Beckmann et al 2005; Calhoun et al
2008; Smith et al 2009; Zhang & Raichle 2010). These FNs maintain their general spatial
patterns during cognitive tasks demanding attention, working memory, and/or response
inhibition, while showing more or less task-related modulations including changes in spatial
extent and strength of internal functional connectivity (Calhoun et al 2008; Domagalik et al
2012; Esposito et al 2009; Esposito et al 2005; Smith et al 2009; St Jacques et al 2011;
Zhang & Raichle 2010). The current study extracted 14 ICs from fMRI data acquired from
healthy participants performing an attention task. Most of these ICs showed spatial patterns
consistent with reported ICs generated by sICA and fMRI data acquired either during rest or
task performance. Here, “consistent” spatial pattern means that the corresponding ICs
identified in different studies involve common key brain regions, and does not mean that
these ICs are exactly identical (Domagalik et al 2012). The consistent findings from the
present and previous studies suggest that our sICA identified appropriately networks
existing in healthy participants.

The current study generated multiple important findings by assessing the overlap of
extracted FNs and task-load-related modulations of the timecourses of overlapping FNs.
First, a majority (78.2%) of brain regions associated with any FN showed overlap of two or
more FNs. This finding is in line with other data indicating that most voxels contribute to
several ICs (mean = 3.2) (McKeown et al 1998b) and that different FNs overlap at common
regions (Domagalik et al 2012; Menz et al 2009; St Jacques et al 2011; van Wageningen et
al 2009; Wu et al 2009). Since different FNs show different timecourses during task
performance and probably associate with different cognitive processes, we interpret the
finding of FN overlaps as indications of the same brain regions being simultaneously
involved in multiple cognitive processes, consistent with previous interpretations of FN
overlap (Menz et al 2009; van Wageningen et al 2009; Wu et al 2009). This interpretation is
also consistent with the data of different tasks activating the same brain regions at different
times as reported from fMRI studies using GLM-based analyses (Burgess et al 2007;
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Duncan 2010; Duncan & Owen 2000; Gilbert et al 2006). However, the data derived from
sICA demonstrate that the same neural substrates can contribute to multiple cognitive
processes concurrently, in addition to sequentially as demonstrated by GLM-based analyses.

Second, we found that more FNs overlapped at the higher-order association cortex,
especially the ACC, medial SFG, precuneus/PCC, IFG, superior and middle temporal gyrus,
and superior and inferior parietal lobules, than at the primary sensorimotor cortex. This
finding supports our first hypothesis and suggests that more FNs operate concurrently in the
higher-order association cortex than in the primary sensorimotor cortex. This finding is
consistent with the data that the higher-order association cortex, as compared to the primary
sensorimotor cortex, is functionally more complex and has a greater density of functional
connectivity (Buckner et al 2009; Mesulam 1998; Tomasi & Volkow 2011). Since the FNs
extracted from fMRI data of resting condition vs. task performance are quite similar in their
general spatial patterns as discussed above, we predict similar overlap should exist among
FNs extracted from resting data. However, we cannot directly test this at present because we
did not acquire resting fMRI data from these participants. Several recent studies used seed-
based approaches to assess functional connectivity and reported extensive overlaps of
multiple FNs (Buckner et al 2009; Fox et al 2005; Tomasi & Volkow 2011). However, these
findings are different from the current finding in that the seed-based approach does not
separate the BOLD signal mixture from each voxel into source signals. The FN overlap
reported in these studies may reflect the phenomenon of the timecourse of BOLD signal in
one region significantly correlating with the timecourses of two or more other regions, while
the timecourses of the other regions do not significantly correlate with each other. However,
the overlaps found in the current study reflect the timecourses of different source signals
from common brain regions correlating with the timecourses of different source signals from
other brain regions.

Third, we found that task-positive and task-negative FNs share extensive regions including
both the lateral and medial frontoparietal cortex (FPC), supporting our second hypothesis.
This finding provides direct support to the hypothesis that FNs of different timecourses
overlap with each other in the FPC, consistent with data from animal studies (Fuster 2009).
This finding is also consistent with the data indicating overlaps of task-positive and task-
negative FNs as revealed by Connected Iterative Scan (CIS) (Yan et al 2011). The lateral
and medial FPCs often show opposite changes in BOLD signal during cognitive tasks. The
lateral FPC has been demonstrated to associate with cognitive control such as attention and
working memory, whereas the medial FPC is hypothesized to be a component of the default-
mode network (DMN) and to associate with intrinsically generated, task-independent mental
activity such as task-unrelated thought (Fox et al 2005; Sonuga-Barke & Castellanos 2007).
However, other evidence indicates that the medial FPC, the core of DMN (Buckner et al
2009), also contributes to working memory. For example, lesions of the medial prefrontal
cortex (PFC) may impair working memory (Barbey et al 2011; Szatkowska et al 2011;
Tsuchida & Fellows 2009); working memory performance has been correlated with the
strength of functional connectivity within DMN, especially between the medial PFC and the
posterior cingulate (PCC)/precuneus, even though these regions show task-related decreases
in BOLD signal (Hampson et al 2006); and the dorsal and ventral PCC/precuneus show
opposite changes (increases vs. decreases) in functional connectivity with other DMN
regions during a high- (2-back) relative to a low-demanding (0-back) working memory task
(Leech et al 2011). The current finding, together with the CIS data (Yan et al 2011),
suggests that there may be no sharp border between neural substrates associated with
cognitive control vs. task-unrelated thoughts, and that these neural substrates may intermix
with each other at both lateral and medial PFC. However, the lateral PFC may
predominantly associate with cognitive control, and therefore show a net increase in the
BOLD signal mixture during working-memory-task performance even though some of its
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neural substrates associate with task-unrelated thoughts. The medial PFC may
predominantly associate with task-unrelated thoughts, and therefore show a net decrease in
the BOLD signal mixture during working-memory-task performance even though some of
its neural substrates associate with working memory. The overlaps of task-positive and task-
negative FNs raise the question of how different sets of multiple FNs at different voxels
impact FNs identified by commonly used seed-based approaches.

Fourth, we found load-dependent, opposite (up vs. down) modulations of ICs 2, 5, and 12,
even though they share common cortical regions at both the lateral and medial FPC. The
spatial pattern of IC12 is consistent with the DAN, and ICs 2 and 5 are consistent with the
LFPN and RFPN, respectively (Leech et al 2011; Zhang & Raichle 2010). The DAN, LFPN,
and RFPN are observed regularly in functional connectivity studies using either sICA or
seed-based approaches (Cole et al 2010; Leech et al 2011; Zhang & Raichle 2010; Zhang &
Li 2012). In the current study, the DAN, along with several other FNs, showed load-
dependent linear increases in positive modulation, and thus may contribute to top-down
attentional control during task performance. The LFPN together with several other FNs
showed load-dependent linear increases in negative modulation, indicating that its activity
might interfere with top-down attentional control and need to be suppressed. Even though
the RFPN did not show significant load-dependent modulation, it showed negative
modulation during the L2 attentional load condition, and therefore its activity was
suppressed at L2. In a recent ICA study using a stop-signal task, both LFPN and RFPN
showed negative modulations for go trials and positive modulations for successful stop
trials, but they showed opposite modulations for failed stop trials (Zhang & Li 2012). The
DAN (shown in the supplementary materials of (Zhang & Li 2012) as IC16) showed
modulations opposite to those shown by LFPN and RFPN; i.e., positive modulation for go-
trials and negative modulation for successful stop-trials. Furthermore, the LFPN showed up-
modulation during a working memory task in another study (Kim et al 2009a). These data
demonstrate that the DAN, LFPN, and RFPN associate with different aspects of cognitive
control, although they share extensive common regions in the FPC. Their opposite task-
related modulations indicate that task-related deactivation is not restricted to the DMN (i.e.,
neural substrates associated with intrinsically generated task-unrelated thought).

Finally, we found that relative to sICA, SPM5, utilizing a GLM-based analysis, identified
much smaller volumes of brain regions exhibiting task-related increases and decreases in
activity. This finding is consistent with previous data in which sICA implicated more voxels
and larger regions in task-related activities than did GLM-based analyses (Domagalik et al
2012; Kim et al 2011; Malinen et al 2007; Tie et al 2008). The opposite changes in source
signals from the same voxels as revealed by sICA probably contribute to this difference
between sICA and GLM-based analyses. Furthermore, sICA is identifying components
which are temporally coherent (i.e. show functional connectivity) whereas the GLM is
focused on identifying voxels that are modulated by a task, but which may not be correlated
with one another. These very different approaches likely contribute to their different
findings. Therefore, the absence of task-related changes in BOLD signal mixture as assessed
by GLM-based analyses does not necessary equate to the absence of task-related activity.
These findings suggest that GLM-based analyses should be regularly supplemented by sICA
or other approaches capable of differentiating BOLD signal mixture into source signals to
identify task-related changes in brain activation.

This study extracted ICs using sICA, which has several limitations. First, the spatial pattern
of each IC may be different dependent on different number of ICs extracted (Esposito &
Goebel 2011). Therefore, the numbers and locations of FN overlap may change for different
numbers of extracted ICs. However, it has been demonstrated that ICs remain accurate for a
large range of numbers of ICs (Esposito & Goebel 2011). Second, there is no reliable
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method to accurately identify which IC represents true source signal and which IC
represents artifacts generated by ICA. However, many ICs generated by sICA and fMRI
data are very consistent in spatial patterns across different studies and populations (Calhoun
et al 2008; Domagalik et al 2012; Raichle 2011). Finally, the imaging resolution, i.e., voxel
size, may affect the spatial extent of overlap. Smaller voxel volume may reduce the partial
volume effect and thus alter the overlap extent.

In summary, this study demonstrates FN overlaps by using sICA to separate signal mixtures
from the same brain regions into source signals. The overlapping FNs show concurrent but
idiosyncratic modulations of activity during an attentional task. The current GLM-based
analysis cannot detect FN overlaps because it cannot segregate the signal mixture from each
voxel into source signals. For a better understanding of brain functional organization
methods such as sICA that are capable of differentiating signal mixture should be regularly
employed to supplement GLM-based analyses.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We assessed overlap of brain functional networks (FNs) extracted by spatial
ICA.

• Majority of brain functional regions showed overlap of two or more FNs.

• Higher-order association cortex showed overlap of more FNs than did the
primary sensorimotor cortex.

• Overlapping FNs showed opposite modulations of activity during an attentional
task.

• Multiple cognitive processes associate with common brain regions and operate
concurrently.
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Fig 1.
Diagram demonstrating elements of the visual target identification task. The first row shows
instruction images used in the instructions before the onset of each task block. L1, L2, and
L3 indicate facial features for identifying targets of low (L1), medium (L2), and high (L3)
load conditions, respectively. During the task, the instruction screen showed “Please
Identify” above each instruction image for five seconds before the onset of the following
stimuli block. For the rest condition, the instruction screen showed “Please rest and look at
the screen” without any additional instruction image. The middle row shows examples of
faces used in the task. T1, T2, and T3 indicate examples of targets for task conditions L1,
L2, and L3, respectively. The bottom row shows an example of face-scene pairs used as
stimuli in the task.
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Fig 2.
Task performance. The bar graphs show the means of target hit rate, commission error rate,
and reaction time (RT) (ms), respectively, at task conditions of low (L1), medium (L2), and
high (L3) task load. The error bars indicate standard error (SE) of means. The SPSS general
linear model for repeated measures was used to assess the effect of task load on task
performance. All measures showed significant linear changes as task load increased from L1
to L2 and L3 (p<.001).
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Fig 3.
Overlap of all functional networks (FNs). Yellow-red colors on the Montreal Neurological
Institute (MNI) T1 templates indicate brain regions covered by one or more FNs. The color
bar indicates the number of FNs. The number below each brain image indicates the Z
coordinates in MNI space. Abbreviation: R: right.
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Fig 4.
Overlap of task-positive functional networks (FNs). A. Colors on the Montreal Neurological
Institute (MNI) T1 templates show the spatial distribution of positive sub-networks from
IC18 and 19. Only clusters surviving corrections for voxel-wise whole-brain analyses are
shown. The color bar indicates t values. The “Beta-weight” column shows values of beta-
weights at each task condition. Error bars indicate standard errors (SEs) of means. The p
value on each panel indicates the statistical significance of task-load-related linear changes
in beta-weights. B. Yellow-red colors on T1 templates indicate brain regions covered by one
or more task-positive FNs. The color bar indicates the number of overlapping FNs. The
number below each brain image indicates the Z coordinates in MNI space. Abbreviations:
L0: rest condition; L1-3: low, medium, and high task load conditions; R: right; Z: z
coordinate in MNI space.
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Fig 5.
Overlap of task-negative functional networks (FNs). A. Colors on the Montreal Neurological
Institute (MNI) T1 templates show the spatial distribution of positive sub-networks from
IC7 and 8. B. Yellow-red colors on T1 templates indicate brain regions covered by one or
more task-negative FNs. Please see fig. 4 legend for additional details.
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Fig 6.
Overlap of task-positive and negative functional networks (FNs). The yellow color on the
Montreal Neurological Institute (MNI) T1 templates indicates brain regions covered by both
task-positive and task-negative FNs. The number below each brain image indicates the Z
coordinates in MNI space. Abbreviation: R: right.
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Fig. 7.
Overlap of positive sub-network of ICs 2, 5, and 12. A. Colors on the Montreal Neurological
Institute (MNI) T1 template show the spatial distribution of positive sub-networks of ICs 2,
5, and 12. B. The yellow-white colors on the T1 templates indicate overlaps of positive sub-
networks of ICs 2, 5, and 12. Please see fig. 4 legend for additional details.
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Fig. 8.
Task-load-dependent changes in BOLD signal revealed by SPM5. The colors on the T1
templates in MNI space show significant linear changes in BOLD signal as task load
changed from L0 to L3 in the original dataset. The color bar indicates the t values. Only
voxels surviving p<.01 and cluster p<.05, FWE-corrected for multiple comparisons of
voxel-wise whole-brain analysis are shown. The number below each brain image indicates
the Z coordinates in MNI space. Abbreviations: R: right hemisphere.
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