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The seven-factor biopsychosocial model of personality distinguished four biologically based temperaments
and three psychosocially based characters. Previous studies have suggested that the four temperaments—novelty
seeking (NS), reward dependence (RD), harm avoidance (HA), and persistence (P)—have their respective neuro-
biological correlates, especially in the striatum-connected subcortical and cortical networks. However, few
studies have investigated their neurobiological basis in the form of fiber connectivity between brain regions.
This study correlated temperaments with fiber connectivity between the striatum and subcortical and cortical
hub regions in a sample of 50 Chinese adult males. Generally consistent with our hypotheses, results showed
that: (1) NS was positively correlated with fiber connectivity from the medial and lateral orbitofrontal cortex
(mOFC, lOFC) and amygdala to the striatum; (2) RD was positively correlated with fiber connectivity from the
mOFC, posterior cingulate cortex/retrosplenial cortex (PCC), hippocampus, and amygdala to the striatum;
(3) HA was positively linked to fiber connectivity from the dorsolateral prefrontal cortex (dlPFC) and PCC to
the striatum; and (4) P was positively linked to fiber connectivity from the mOFC to the striatum. These results
extended the research on the neurobiological basis of temperaments by identifying their anatomical fiber
connectivity correlates within the subcortical–cortical neural networks.

© 2013 Published by Elsevier Inc.
Introduction

In the seven-factor biopsychosocial model of personality, Robert
Cloninger distinguished four temperaments (novelty seeking, reward
dependence, persistence, and harm avoidance) and three characters
(cooperativeness, self-directedness, and self-transcendence) (Cloninger,
1987, 1994b; Cloninger et al., 1993). Temperaments represent individ-
uals' congenital and automatic behavioral responses to the environmental
stimuli of novelty, reward and danger, whereas characters represent
individuals' adaptation to complex social contexts (Cloninger, 1994a,b).
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nventory; DTI, diffusion tensor
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Consequently, the four temperaments are proposed to be more depen-
dent on biological (genetic and neural) factors, whereas characters
depend more on socio-cultural factors. Extreme/abnormal personality
traits (especially temperaments) are common characteristics of a wide
spectrum of prevalent personality and psychiatric disorders (Richter
and Brandstrom, 2009; Svrakic et al., 1993), such as depression (Celikel
et al., 2009; Farmer et al., 2003; Sandi and Richter-Levin, 2009), bipolar
disorder (Olvera et al., 2009), borderline personality disorder (Barnow
et al., 2007), obsessive–compulsive disorder (Ettelt et al., 2008), and
schizophrenia (Hori et al., 2008; Smith et al., 2008). These disorders
have been found to be accompanied by abnormal/pathological neurobi-
ological changes in the brain (Hazlett et al., 2005; Nakamura et al., 2005).
In order to have a better understanding of the neurobiological basis
of temperaments and a deeper insight into the pathogenesis of the
temperament-related neuropsychiatric disorders, the current study in-
vestigated the associations between temperaments and fiber connectiv-
ity from the cortical and subcortical regions to the striatum.

Several lines of research have reported that extensive subcortical
and cortical regions are involved in temperaments. In the following
paragraphs, we briefly introduce the four temperaments as identified
by Cloninger and summarize previous neuroimaging results (see
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Table 1). Novelty seeking (NS) is linked to the behavioral activation
system and refers to one's tendency to initiate an exploratory behav-
ior towards novelty as well as one's excessive response to cues of
rewards. A recent diffusion tensor imaging (DTI) study (Cohen et al.,
2009) reported that fiber connectivity between the striatum, hippo-
campus, and amygdala could predict individual differences in NS.
Two brain anatomical studies also found that NS was correlated
with white matter volume in the frontal cortex and gray matter
volume in the frontal cortex and PCC (Gardini et al., 2009; Van
Schuerbeek et al., 2011). Consistent with the structural data, func-
tional brain studies reported that the striatum, substantia nigra and
ventral tegmental regions (Krebs et al., 2009), and prefrontal cortical
regions (Bermpohl et al., 2008) were involved in NS.

Reward dependence (RD) refers to the behavioral dependence
system and reflects one's tendency to stimulate and maintain reward
behavior. As shown in Table 1, the mesolimbic-dopamine-centered
network, especially the striatum and frontal cortex (Berridge and
Robinson, 2003; Schultz, 2000, 2002), plays a key role in RD. Cohen
et al., 2009 found that fiber connectivity between the striatum and
frontal cortex was associated with individual differences in RD. RD
Table 1
Previous brain imaging studies showing neural correlates of temperaments.a

Temperaments Studies Frontal cortex

NS Sugiura et al. (2000) ACC,SFG, anterior insula
Turner et al. (2003)
Suhara et al. (2001) Right insula
Youn et al. (2002) Right MFG
Hakamata et al. (2006)
Cohen et al. (2009)
Iidaka et al. (2006) Left MFC
Gardini et al. (2009) PFC
Van Schuerbeek et al. (2011) IFC
Bermpohl et al.(2008) MFG, pregenual ACC
Krebs et al. (2009)

RD Sugiura et al. (2000) ACC,SFG, anterior insula
Turner et al. (2003)
Youn et al. (2002) Left OFC
Hakamata et al. (2006) Left insula
Cohen et al. (2009) OFC, lateral and dorsal PFC
Iidaka et al. (2006)
Gardini et al. (2009) Rectal PFC
Lebreton et al. (2009) Medial OFC
Van Schuerbeek et al. (2011) Left MFG, right IFG
Krebs et al. (2009)

HA Sugiura et al. (2000) Right orbito-insular junction, SFG
Turner et al. (2003)
Youn et al. (2002) Right ACC
Hakamata et al. (2006) Left MFG
Inada et al. (2009) Right SFG & MFG in females
Cohen et al. (2009)
Pujol et al. (2002) Right ACC
Iidaka et al. (2006) OFC
Yamasue et al. (2008b) Left anterior PFC
Gardini et al. (2009) Orbito-frontal regions
Van Schuerbeek et al. (2011) Left SFG & IFG, ACC
Pezawas et al. (2005) ACC
Most et al.(2006) Subgenual ACC
Yang et al. (2009) Subgenual ACC
Westlye et al. (2011) Subgenual ACC, OFC

P Turner et al. (2003)
Hakamata et al. (2006) Right MFG & insula
Cohen et al. (2009) mOFC
Gardini et al. (2009)
Van Schuerbeek et al. (2011) Right ACC
Gusnard et al.(2003) OFC

Abbreviation: ACC, the anterior cingulate cortex; OFC, the orbitofrontal cortex; SFG, the supe
prefrontal cortex; STG, the superior temporal gyrus; MTG, the middle temporal gyrus; ITG
superior parietal gyrus; MPG, the middle parietal gyrus; IPG, the inferior parietal gyrus; S
occipital cortex; SN/VTA, the substantia nigra/ventral tegmental area; NS, novelty seeking;

a This table includes all PET/SPECT studies and functional and structural MRI studies
Questionnaire) in healthy and normal samples that were published between 2000 and 20
(e.g., Schweinhardt et al. (2009), who used principal component analysis to extract a main c
and White, 1994]).
has also been correlated with gray matter volumes of the frontal
and temporal regions and caudate nucleus (Gardini et al., 2009; Van
Schuerbeek et al., 2011), and gray matter densities of the medial
orbitofrontal cortex, ventral striatum, and putamen (Lebreton et al.,
2009). Functional brain imaging studies confirmed the key role of
the striatum and orbitofrontal cortex in RD and reward processing
(Krebs et al., 2009).

Harm avoidance (HA) is similar to the behavioral inhibition system
and refers to one's tendency to inhibit behavior to avoid punishment,
loss, and non-reward. The amygdala, anterior cingulate cortex, and
medial orbitofrontal cortex had been found to contribute significantly
to HA in several previous studies (Buckholtz et al., 2008; Iidaka et al.,
2006; Pezawas et al., 2005; Pujol et al., 2002; Yamasue et al., 2008a;
Yang et al., 2009, see Table 1). Recent studies also found that HA was
associatedwith local structural integrity indexed by fractional anisotropy
as well as mean and radial diffusivity within most main white matter
fibers in the brain (Kim and Whalen, 2009; Westlye et al., 2011). There
appears to be a widely distributed, interconnected neural network
of HA, including the limbic system and the higher-function cortical
regions.
Temporal cortex Parietal/occipital cortex Subcortical nucleus

STG
ITG & MTG PCC

MTG
Left STG IPG & PCC

Striatum, hippocampus, amygdala

PCC
PCC

SN/VTA
STG
ITG & MTG MOG & SOG
ITG & MTG
MTG Right IOG Caudate head

Striatum
Right caudate nucleus
Caudate nucleus
Ventral striatum, left putamen

PCC Thalamus, putamen
SN/VTA

Left ITG
ITG & MTG MOG & SOG
Left MTG, ITG
Left MTG Right PCC Right thalamus

Striatum & hippocampus

Left amygdala
Right hippocampus

Occipital cortex

Amygdala
Amygdala

Amygdala
ITG & STG
Left MTG PCC

Striatum
PCC

ITG PCC
Ventral striatum

rior frontal gyrus; MFG, the middle frontal gyrus; IFG, the inferior frontal gyrus; PFC, the
, the inferior temporal cortex; PCC, the posterior cingulate cortex/precuneus; SPG, the
OG, the superior occipital cortex; MOG, the middle occipital cortex; IOG, the inferior
RD, reward dependence; HA, harm avoidance; P, persistence.
of TCI (Temperament and Character Inventory) or TPQ (Tridimensional Personality
11. Excluded were studies that did not use the original TCI or TPQ scales or subscales
omponent from NS, HA, and subscales of the Behavioral Appetitive System Scale [Carver
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Persistence (P) refers to one's tendency to maintain an ongoing
behavior despite the absence or omission of reward. The orbitofrontal
cortex and striatum have been reported to play a role in P (see
Table 1). A functional brain imaging study reported that individual
differences in P were associated with activation in the orbital and
medial frontal cortex and ventral striatum during a picture-viewing
task (Gusnard et al., 2003). In a separate study (Cohen et al., 2009),
P was positively correlated with fiber connectivity from the mOFC
to the striatum. P was also linked to gray and white matter volume
of the cortices and limbic regions, such as the paracentral lobule,
precuneus and cingulate gyrus (Gardini et al., 2009; Van Schuerbeek
et al., 2011).

Taken together, these previous studies showed that the amygdala,
striatum, hippocampus, cingulate, and frontal cortex play critical roles
in temperaments. RD, NS and P were positively correlated with the
striatal–frontal fiber connectivity and HA was positively correlated
with the striatal–hippocampal fiber connectivity (Cohen et al., 2009).
Integrity of white matter microstructure in pathways connecting hubs
of the corticolimbic circuit was also correlated with HA (Westlye et al.,
2011). Voxel-based morphometric studies provided further support
for the involvement of subcortical regions (the amygdala, striatum,
and hippocampus) and the frontal cortex in temperaments (Gardini
et al., 2009; Iidaka et al., 2006; Van Schuerbeek et al., 2011; Yamasue
et al., 2008b).

Although extensive subcortical and cortical brain regions have
been found to be involved in temperaments (see Table 1), these studies
focused on local brain structural/functional markers, especially on gray
matter (gray matter volume, gray matter density, cortical thickness,
task-elicited functional activation). Little attention has been paid to
white matter, even though white matter makes up half of the human
brain and has been gradually acknowledged to play an important role
in human higher functions (Fields, 2010). Thus far only two studies
have looked at white matter and temperaments. One focused on corre-
lations between HA and local white matter integrity (Westlye et al.,
2011) and the other focused on correlations of NS and RD with fiber
connectivity between the striatum and the amygdala, hippocampus,
and frontal cortical regions (Cohen et al., 2009).

The present studywas designed to expand the literature on the neu-
robiological basis of temperaments by focusing on striatum-projected
white-matter connectivity in Chinesemales. Based on previous findings
and suggestions, we hypothesized that different temperaments would
be differentially correlated with fibers connecting the striatum with
the subcortical and cortical regions. Specifically, three temperaments
(NS, RD and P), which are closely linked to the mesolimbic-dopamine-
centered networks, were hypothesized to be correlated with fiber
connectivity between the striatum and the medial frontal cortex; HA
was hypothesized to be correlated with fiber connectivity between
the striatum and the medial and dorsal frontal cortex.

Materials and methods

Participants

Fifty male college students (mean age 20.10 yrs; range 19–22 yrs)
were recruited from the Beijing Normal University. All participants
were Han Chinese with normal or corrected-to-normal vision and
no neurological or psychiatric history. They also passed the physical
and clinical examinations for all freshmen administered by the
university. They were asked to complete the Chinese version of the
Temperament and Character Inventory-Revised (TCI-R) (Cloninger,
1994b; Zhu et al., 2010), the Beck Depression and Anxiety Inventories
(BDI and BAI) (Beck, 1990; Beck et al., 1996), the Alcohol Use Disorders
Identification Test (AUDIT) (Saunders et al., 1993) and the Fagerstrom
Test for Nicotine Dependence (FTND) (Heatherton et al., 1991), and
were scanned for diffusion tensor and high resolution 3D anatomical
images. All participants gave informed written consents and the study
was approved by the Beijing Normal University Institutional Review
Board.

Image acquisition

Participants were scanned on a Siemens Trio 3 T scanner with an
eight-channel head coil in the Beijing Normal University Imaging
Center for Brain Research. The diffusion-weighted data were ac-
quired using a twice-refocused spin-echo EPI sequence with the
following parameters: TR/TE = 7200 ms/104 ms, 49 transverse
slices, field-of-view = 230 ∗ 230 mm, matrix = 128 ∗ 128, slice
thickness = 2.5 mm, 1 direction with b-value = 0 s/mm2, 64 direc-
tions with b-value = 1000 s/mm2. In addition, a high resolution 3D
anatomical image was obtained using T1-weightedMP-RAGE sequence
with the following parameters: TR/TE/FA = 2530 ms/3.75 ms/7°,
FOV = 220 ∗ 220 mm, matrix = 256 ∗ 256, slice thickness = 1 mm,
128 sagittal slices. For each participant, scanning lasted 18 min.

Image preprocessing

Diffusion tensor images (DTI) were processed using the FMRIB's
Diffusion Toolbox (FDT 2.0) and Tract-Based Spatial Statistics (TBSS
1.2) (Smith et al., 2006) from the FMRIB's Software Library (FSL,
version 4.1.4; www.fmrib.ox.ac.uk/fsl; Jenkinson et al., 2012; Smith et
al., 2004; Woolrich et al., 2009). The standard processing procedure
was used for the probabilistic tractography of DTI data: eddy correction,
brain extraction (Smith, 2002), fitting of diffusion tensors, sampling of
the diffusion parameters for each voxel in the seed region, and probabi-
listic tractography within each participant's diffusion space using FSL
bedpostX (Behrens et al., 2003a, 2003b, 2007). Correction of the diffu-
sion data for eddy currents and head motion was performed through
the affine alignment to the no-diffusion-weighted reference volume
(b-value = 0). The diffusion tensor was then constructed by FDT.
Diffusion-weighted imageswere spatially normalized into theMontreal
Neurological Institute (MNI) standard space with the FMRIB's Linear
Image Registration Tool (FLIRT) (Greve and Fischl, 2009; Jenkinson et
al., 2002) and the FMRIB's Nonlinear Image Registration Tool (FNIRT)
on the individual's high resolution T1-weighted structural image. Visual
inspection was done to confirm that the registration was successful. In
addition, the transformation matrix and warp field between individual
diffusion space and the MNI standard space were acquired with the
tools “convert_xfm” and “invwarp”.

We created one seed mask of the striatum and nine target masks
for each hemisphere based on the automated anatomical labeling
template (Tzourio-Mazoyer et al., 2002) and the previous study
(Cohen et al., 2009) (Supplementary Fig. S1). They included the me-
dial orbitofrontal cortex (mOFC, consisting of Frontal_Sup_Orb, Rec-
tus and Frontal_Med_Orb), lateral orbitofrontal cortex (lOFC,
consisting of Frontal_Mid_Orb and Frontal_Inf_Orb), lateral prefrontal
cortex (lPFC, consisting of Frontal_Inf_Tri_R), dorsolateral prefrontal
cortex (dlPFC, consisting of Frontal_Sup_R and Frontal_Mid_R), posterior
cingulate cortex/retrosplenial cortex (PCC, consisting of Precuneus),
anterior cingulate cortex (ACC, consisting of Cingulum_Ant), dorsal
anterior cingulate cortex (dACC, consisting of Cingulum_Mid), hippo-
campus, amygdala, and striatum. Due to the fact that the probabilistic
tractography must be conducted in the individual's diffusion space
using the FMRIB Diffusion Toolbox, all masks in the MNI standard
space were transformed to the individual diffusion space by using the
tool “applywarp” to apply the inverse transformation matrix and warp
field produced in the previous step.

For each participant, Bayesian estimation of diffusion parameters
based on the Samples Techniques was conducted by the BedpostX
program implemented in FMRIB's Diffusion Toolbox. Probabilistic
tractography with a model allowing for crossing fibers (Behrens
et al., 2003b) was performed from the striatum to the nine target
regions (mOFC, lOFC, dlPFC, lPFC, ACC, dACC, PCC, hippocampus,

http://www.fmrib.ox.ac.uk/fsl
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and amygdala) in individuals' diffusion space with 5000
tract-following samples for each voxel in the striatum, resulting in
a probabilistic map of fiber connectivity for each of the nine target
regions. The value of each voxel in the tractographic images repre-
sented the number of the fiber projections to the particular target
area and was divided by the voxel's total number of fiber projections
to all regions (i.e., a proportional ratio). These images were
transformed back to the MNI standard space for group statistical
analyses. Images in theMNI standard space were entered into gener-
al linear models (GLMs) for voxel-wise analyses. The method has
been well validated and used in diffusion tensor imaging studies
(Cohen et al., 2009; Croxson et al., 2005; Johansen-Berg and
Rushworth, 2009).

Data analysis

All GLM analyses were conducted with the tool “randomise” with
5000 permutations. The “randomise” tool uses permutation-based
non-parametric testing with the Threshold-Free Cluster Enhancement
(TFCE) to perform voxel-wise group statistics (Nichols and Holmes,
2002; Smith and Nichols, 2009), which is highly recommended by the
FSL group for finding statistically significant cluster-like structures in
an image. Preprocessed tractographic images were entered into GLMs
with demeaned temperament scores as covariates of interest. The
voxel-wise p-values were corrected for multiple comparisons with the
TFCE algorithm (Smith and Nichols, 2009) within analyses, and then
further corrected for multiple tests across analyses by dividing the sig-
nificance level by the number of analyses (4 traits × 9 ROIs = 36) in
the current study.

Additional analyseswere performed to examinewhether the results
were confounded by the following factors: depression, anxiety, alcohol
use, and cigarette smoking. Scores of BDI, BAI, alcohol use and cigarette
smoking were entered into GLMs as covariates of no-interest in addi-
tional GLM analyses.

We also tested whether temperaments were correlated with gray
matter density, which might blunt the correlations between tempera-
ments and fiber connectivity between brain regions. Structural data
were analyzed with FSL-VBM (Douaud et al., 2007, www.fmrib.ox.ac.
uk/fslvbm), an optimized VBM protocol (Good et al., 2001) carried
out with FSL tools (Andersson, 2007; Smith et al., 2004). Furthermore,
the tool “fslstats” in FSL was used to extract the fiber connectivity
from significant clusters and the volumes of individuals' target regions.
Pearson's and partial correlations between the extracted connectivity
and the correlated temperament were assessed in SPSS 16.0 with the
volume of the corresponding target region as a covariate.

Results

Basic descriptive statistics and inter-correlations among the four
temperaments are presented in Supplementary Table S1. These
Table 2
Correlational results for temperaments.

Traits Fiber-originated regions Fiber-terminated regions in the striatum

NS mOFC Left posterior medial putamen, right caudat
lOFC Left posterior ventral putamen
Amygdala Left putamen

RD PCC Left putamen, right caudate
mOFC Right caudate
Hippocampus Right caudate
Amygdala Right putamen and caudate

HA dlPFC Bilateral caudate, right putamen
PCC Left caudate

P mOFC Left putamen

Abbreviations: mOFC, the medial orbitofrontal cortex; lOFC, the lateral orbitofrontal cortex;
tal cortex; NS, novelty seeking; RD, reward dependence; HA, harm avoidance; P, persistenc
correlations were similar to those reported by previous studies
(Chen et al., 2002; Hansenne et al., 1999; Sung et al., 2002).

Tractography-based classification of the striatum (Supplementary
Figs. S2 and S3) was consistent with the segmentation pattern reported
in previous studies (Cohen et al., 2009; Croxson et al., 2005; Lehericy et
al., 2004; Voorn et al., 2004), which confirmed the probabilistic tracking
process of diffusion tensor images in the present study.

Results of GLMs showed that fiber connectivity between the stria-
tum and hippocampus, amygdala, and hub cortical regions were exten-
sively and differentially involved in temperaments. As shown in Table 2
and Figs. 1a–d, NS was positively correlated with fiber connectivity
from the mOFC, lOFC, and amygdala to the striatum; RD with fiber
connectivity from the mOFC, PCC, hippocampus and amygdala to the
striatum; HAwith fiber connectivity from the dlPFC and PCC to the stri-
atum; and P with fiber connectivity from the mOFC to the striatum.
Overlay of the correlations on the connectivity maps showed regions
with low to high average connectivity probabilities (see Supplementary
Fig. S4). These results did not change in the additional analysis with BDI,
BAI, alcohol use, and cigarette smoking as covariates of no-interest.
VBM analysis found no significant results between gray matter density
and temperaments. Correlational analyses showed no significant differ-
ences between Pearson's and partial correlations, the latter of which
excluded the potential confound from the volume of the specified target
region.

Discussion

In the present study, we used the noninvasive DTI technique to
examine the neurobiological basis of temperaments in the form of fiber
connectivity underlying the neuronal intercommunication between the
striatum and cortical or subcortical hub regions. As expected, results
showed variations in the extensive fiber connectivity between the stria-
tum and cortical or subcortical regions underlying individual differences
in temperaments (Table 2). These results extended previous research
on the neurobiological basis of temperaments to the anatomical fiber
connectivity within the subcortical–cortical neural networks. Given
that functional connectivity relies on structural connectivity (Boorman
et al., 2007; Haberling et al., 2011), these temperament-related neuroan-
atomical circuits also provided anatomical support for previous findings
of functional networks for temperaments (Gusnard et al., 2003; Jung et
al., 2010; Krebs et al., 2009).

Novelty seeking

As shown in Fig. 1a, the present study observed that NS was posi-
tively linked to fiber connectivity between the mOFC and lOFC and the
striatum. Previous studies have clearly documented the involvement
of the OFC and striatum in NS, especially the dopamine-innervated
intercommunicated subcortical-to-cortical networks. The current find-
ings further confirmed this in the form of anatomical fiber connectivity
within this network.
Volume in the striatum (mm3) Tmax MNI coordinates (mm)

e 1010 6.66 (−26,−10,8)
458 4.76 (−31,3,4)
70 4.43 (−24,8,2)

669 3.09 (14,10,21)
270 4.21 (20,18,7)
128 3.69 (10,10,4)
129 3.25 (18,6,25)
704 5.06 (20,12,17)
364 4.57 (−12,9,6)
615 3.66 (−28,12,−5)

PCC, the posterior cingulate cortex/retrosplenial cortex; dlPFC, the dorsolateral prefron-
e.

http://www.fmrib.ox.ac.uk/fslvbm
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As a key region of the mesolimbic dopamine system, the stria-
tum plays a role in coding and transmitting primary novelty-related do-
paminergic signals to the cortical regions. Anatomically, the striatum
widely accepts fiber projections from subcortical and cortical regions
such as the amygdala, hippocampus and medial frontal cortex, making
up an interconnected neural network (Cohen et al., 2009; Lehericy
et al., 2004). Functional studies found that these regions' response to
novelty was positively correlated with NS (Krebs et al., 2009).

The prefrontal cortical regions such as lOFC andmOFCwere suggested
to exert top-down modulation during novelty processing (Lovstad et al.,
2011). Brain anatomical studies found that NS was correlated with white
matter volume in the frontal cortex, and gray matter volume in the fron-
tal cortex and PCC (Gardini et al., 2009; Van Schuerbeek et al., 2011), and
cortical thickness of theOFC, superior frontal gyrus and leftmiddle frontal
gyrus (Schilling et al., 2012). Functionally, patients with lesions centered
in either the OFC or lPFC showed reduction of the frontal P3 response
to novel stimuli compared to controls (Lovstad et al., 2011). Responses
in the medial prefrontal cortex and pregenual anterior cingulate cortex
towards emotional expectancy were positively correlated with NS
(Bermpohl et al., 2008). NS is closely related to exploratory/excessive
and impulsive/risk-taking behaviors towards novelty and cues of poten-
tial rewards (Kelley et al., 2004; Roussos et al., 2009). Disruption of the
right prefrontal cortex by low-frequency and repetitive transcranialmag-
netic stimulation producedmore risk-taking human behaviors (Knoch et
al., 2006). Baseline/tonic cortical activity in the right prefrontal cortex
was also reported to be positively correlated with individual risk-taking
behaviors (Gianotti et al., 2009).

Reward dependence

In the present study, fiber connectivity from the PCC, mOFC, hippo-
campus and amygdala to the striatum were correlated with RD, as
shown in Table 2 and Fig. 1b. These results were consistent with many
previous studies on RD-correlated brain regions.

First, white matter microstructure in the uncinate/inferior fronto-
occipital fasciculus, which can partially participate in interconnections
between the PCC, ventral anterior thalamic nuclei, and orbitofrontal
cortex, has been correlated with response of the nucleus accumbens
to reward (Camara et al., 2010). Second, brain structural studies found
RD to be correlatedwith the graymatter volume in the leftmiddle fron-
tal gyrus, right inferior frontal gyrus, left posterior cingulate and left
thalamus (Van Schuerbeek et al., 2011), as well as the caudate nucleus
and rectal frontal gyrus (Gardini et al., 2009). Third, a large number
of brain functional studies have found that widely distributed brain
regions, including the substantia nigra, ventral tegmental regions, stria-
tum, amygdala, and frontal cortex, played important roles in reward
processing. Activations of the substantia nigra/ventral tegmental area
elicited by novel cues that predicted reward was positively related to
RD (Krebs et al., 2009). Individual differences in reward-related tem-
peraments (reward sensitivity measured by the Behavioral Activation
Scale [Carver and White, 1994]) also predicted response variations of
the brain reward network (Beaver et al., 2006; Engelmann, 2006). Indi-
vidual variation in reward sensitivitywas also highly correlatedwith ac-
tivation elicited by appetizing foods in the fronto–striatal–amygdala–
midbrain network (Beaver et al., 2006), with activation of the ventral
striatum during the reception of a reward (Simon et al., 2010), and
with stronger medial orbitofrontal activity during both the reception
and omission of a reward.

The OFC has been found to play an important role in reward pro-
cessing (Burke et al., 2008; Padoa-Schioppa and Assad, 2006, 2008).
It is believed to form relative reward values to guide or top-down
regulate human RD-oriented behaviors during reward processing
(Rolls, 2000;Wallis, 2007). Themedial frontal cortexwas proposed to in-
tegrate and transmit representations of reward to the mesolimbic and
mesocortical dopamine systems, to modulate striatal reward encoding
during reappraisal of reward anticipation and to contribute to successful
regulation of reward (Glascher et al., 2009; Xue et al., 2009). Human
electrophysiological studies showed a dynamic interaction between the
striatum and medial frontal cortex underlying reward-guided learning
and decision-making (Cohen, 2007; Cohen et al., 2009). The amygdala
was reported to facilitate reward-seeking behaviors by the glutamatergic
or dopaminergic neurotransmission in the amygdala–striatum pathway
(Lintas et al., 2011; Prevost et al., 2011; Stuber et al., 2011). Bilateral
amygdala andnucleus accumbens showed significantly greater response
to wins than to losses in both adolescents and adults (Ernst et al., 2005).

Harm avoidance

As shown in Fig. 1c, fiber connectivity from the PCC and dlPFC to the
striatum was correlated with HA in the present study. The significant
role of the striatal–frontal pathway in HA can be easily integrated
with previous research. A recent study found that increased HAwas as-
sociated with decreased fractional anisotropy and increased mean and
radial diffusivity in major fiber tracts, such as anterior thalamic radia-
tion, dorsal cingulum bundle, inferior longitudinal fasciculus, superior
longitudinal fasciculus, and uncinate fasciculus, which underlie path-
ways connecting critical hubs in the limbic–cortical and striatal–frontal
circuits including themOFC, dlPFC, PCC, ACC, amygdala, striatum and so
on (Westlye et al., 2011). Structural integrity of white matter indexed
by fractional anisotropy in a pathway connecting the amygdala, ventral
striatum, and frontal cortex was also inversely correlated with anxiety,
a trait closely correlated with HA (Kim andWhalen, 2009). In addition,
HA was found to be positively correlated with gray matter volume in
the left superior frontal gyrus, and negatively correlated with graymat-
ter volume in the left inferior frontal gyrus (Gardini et al., 2009; Van
Schuerbeek et al., 2011; Yamasue et al., 2008a), anterior cingulate
(Van Schuerbeek et al., 2011), and occipital and parietal structures
such as PCC (Gardini et al., 2009). Finally, a previous study reported
that HA was positively associated with activation of the dorsal medial
PFC and PCC during self-referential processing (Lemogne et al., 2011).

It should be noted that no significant results were observed for the
amygdala, ACC, and OFC in relation to HA in the present study, which
was inconsistent with previous reports (Iidaka et al., 2006; Pezawas
et al., 2005; Pujol et al., 2002). It seemed that even though studies
have found the amgydala–ACC–mOFC pathway to play a role in HA
(Most et al., 2006; Pezawas et al., 2005), the striatum–amygdala/ACC/
mOFC pathways might not contribute to HA as much as originally as-
sumed. For example, Cohen et al., (2009b) found only one significant
correlation (i.e., between HA and fiber connectivity between the hippo-
campus and striatum). Second, females showed higher HA overall than
males did and these gender differences were largely explained by gen-
der differences in the right ACC (Pujol et al., 2002). The current study
was conducted with males, which might partly account for the lack of
findings of the amygdala, ACC and mOFC.

Persistence

Consistent with the results of Cohen et al. (2009b) study, P was
positively correlated with fiber connectivity from the mOFC to striatum
in the present study (Fig. 1d). Two other functional brain studies further
confirmed the involvement of the OFC and striatum in P. The first one
(Gusnard et al., 2003) found that individual difference in Pwas correlated
with change in activation of the orbital andmedial frontal cortex and ven-
tral striatum during a picture-viewing task. Individuals high in P showed
increasing activation in the OFC and ventral striatumwith increasing per-
centage of neutral pictures from 10% to 90%, whereas individuals low in P
showed decreasing activation of these regions in the same task condition
(Gusnard et al., 2003). The second study demonstrated that the mOFC–
striatum functional connectivity modulated behavioral persistence dur-
ing uncertain decision-making (Jung et al., 2010). Strength of functional
connectivity was found to be positively correlated with the number of
persistent responses made during the task. In addition, patients with



231X. Lei et al. / NeuroImage 89 (2014) 226–234
lesion to the ventralmedial prefrontal cortex showed a lack of persistence
(Barrash et al., 2000). Some structural studies also linked P to graymatter
volume in the limbic regions (Gardini et al., 2009; Van Schuerbeek et al.,
2011).

Although P as a temperament trait was paid less attention by re-
searchers compared to other three temperaments, similar behavioral
Fig. 1. Fiber connectivity from different brain regions to the striatum were correlated with d
was correlated with NS. (b) Fiber connectivity from the PCC, mOFC, and hippocampus to the
striatum was correlated with HA. (d) Fiber connectivity from the mOFC into the striatum w
constructs such as “perseveration” (de Ruiter et al., 2009; Serpell et
al., 2009) and “habit formation”/goal-directed behaviors (de Wit et al.,
2009, 2012) in humans and animals have been extensively discussed
in the fields of neuropsychology, neurology, and psychiatry (de Wit
andDickinson, 2009). Results of these studies also showed that the ven-
tromedial prefrontal cortex played an important role in “perseveration”
ifferent temperaments. (a) Fiber connectivity from the mOFC and lOFC to the striatum
striatum was correlated with RD. (c) Fiber connectivity from the dlPFC and PCC to the
as correlated with P.
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(de Ruiter et al., 2009) and habitual and goal-directed behaviors (de
Ruiter et al., 2009).
Limitations

Three main limitations of the current study should be mentioned.
First, this study was conducted in males. One reason for focusing on
males was that some temperaments have shown gender differences
at both behavioral and neurobiological level (Raine et al., 2011;
Yamasue et al., 2008a). Future research needs to replicate and ex-
tend our findings to Chinese females. Second, the current study
was conducted with young college males with a narrow age range
to avoid the confounding effect of age. Because aging of the brain
might affect the neurobiological correlates of personality traits
(Wright et al., 2007), future studies should include samples of a
broader age range. Finally, several studies have found genetic
effects, gene × brain interactions, and even gender × gene × brain
three-way interactions for RD, NS, and HA (Buckholtz et al., 2008;
Marco-Pallares et al., 2010; Pezawas et al., 2005; Williams et al.,
2009). In the future, investigations need to be extended to include
genetic factors.

Conclusions

Using probabilistic tracking of diffusion tensor images, the current
study investigated the neurobiological correlates of temperaments in
the form of fiber connectivity between the striatum and subcortical
and cortical regions in Chinese males. Results showed that different
temperaments were associated with different fiber connectivity. Gener-
ally consistent with our hypotheses, three temperaments (NS, RD and P,
which are closely linked to the mesolimbic-dopamine-centered net-
works) were correlated with fiber connectivity between the striatum
and medial frontal cortex. HA was correlated with fiber connectivity
between the striatum and dorsal frontal cortex. These results were not
confounded by factors such as depression, anxiety, alcohol dependence,
and smoking, nor by the local gray matter structure and the volume of
the local brain region.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.04.043.
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