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Fiber clustering versus the parcellation-based connectome

Lauren J. O’Donnell, Alexandra J. Golby, and Carl-Fredrik Westin
Harvard Medical School, Boston MA, USA

Abstract
We compare two strategies for modeling the connections of the brain’s white matter: fiber
clustering and the parcellation-based connectome. Both methods analyze diffusion magnetic
resonance imaging fiber tractography to produce a quantitative description of the brain’s
connections. Fiber clustering is designed to reconstruct anatomically-defined white matter tracts,
while the parcellation-based white matter segmentation enables the study of the brain as a
network. From the perspective of white matter segmentation, we compare and contrast the goals
and methods of the parcellation-based and clustering approaches, with special focus on reviewing
the field of fiber clustering. We also propose a third category of new hybrid methods that combine
aspects of parcellation and clustering, for joint analysis of connection structure and anatomy or
function. We conclude that these different approaches for segmentation and modeling of the white
matter can advance the neuroscientific study of the brain’s connectivity in complementary ways.
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1. Introduction
Computational methods that attempt to answer questions about the function and structure of
the human brain are increasingly popular. Many methods aim to describe the structural
connectivity or wiring diagram of the brain, where processing streams in the brain’s
functional regions are interconnected by white matter fiber tracts. Diffusion magnetic
resonance imaging (dMRI) [3] is the only available in-vivo mapping technique for
measuring white matter connection structure. Based on dMRI data, the fiber tracts can be
virtually reconstructed or traced throughout the brain using computational methods called
tractography (e.g. [15,43,54,85,2,86,45,6,52]). Tractography methods trace trajectories
(commonly known as “fibers”) by following probable tract orientations. Each fiber
trajectory is an estimate of part of the course of some anatomical fiber tract (mm diameter),
and has no direct correspondence to smaller features like individual axons (µ m diameter).

Today, two popular styles of analysis of dMRI tractography data generate a quantitative
descripition of the white matter connections, a “connectome.” One style, fiber clustering,
describes the connections of the white matter as clusters of fiber trajectories. The clusters
give anatomical regions in which properties of the white matter structure may be measured.
The second analysis style is parcellation-based and uses tractography to estimate the
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“structural connectivity” between pairs of parcellated cortical regions. The pairwise
connectivities are encoded in a matrix that models networks in the brain [69].

These two popular styles of analysis of dMRI tractography data both perform a
segmentation of the white matter, but with different goals. Fiber clustering aims to
reconstruct tracts corresponding to anatomical divisions of the white matter, while
parcellation-based segmentation divides tracts according to the cortical regions, or nodes,
that they connect. In this article we compare these two styles of white matter modeling from
the perspective of comparing segmentation methods for white matter tractography. We
especially focus on reviewing the fiber clustering field, as parcellation-based connectome
approaches are thoroughly covered elsewhere in this special issue.

The rest of the article is structured as follows. We first discuss the problem of white matter
segmentation. Next we describe the two main categories of parcellation-based and clustering
methods, followed by a third category that we propose: hybrid methods that combine aspects
of both categories. Finally, we compare the parcellation and clustering approaches by
discussing how their outputs correspond to the brain’s anatomical structure and function. We
conclude with an assessment of the impact of the parcellation and clustering methods,
demonstrating that these different approaches can advance the study of the brain’s
connectivity in complementary ways.

2. The white matter segmentation problem
The ultimate goal of any white matter segmentation approach is to classify or delineate
anatomical structures in an accurate and consistent way across subjects. Furthermore,
because the white matter tracts carry signals between cortical regions, it is important to
segment the white matter in a fashion that increases correspondence between structural and
functional information. Here we restrict our interest to the segmentation of the white matter
as represented by tractography, also known as the tractogram, as opposed to other
representations of the white matter such as a white matter mask. Computational analysis and
description of the brain’s structural connections is a lofty goal, and is made more difficult by
the complex structure of the white matter anatomy.

The white matter contains three types of fiber tract: commissural, association, and
projection. A commissure is a crossing site for fibers which connect similar areas [55], so
commissural tracts connect related regions of the two cerebral hemispheres, coordinating
their activity. Association fibers connect regions in the same hemisphere and come in
various sizes: the smallest fibers are completely within the cortex, the medium ones called u-
fibers or arcuate fibers connect one gyrus to the next, and the longest association bundles
connect different lobes [55]. Finally, projection fibers connect the cortex and subcortical
structures such as the thalamus, basal ganglia, and spinal cord. The connections to and from
the cerebellum are also called projection tracts [29].

Segmentation of white matter structures is further complicated because the borders of a
particular tract are often not clearly defined. For example, the structure of an association
tract can be like a superhighway with entrances and exits, rather than a discrete connection
from one point to another [55]. This is the case, for example, in the cingulum bundle, where
it is common to see tractography trajectories that exit the central portion of the tract.
Segmentation is also complicated by the fact that the tracts often cross each other. Overall,
the white matter is now thought to contain crossing fibers in up to 90% of its volume [39],
and its structure was recently described as a continuous grid that may be orthogonal [84,12].

Thus the white matter segmentation problem does not have one inherent, clear definition. Is
the goal to detect and locate the central, more clearly defined portions of each fiber tract? Or
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is the goal to label the full extent of the connections of the tract, even though they may share
space with and cross other tracts? Or is the goal to organize tracts based on the regions they
connect, without considering their central portions?

Computational methods for white matter tract segmentation, such as the parcellation and
fiber clustering methods, aim to reach one or more of these various goals. Parcellation
methods are more cortex-centric: they segment the white matter according to the locations of
fiber termini in or near cerebral cortex. Fiber clustering methods, on the other hand, are
more white-matter-centric and group tractography trajectories according to some property or
properties of the entire trajectory. Generally, clustering methods do not incorporate
anatomical or functional information at fiber termini or elsewhere, and parcellation methods
do not take into account the full fiber trajectory. Recently, hybrid methods have been
proposed for modeling structure and function that combine aspects of both approaches.

3. White matter tract segmentation methods
We review many of the methods that have been proposed for segmenting white matter
tractography. We focus on parcellation and fiber clustering, two approaches that analyze
tractography from every subject of interest. It is worth noting that several important
alternative approaches have been proposed that, instead of performing tractography in the
individual subject, segment the white matter using a tract atlas (e.g. [89,28,34,81,88]) or a
white matter skeleton [66], thus avoiding the issues of anatomic and tractographic variability
of fiber tracts.

1. Parcellation-based methods
In general, parcellation-based approaches for white matter segmentation address the
question of what regions a fiber trajectory may connect. These approaches take advantage of
additional information in the form of a cortical parcellation into regions of interest (ROIs)
that define network nodes, enabling analysis of the brain as a network [10,37,68,70]. Once
the nodes are defined, segmentation of tractography is straightforward and is based simply
on connections between ROIs. The question of how to define the nodes thus corresponds to
our fundamental question (in this article) of how to segment the white matter. The white
matter segmentation problem is crucial, as the most important methodological decision in
parcellation-based connectome research is thought to be the definition of the network nodes
[68].

Node definition has two main aspects which vary in the literature: choice of parcellation
method and choice of parcellation size scale. A cortical parcellation from Freesurfer
([22,18]; http://surfer.nmr.mgh.harvard.edu) has been used in many approaches [11,35,38].
Other approaches employed a different cortical template [27]. Several groups have instead
proposed nodes that aim to parcellate the cortex randomly or equally, for example using
each voxel in the gray/white matter boundary [4], many equal-sized patches [36], equal-
sized subdivisions of Freesurfer regions itephoney2009predicting, or random patches of
voxels [4]. Nested multiscale parcellations were recently proposed for investigating
connectivity at different size scales [11]. The ROIs from the parcellation may be limited to
the cortex (e.g. [27]) or may include many subcortical structures such as the thalamus and
brainstem (e.g. [11]). It is beyond the scope of this article to more fully review methods for
node definition, as this is covered elsewhere in the special issue. These examples
demonstrate that it is an active area of research and illustrate the importance of node
definition in the parcellation-based white matter segmentation.

The white matter segmentation induced by the parcellation is almost completely dependent
on the parcellation itself (additional non-trivial variables that would affect the segmentation
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include, for example, any dMRI distortion correction and the quality of the registration of
the parcellation to the dMRI space). In general, once the parcellation is determined, giving
ROIs that are nodes of the connectome graph, segmentation of tractography is
straightforward and is based on the intersection of the fibers with the ROIs. Fibers are
simply divided into bundles that connect each pair of ROIs. Fibers which do not intersect
ROIs are excluded from the analysis. The actual segmentation that is induced in the white
matter by the parcellation is usually not reported, in the sense that individual tracts or fiber
trajectories are not generally visualized. However the effect of the choice of tractography
algorithm on the edge weights of the connectome graph was recently studied, and the
authors proposed viewing the induced segmentation in selected regions as a “connectome
dissection quality control” [4].

2. Fiber clustering methods
Clustering approaches generally address the goal of detecting the central, anatomically
named portions of each fiber tract, without reference to cortical regions. These approaches
do not enable graphical analysis of the brain networks, but rather focus on measuring
properties of the anatomy of the fiber tracts. Here we present a brief review of the field of
fiber clustering.

1. Initial work in fiber clustering—Early work in tractography clustering had the goal
of organizing the fibers within a single subject into fiber tracts or bundles. The problem was
divided into two parts: choice of clustering method, and choice of similarity or distance
metric for comparing fibers. Many approaches were proposed.

The earliest fiber clustering approach, to our knowledge, relied on a common seeding plane
(where tractography was initialized) to give point correspondences across fibers, and
clustered fibers according to the mean distance between corresponding points [20]. In the
earliest work to analyze the full white matter, Brun et al. performed spectral embedding
based on distances between fiber endpoints, then colored fibers using their embedding
coordinates to give a soft visual perception of connectivity [9]. This style of spectral
embedding of fibers (Figure 1) was extended by [8] and [56] to perform clustering using
several other fiber distance measures.

Many different pairwise fiber distance and similarity measures were proposed and tested, for
example: measures related to the Hausdorff distance [26,16], the mean suprathreshold
distance between pairs of closest points [91], the Euclidean distance between covariance
matrices of points on each trajectory [8], and a fiber similarity measure based on the number
of times two fibers shared the same voxel [41]. Hausdorff fiber distances were extended
using a measure based on dual-rooted graphs [73]. Many authors employed some type of
chamfer distance, the mean distance between pairs of closest points on two fibers
[16,20,26,56,91,87], and it was found to be the most effective distance in a small study
where the ground truth clusters were known [53].

During this initial development period of fiber clustering, hierarchical [16,26,91] and
spectral clustering [8,41,58,56] were popular approaches for analysis of the pairwise fiber
distances or similarities. Most work during this period focused on single-subject clustering,
however one approach performed simultaneous spectral clustering across subjects with the
goal of detecting homologous structures [58], while another approach used an atlas to
initialize clusters in each subject [49].

2. Advances in fiber clustering—More recent work in tractography clustering has
focused on enabling white matter tract analysis for neuroscientific studies. This has included
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the development of algorithms for clustering data from many subjects, the creation of
atlases, and the design of new models for tractography.

Clustering large multiple subject or high resolution tractography datasets has required the
development of multi-step or multi-level methods to handle a high number of fibers. In fact,
clustering has mainly been limited to deterministic tractography, but with these methods it
may be possible to cluster a high number of streamlines from probabilistic tractography. An
early approach used random sampling of input fibers and the Nystrom method to
approximate computation of all pairwise fiber distances, performed clustering, then used the
clusters as an atlas to label the full input data [59]. Recent approaches have employed
several different strategies. [33] considered fibers at different length scales separately and
combined voxel and fiber clustering. [80] proposed modeling of bundles in voxel space to
avoid pairwise fiber distance computation. [74] repeatedly clustered subsets or partitions of
the data then analyzed the cluster assignments to create a final clustering of all data in a
scalable way. Other groups proposed clustering in individual subjects then matching clusters
across subjects [91,82].

Once the large dataset size problem was addressed in some way, fiber clustering became
successful for bootstrapping white matter atlas creation. In an early approach, spectral
clustering was extended to create an atlas in embedding space, where each fiber was
represented by a point, and data from new subjects could be segmented according to the
spectral embedding of the new fibers [59]. This approach created an atlas containing fibers
from many subjects. More recent clustering approaches have also been applied to create
“multi-atlases” that contain information from multiple subjects, thus modeling the
anatomical variability in each fiber tract (e.g. [93,33]). After clustering, several groups have
incorporated expert labels into the atlas to group clusters according to anatomical naming
conventions [59,31] and to select matching clusters across subjects [82]. This creates a
multiscale atlas, where the smallest scale is a cluster, and larger scales group clusters into
anatomical tracts. Given a tractography multi-atlas, methods have been proposed for
clustering individual subjects by using the atlas for classification or as a prior [59,32,40,31].
One approach segmented even the more difficult short association bundles [32].

Other recent fiber clustering work has focused on modeling of fiber tracts. To facilitate
quantitative analysis, an algorithm was proposed for finding pointwise correspondences
along fiber tracts during fiber clustering [48], and this approach was extended to handle
sheet-like tracts [50]. Registration and atlas creation were performed iteratively using an EM
algorithm, using labeled clusters as initial input, and incorporating outlier rejection [93]
ziyan2009consistency. Outlier rejection was also proposed in the partition-based method
[74]. Modeling of tracts in voxel space was proposed: as Gaussian processes incorporating
blurred indicator functions [82], as a distribution over voxels and orientations [80], and for
efficient clustering [33]. Some approaches have included white matter atlases that were
defined in voxel space as additional information for fiber clustering [51,61].

3. Hybrid approaches
It is certainly of interest to inquire what might be the relationship between a parcellation-
based and a clustering-based segmentation, and if these approaches may inform each other
in some useful fashion. Recently, a third category of hybrid methods has developed that
combine aspects of the parcellation and clustering approaches, in that they seek to model
cortical, anatomical, or functional information along with structural connection information.

The earliest hybrid approach for white matter segmentation used a gray matter atlas to
generate a parcellation that was used to initialize fiber clustering [87]. This style of analysis
was expanded to initialize clusters based on a white matter and gray matter parcellation,
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followed by a spectral embedding and clustering to separate nearby fibers [47]. Several
recent hybrid approaches have been proposed in the last year. An approach incorporating
anatomical ROI information clustered fibers based on an “associativity vector,” a sequence
of numbers between 0 and 1 that described whether a fiber passed through or near each ROI
[79]. Another approach employed fiber clusters to build a new type of multimodal atlas that
recorded the spatial location of the fiber tracts relative to fMRI and anatomical landmarks;
the new style of atlas was then employed to detect fiber tracts based on fMRI, in healthy
subjects and surgical patients [57]. A multimodality approach to parcellation and clustering
was proposed that used a novel fiber bundle model based on tangent vectors in order to
identify corresponding cortical landmarks across subjects [92]. These landmarks were used
to do an initial clustering of fibers [25]. The same group also proposed to cluster fibers
based on the correlation of their resting state fMRI data (a measure of functional
connectivity) epge2012group,ge2012resting.

Other work related to the hybrid category has performed gray matter segmentation using
information from tractography. The pioneering paper segmented the thalamus according to
its connectivity to the cortex [5]. More recent approaches have employed connectivity
profiles to subdivide cortical regions [1,44,72,65], to parcellate the entire cortical surface
[64], or to improve an existing parcellation [14].

Many of the described “hybrid” approaches model tractography and anatomic or functional
information in a joint fashion, often taking advantage of multimodal input data. We note that
further development of hybrid approaches to defining cortical parcellations may be of
interest in the future, as a recent study concluded that for representation of fMRI networks,
node definition based on structural atlases is “inappropriate” [67]. Furthermore we note that
these new styles of multimodal white matter segmentation algorithm are quite varied, as it is
not yet known how to best model such multimodal data. Multimodal modeling is itself an
important goal for the field of neuroimage analysis [71].

4. Parcellation versus clustering
We defined the ultimate goal of any white matter segmentation approach to be: to classify or
delineate anatomical structures in an accurate and consistent way across subjects.
Furthermore, we stated that: because the white matter tracts carry signals between cortical
regions, it is important to segment the white matter in a fashion that increases
correspondence between structural and functional information. Now it is of interest to ask,
how do the parcellation and clustering approaches compare at reaching these goals?

1. Comparison to anatomy
The anatomical accuracy of any method is limited by the accuracy of the underlying
tractography. Studies have been performed to validate anatomical structures traced by
tractography with some success, for example by comparison to tracer studies or
electrocortical stimulation [21,19,46]. The clustering approaches have been developed to
output structures consistent with expected neuroanatomy, and studies using expert raters
have shown that clustering performs comparably to manual interactive segmentation of
tractography [53,77,47,90]. On the other hand, most parcellation-based approaches ignore
the course of the segmented bundles, thus their anatomical interpretation is hard to assess.
However, one recent validation study proposed using submatrices of the connectome matrix
to dissect several anatomical tracts, including known connections and false positive
connections, giving a powerful framework for estimation of sensitivity and specificity and
showing that models incorporating multiple fiber directions give superior results [4].
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With regards to the consistency of the white matter segmentation across subjects, many
clustering methods have been shown to produce anatomically consistent multi-atlases
including data from many subjects, as well as consistent segmentations across subjects (e.g.
[59,48,93,82,33,31,40]). After performing parcellation-based segmentation the
correspondence across subjects is straightforward and consistent based on the parcellation,
and it is standard practice to average the (highly correlated) connection matrices across
subjects (e.g. [11]).

The anatomical accuracy of a segmentation method also depends on its assumptions relative
to the input tractography. As the parcellation approach uses the terminal region of each
fiber, it would be more sensitive to fiber endpoints. Because the clustering approach uses the
full length of the trajectory, it would be expected to detect the body of the tract even if the
endpoints are not accurate. In fact, clustering has been usefully employed with basic
diffusion tensor data, where many or most fiber endpoints do not reach the cortex, whereas
parcellation-based approaches require significantly higher quality data and tractographic
reconstruction.

As a concrete example, we consider the arcuate fasciculus (AF). Classically thought to
connect anterior (Broca’s) and posterior (Wernicke’s) lauguage regions, the AF is a C-
shaped structure connecting temporal, parietal, and frontal lobes. In a recent study that
employed single-tensor dMRI tractography, the failure of this C-shaped arc to reach Broca’s
anterior language area was noted, and it was proposed that the AF instead connects to motor
and premotor areas [7]. Low colocalization of the AF with posterior language regions was
also observed in a study of cortical stimulation sites for language mapping in epilepsy
patients, which demonstrated wide spatial dispersal of positive stimulation sites [19].
However, despite uncertainty and anatomical variability associated with its endpoints and
related functional regions, the overall trajectory of the arcuate has been segmented and
studied using single-tensor tractography (e.g. [13]) and fiber clustering [60,62].

We note that in our experience, the failure of tractography to connect to Broca’s area (of
interest for neuroanatomical research and surgical planning) can be ameliorated using a
higher-order model (a model derived from the diffusion data that is able to represent more
complicated fiber configurations than the single tensor). Our example results from one- and
two-tensor dMRI models in a single healthy subject, with reference to subject-specific
functional MRI (fMRI), show that fibers passing through the putative Wernicke’s area
robustly reach putative Broca’s area only with the two-tensor model (Figure 2). There seems
to be an effect of crossing motor fibers that is avoided using the two-tensor model. Other
groups have used high angular resolution models for dMRI tractography of the AF,
proposing a more nuanced view of the language pathways [23,63].

This example of one crucial tract illustrates the importance of choosing a tractography
algorithm and/or modeling method that accounts for crossing fibers [42,4], as well as the
inherent uncertainty in mapping of thebrain’s connections via neuroimaging, especially the
difficulty of correlating structure with function. Furthermore, it illustrates that methods
which segment fiber tracts based on their endpoints, where the diffusion anisotropy is
generally lowest, have the potential to be more sensitive to possible anatomical errors in
tractography. These errors would still be present in a clustering approach, but would be
expected to have lower impact on the final result. Recent work performing quality control
analysis using connectome dissection of individual anatomical structures appears to be very
valuable in examining any possible issues with the underlying tractography [4]. In fact, such
assessment of the connections in matrix form is well-suited to quantify the important
problem of false negative connections (tracts erroneously not traced) as these are effectively
invisible in a clustering approach.
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2. Comparison to function
The parcellation-based methods are designed to enable comparison of structural and
functional connectivity over the entire cortex. Comparison of the connection matrix from
dMRI to that from functional connectivity derived from resting state fMRI indicates that
structural and functional connectivity are positively correlated, but there is functional
connectivity in regions with little structural connectivity [38,17].

It is not clear that there is one best substrate or anatomical model for comparison of structure
and function. Tractography itself has been compared to function in many ways, including
somewhat successful clinical validation using electrocortical stimulation (e.g. [19,46]) and
comparison of fibers to functionally connected regions from fMRI [30]. Trajectory-based
clustering may correspond to function in the sense that, like a parcellation, if the size scale
of clustering is suitable, the function is not expected to change drastically within a cluster.
Specific fiber tracts segmented via clustering have been compared to measures of function.
For example, AF lateralization measured from fiber clustering was related to fMRI
lateralization [62], and fractional anisotropy of regions of the corpus callosum, segmented
via clustering, was inversely related to signal propagation induced by transcranial magnetic
stimulation [75].

These example studies comparing connection matrices and fiber clusters to different
measures of function illustrate that the parcellation-based and clustering methods output
complementary descriptions of the connectome, and that each model (connection matrix and
fiber clusters) can be highly useful in studies of the brain’s structure and function.

5. Conclusion
We have compared two methods for segmenting the white matter of the brain that have been
extensively developed within the past decade, the fiber clustering approach and the
parcellation-based approach. Each approach produces a compact summary of the brain’s
connection structure, in the form of a connection matrix for analysis of the brain as a
network, or as fiber clusters for analysis of the white matter anatomy. Both the parcellation
and clustering approaches have employed strategies for analysis of large amounts of data,
and for multiscale representations of white matter structure. The clustering approach
considers the full course of each fiber trajectory and is quite robust in that the cores of large
bundles can be segmented from any type of streamline tractography, enabling quantitative
analysis of white matter tracts. The parcellation-based approach requires high-quality high
angular resolution data and tractography, and enables sophisticated analyses of the entire
brain as a network and comparison to cortical functional measurements. A third category of
hybrid approaches under development includes new methods that aim to jointly model
neural connections and additional multimodal data such as fMRI.

Each approach has had a neuroscientific impact. For example, the fiber clustering approach
has been employed to study schizophrenia [76,83], aging [78], heritability of white matter
tract shapes [39], brain asymmetry [60,62], and the role of the corpus callosum in neural
signaling [75]. The graph-theoretic brain network analysis enabled by the parcellation-based
approach has inspired wide adoption of this technique, and many recent articles review its
important impact [17,10,37,68,70]. We conclude that these approaches to white matter
segmentation and analysis are complementary and powerful, and that both methods enable
the study of the connections of the human brain in health and disease.
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Highlights

We review the fiber clustering field.

We compare clustering to the parcellation-based approaches.

We show that the approaches are complementary and have different strengths.
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Figure 1.
In one popular approach to fiber clustering, a spectral embedding is used to color (left) and
to cluster fibers (right). These images are example results from a multiple subject clustering
method for atlas creation [59].
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Figure 2.
Tractography in the vicinity of language activations illustrates sensitivity to diffusion
modeling and tractography methods. Three methods were applied throughout the entire
brain of a healthy subject: single-tensor streamline (STR1 in red, left), single-tensor
unscented Kalman filter (UKF1 in yellow, middle), and two-tensor unscented Kalman filter
(UKF2 in blue, right). The UKF methods fit the model to the diffusion data while tracking,
taking advantage of prior trajectory information for tracking through areas of fiber crossing
[52]. Top images: All fibers passing through putative Wernicke’s area (defined using
subject-specific fMRI, rightmost pink blob) were selected for display. Bottom images: The
zoomed region shows the putative Broca’s area (anterior language activation) from subject-
specific fMRI (pink). In this subject, STR1 does not intersect the anterior language
activation and exactly 1 fiber trajectory from UKF1 intersects, however UKF2 traces many
fibers connecting both activations (and many other regions). The middle region of the
arcuate fasciculus (not visible at right) was relatively similar across methods, despite the
difference in anterior endpoints.
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