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Abstract
Central to the development of clinical applications of functional connectomics for neurology and
psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is
emerging as a mainstream approach for imaging-based biomarker identification, detecting
variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic
status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the
readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker
identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability,
sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts,
and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-
based biomarker identification, highlighting the potential of emerging conceptual, analytical and
cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives,
and Big Data) to address them. Additionally, we note the need to expand future efforts beyond
identification of biomarkers for disease status alone to include clinical variables related to risk,
expected treatment response and prognosis.
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Introduction
As well documented in this issue, mapping the functional connectome is now in the
foreground of neuroscience research, with a frequently enunciated goal of attaining clinical
utility. Indeed, the rate of growth for studies incorporating resting state fMRI (R-fMRI)
approaches has overtaken that of traditional task-based fMRI (Snyder and Raichle, 2012),

© 2013 Elsevier Inc. All rights reserved
*Correspondence to: F.X. Castellanos, Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, One Park
Avenue, 7th Floor, New York, NY 10016, USA. Fax: +1 646 754 5211. **Correspondence to: M.P. Milham, Center for the Developing
Brain, Child Mind Institute, 445 Park Avenue, New York, NY 10022, USA. Fax: +1 646 625 4371. Michael.Milham@childmind.org
(M.P. Milham).

Conflicts of interest
The authors declare no conflicts of interest.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 October 15.

Published in final edited form as:
Neuroimage. 2013 October 15; 80: . doi:10.1016/j.neuroimage.2013.04.083.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with an increasing focus on clinical questions (Kelly et al., 2012). Despite the multiple
advantages that attach to R-fMRI approaches vis-à-vis clinical samples (Fox and Greicius,
2010), progress towards advancing the clinical enterprise has been disappointingly slow.
This situation was recently analyzed in the wider context of clinical neuroscience (Kapur et
al., 2012) and the lessons drawn are particularly germane to R-fMRI and efforts to map the
functional connectome.

In this selective overview, we focus on R-fMRI because its relatively widespread
availability and amenability to large-scale aggregation across imaging centers and
populations (Milham, 2012) make possible attaining data sets on scales comparable to
genetic investigations (e.g., Cross-Disorder Group of the Psychiatric Genomics Consortium,
2013). We examine common elements that need to be considered to make the efforts of
mapping the functional connectome relevant to clinicians. These include validity, reliability,
sensitivity, specificity, positive and negative predictive values of potential biomarkers.
Beyond these, our rudimentary knowledge of brain disorders also requires that we adopt
intermediate strategies, as recommended by Kapur et al. (2012).

We will assess the evidence and gaps in relation to validity, reliability, sensitivity and
specificity of efforts to map the functional connectome using R-fMRI, primarily in the
context of diagnostic prediction studies. We also examine the nascent literature applying R-
fMRI methods for neurosurgical planning, as this best exemplifies person-centered clinical
applications.

Biomarkers
Central to the development of clinical applications with R-fMRI is the discovery and
validation of biomarkers. The NIH Biomarkers Definitions Working Group defined a
biomarker as “a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention” (Atkinson et al., 2001). The Working Group noted that potential
clinical applications of biomarkers include: 1) determination of the presence or absence of a
disease (i.e., diagnosis), 2) staging of a disease, 3) determination of risk prognosis, or 4)
prediction and monitoring of clinical response to an intervention.

However, enthusiasm regarding biomarker discovery has led to some misconceptions. First,
biomarkers are associative by definition, but not necessarily causal. They can directly or
indirectly index disease processes anywhere along the disease pathway. Second, they do not
necessarily convey neuroscientific meaning; brain-related biomarkers can index any single
feature or combination of features relating to brain physiology or anatomy. Thus, they may
not be interpretable based on our current understanding. As discussed in the section on
Sensitivity and specificity of R-fMRI measures in the context of predictive modeling, the
potential high-dimensionality of feature sets used for prediction, and non-linearity
commonly introduced into predictive modeling techniques mean that the biological meaning
of a biomarker may not be straightforwardly discoverable. Finally, identifying a significant
association between some feature (or combination of features) and a clinical variable does
not equal discovery of a clinically useful biomarker. As is apparent from Fig. 1, even
relationships with large effect sizes have modest predictive value when the ultimate intent is
disease prediction or clinical monitoring. Thus, the elusive goal continues to be to “carve
nature at the joints,” as famously enunciated by Thomas Huxley, so as to obtain sufficiently
large effect sizes.

Elements of clinically useful tests
Determination of clinical utility depends at a minimum on the following properties:
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■ Validity (accuracy): the extent to which a measure captures the “true” value;
generally computed by measuring agreement between two measures obtained by
maximally different methods

■ Reliability (precision): the consistency with which repeated measures assess a
given trait; computed by measuring agreement between two measures obtained
by the same or maximally similar methods

■ Sensitivity: ability to correctly identify affected individuals

■ Specificity: ability to correctly exclude unaffected individuals

While validity and reliability can be considered independently of the disease to which the
clinical tool will be applied, sensitivity and specificity are directly determined by the
intended application. There is no established cutoff for determining utility based on
sensitivity or specificity; rather, utility derives from a combination of the intent and the
implications of positive findings. For example, screening tools aim to rule in all affected
individuals (high sensitivity), at the cost of being overly inclusive (low specificity). This
bias must be considered in light of the potential harm that can result from follow-up
procedures after a positive screening result. In contrast, for diagnostic tests, greater value is
put on arriving at a correct diagnosis (high specificity) at the cost of being less inclusive
(lower sensitivity). Similar tradeoffs are encountered when clinical tools are used to assess
and monitor disease severity, as sufficient sensitivity must be achieved to detect changes in
disease severity, while maintaining adequate specificity to avoid confounding by artifactual
factors or physiologic processes.

Additional features for successfully developing a clinical tool include widespread
availability, repeatability with low risk of harm and being easily administered to both non-
clinical and clinical populations. MRI based methods are widely available and can be
repeated without known evidence of harm. In terms of ease of administration, MRI is
intermediate between electroencephalography and radioligand-based methods, which are
much less spatially localizing, on one hand, and invasive, on the other.

Validity of R-fMRI measures
A key challenge for neuroimaging methods is establishing validity or accuracy of our
measures, i.e., are we measuring what we think we are (e.g., Sechrest, 2005)? Validity can
be differentiated based on the strength of the evidence. At one end, criterion validity
compares the measure of interest to an independent measure designated as the criterion or
“gold standard” measurement. While structural imaging can reference dissection- and
histology-based findings as gold-standards, R-fMRI lacks a gold standard. In theory,
intracranial recordings should provide such an anchor, but their utility is limited by their
invasive nature. Encouragingly, initial efforts to validate R-fMRI using intracranial
approaches such as electrocorticography and cortico-cortical evoked potentials have
demonstrated good correspondence with R-fMRI results (He et al., 2008; Keller et al.,
2011). At the other extreme is face validity, in which findings are simply consistent with
“common sense” expectations. Initial R-fMRI studies only aspired to face validity, as they
were limited in focus (e.g., to the motor system). As the field has matured, more R-fMRI
construct validity, defined as ability to accurately measure the construct of interest
(Cronbach and Meehl, 1955). For example, the biological relevance of functional
connectivity has been buttressed by demonstrations that it responds to surgical intervention
(Johnston et al., 2008; Pawela et al., 2010) and varies with levels of consciousness
(Noirhomme et al., 2010). The consistency of R-fMRI findings across neural systems with
our knowledge of human brain architecture and with findings from other imaging modalities
confirms that construct validity is often being attained, as briefly reviewed below.
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Evidence supporting validity of R-fMRI measures
The popularity of R-fMRI functional connectivity has been spurred by the close
correspondence between the statistical maps resulting from R-fMRI analyses and task-based
fMRI coactivations (Biswal et al., 1995; Damoiseaux et al., 2006; Mennes et al., 2010, 2013;
Smith et al., 2009). Particularly convincing are data-driven (e.g., independent component
analysis-based) demonstrations of spatially independent intrinsic connectivity networks
corresponding to those previously established by neuropsychological and task-based
imaging studies (Beckmann et al., 2005; Damoiseaux et al., 2006; Filippini et al., 2009; Fox
et al., 2006). The conclusion that patterns of synchrony in spontaneous fluctuations of blood
oxygen level dependent (BOLD) signals delineate functional brain circuits that are at least
partially underpinned by anatomically definable tracts has been most convincingly
supported by comparisons with definitive tract-tracing methods in the non-human primate
(Kelly et al., 2010; Margulies et al., 2009). The link between BOLD spontaneous
fluctuations and the functional circuitry of the brain was further supported by prediction of
intrinsic functional connectivity from responses evoked in cortex in epilepsy patients with
intracranial electrodes (Keller et al., 2011). Additional evidence of the validity of indexing
the functional connectome on the basis of low frequency fluctuations in BOLD signal was
provided by examining the correspondence between BOLD fluctuations and
electrophysiological high gamma power signals recorded directly from the cortical surface
in presurgical epilepsy patients (Keller et al., 2013). Also suggestive of validity have been
reports of changes in the functional connectome following learning in healthy volunteers
(Albert et al., 2009; Lewis et al., 2009; Ma et al., 2011; Taubert et al., 2011).

Indirect and incomplete evidence of validity is provided by the burgeoning literature
reporting between-group differences in various aspects of the functional connectome, which
tend to focus on univariate differences (e.g., Filippi et al., 2012; Kelly et al., 2012; Sheline
and Raichle, 2013; Vissers et al., 2012; Wang et al., 2012; Xia and He, 2011; Zhang and
Raichle, 2010).

Gaps and needs in evaluating the validity of R-fMRI measures
The validity of R-fMRI was threatened by findings that artifactual signals can produce
apparent connectivity patterns that are strikingly similar to networks of interest (Birn et al.,
2006, 2008b; Lund, 2001). For example, patterns of functional connectivity derived from
respiratory signals have been shown to resemble those typically observed in the default
network (Birn et al., 2006, 2008a). Fortunately, later studies have shown that careful
correction for physiological artifacts do not markedly diminish R-fMRI findings – in fact,
they can improve them (Chang and Glover, 2009; Marx et al., 2013). Nevertheless, greater
effort needs to be given to both the development of data-driven approaches to the
identification and removal of physiological signals and usage of external information (e.g.,
physiological recordings) (Chang and Glover, 2009; Fox et al., 2009; Marx et al., 2013).

Another area that needs further exploration involves the spectral properties of the
spontaneous BOLD signal fluctuations that contribute to functional connectivity measures
(Biswal et al., 1995; Zuo et al., 2010a). A recent analysis suggests that the apparent low
frequency structure of BOLD fluctuations reflects temporal blurring of the hemodynamic
response function rather than the frequency properties of the underlying neuronal signals
(Niazy et al., 2011). These findings echo prior demonstrations of potentially useful
information residing above 0.1 Hz (Fornito et al., 2011; Salvador et al., 2008) and if
replicated and characterized more thoroughly, suggest that R-fMRI studies, which typically
low-pass filter at 0.1 Hz, are discarding valuable information.
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Additional challenges relate to selecting nodes for analyses and defining their connectivity.
Although brain areas for functional connectivity analysis have been defined using various
parcellation schemes based on anatomical features, evidence is accumulating that these are
inadequate for defining functionally meaningful areas (Craddock et al., 2012; Smith et al.,
2011). Alternatively, methods exist for defining brain areas based on homogeneity of
function (Bellec et al., 2006; Blumensath et al., 2013; Craddock et al., 2012). Issues remain
on how to optimally define borders for regions and how to best determine optimal resolution
(number of nodes and their size). Once nodes are specified, further challenges remain in
defining their connectivity. A straightforward approach is to use bivariate measures of
statistical dependency such as Pearson’s correlation. However, full correlation can include
artifactual connections, such as those dependent on a third source, which can be addressed
with partial correlation (Marrelec et al., 2006; Smith et al., 2011). Adequately estimating
statistical dependencies is error-prone because of the limited number of observations
commonly available in R-fMRI data. This can be addressed in part using regularization
methods (Ryali et al., 2012; Smith et al., 2011; Varoquaux et al., 2010). Finally, choosing
the optimal way to threshold correlations or connections is also problematic. Ideally, one
would estimate the significance of a correlation based on the number of degrees of freedom,
but since fMRI signals are temporally autocorrelated, the precise number of degrees of
freedom is unknown. Alternatively, non-parametric methods, such as wavestrapping
(Breakspear et al., 2004) or circular block bootstrap (Bellec et al., 2010), can be employed.

Finally, we note the challenges of how to conceptualize the accuracy of indirect connections
in the functional connectome, which have no underlying structural connectivity (e.g.,
Margulies et al., 2009). When benchmarked against the structural connectome, these
connections can be viewed as compromising the accuracy of R-fMRI approaches. However,
if the functional and structural connectomes are viewed as distinct entities, such connections
may be viewed as an inherent characteristic of the functional connectome (likely produced
by polysynaptic connections or subcortical contributions) and not necessarily a feature to be
removed.

Reliability of R-fMRI measures
Reliability is defined as the consistency between measurements, and is commonly
conceptualized as an index of the degree to which observed measures can be attributed to
true scores vs. measurement error. Measurement error can be systematic or random. Based
on the frame of reference for comparison between measurements, several classes of
reliability estimates are defined: interrater (i.e., between experimenters/evaluators), test–
retest reliability (between test administrations), inter-method reliability (i.e., between
methods/instruments) or internal consistency reliability (i.e., between components/portions
of a test session). For any measure, the square root of reliability sets an upper limit on the
maximum obtainable validity (Nunnally, 1978). Sensitivity and specificity are similarly
limited by reliability.

The unconstrained nature of R-fMRI raised initial concerns regarding its reliability, whether
consistency of findings over time (test–retest) or consistency across scanners (inter-method)
or sites (inter-rater). While R-fMRI studies have generally assumed signals of interest to be
stationary, recent work has identified potential changes over component time-units of a
given scan (internal consistency). As described below, efforts to date have primarily focused
on test–retest reliability across scans (short and long-term), although recent studies are
examining the consistency of findings within a given scan (Chang and Glover, 2010), as
well as across magnets and sites (Biswal et al., 2010; Fair et al., 2012; Tomasi and Volkow,
2010).
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Evidence supporting reliability of R-fMRI measures
Test–retest reliability represents the most commonly assessed form of reliability in the
imaging literature. Moderate-to-high test–retest reliability (intraclass correlation coefficients
>0.5 and occasionally reaching ～0.9) of R-fMRI metrics has been confirmed in healthy
adults by multiple groups (Braun et al., 2012; Chou et al., 2012; Faria et al., 2012; Fiecas et
al., 2013; Kristo et al., 2012; Liang et al., 2012; Mannfolk et al., 2011; Meindl et al., 2010;
Shehzad et al., 2009; Van Dijk et al., 2010; Wang et al., 2011, 2013; Zuo et al., 2010a,
2010b, 2013). Fewer studies have been conducted with older participants (Blautzik et al.,
2013; Guo et al., 2012; Song et al., 2012) and only one in children (Thomason et al., 2011),
patients with schizophrenia (Turner et al., 2012), and patients with mild cognitive
impairment (Blautzik et al., 2013). Still, the news is generally good, with acceptable to good
test–retest reliability for a wide range of measure describing the functional connectome
across intervals as long as one year (Blautzik et al., 2013; Chou et al., 2012; Shehzad et al.,
2009; Zuo et al., 2010a, 2010b, 2013). For comparison, these generally surpass the test–
retest reliabilities of diagnostic assessments of the major psychiatric disorders recently
documented in the DSM-5 Field Trials (Regier et al., 2013).

Gaps and needs in assessing the reliability of R-fMRI measures
A key limitation of the existent R-fMRI literature is the lack of rigorous examination of key
features capable of compromising reliability (e.g., eyes open or closed, time of the day).
Knowledge of such factors is crucial – both for careful design and analysis of multi-site
studies, as well for efforts to obtain diagnostic or treatment response information. Although
not commonly examined in a reliability framework, several studies have demonstrated
factors capable of introducing systematic measurement error into R-fMRI studies if not
properly controlled. In particular, scanning with eyes open vs. closed during R-fMRI scans
yields systematically different results (Ben-Simon et al., 2008; Brandt, 2006; Chen et al.,
2008; Marx et al., 2004; McAvoy et al., 2008; Uludag et al., 2004; Yan et al., 2009; Yang et
al., 2007; Zou et al., 2009). For example, spontaneous occipital fluctuations are substantially
larger during eyes closed than during fixation with eyes open (Bianciardi et al., 2009).
Factors related to scan order and session duration are also starting to receive attention. For
example, Yan et al. (2009) observed significant differences between the first and second
scans in a session. Other pragmatic factors, such as satiety status (Lohmann et al., 2010) or
morning–evening variations (Shannon et al., 2013) have received scant attention. The
limitation of these studies from the point of view of reliability is that they were conducted as
within subject-analyses (e.g., hunger vs. satiety) rather than quantifying the impact of satiety
or circadian factors on test–retest reliability. Fortunately, re-analysis of such datasets could
easily yield estimates of test–retest reliability.

In considering reliability, we note that artifactual signals can contribute to reliability just as
much as signals of interest. For example, Yan et al. found that in-scanner motion can
artifactually enhance test–retest reliability (Yan et al., 2013). Generally unexplored is the
potential impact of factors such as age or disease status on reliability – both of which can
impact between- and/or within-subject variations which directly determine reliability
estimates. Of relevance to clinical applications, low test-retest reliability is a limiting factor
for longitudinal studies of development, aging and response to intervention.

Sensitivity and specificity of R-fMRI measures in the context of predictive modeling
Sensitivity and specificity are a central focus of multivariate predictive modeling (MPM)
analyses which aim to identify biomarkers of neuropsychiatric diseases. Most of these
studies are based on diagnostic prediction of psychiatric disorders previously examined in
group comparisons using R-fMRI (e.g., Craddock et al., 2009).
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Predictive modeling is typically performed in a supervised learning setting, in which each
feature (e.g., correlations between regions) has a label which can correspond to disease
status, severity, treatment outcome, or other phenotypic variables (Hansen, 2007). Various
modeling approaches can be applied to “learn” or “train” a mathematical relationship
between the features and labels. The accuracy of the model is estimated using a procedure
called cross-validation, in which the data are iteratively split into a subset used to train the
model, and a subset used for testing. The trained model is applied to the testing data to
decode the variable of interest from the data; these predictions are compared to the true
labels for the testing data to estimate prediction accuracy (Bishop, 2006; Pereira et al.,
2009). This procedure provides a framework for estimating sensitivity and specificity, which
are key for evaluating biomarker performance (Craddock et al., 2009). Other concepts that
are important for predictive modeling are feature extraction and feature selection. Feature
extraction involves transforming the data so that they are better conditioned for modeling
(e.g., principal component analysis (PCA) dimensionality reduction) (Bishop, 2006) and
feature selection, which involves identifying the subset of features that are most important to
the model (Guyon and Elisseeff, 2003). As the advantages and disadvantages of each
analytical approach are beyond the scope of this paper, we refer elsewhere for an instructive
overview (Pereira et al., 2009).

Evidence regarding sensitivity and specificity in R-fMRI predictive modeling studies
As summarized in Table 1, the literature on predictive modeling on functional connectivity
(as of 2/1/2013) addresses schizophrenia (n = 9 studies, Bassett et al., 2012; Du et al., 2012;
Fan et al., 2011; Liu et al., 2012; Shen et al., 2010; Tang et al., 2012; Venkataraman et al.,
2010, 2012; Yu et al., 2013), attention-deficit/hyperactivity disorder (ADHD; n = 10,
Bohland et al., 2012; Cheng et al., 2012; Colby et al., 2012; Dai et al., 2012; Dey et al.,
2012; Eloyan et al., 2012; Fair et al., 2012; Sato et al., 2012; Sidhu et al., 2012; Zhu et al.,
2008), major depression (n = 3, Craddock et al., 2009; Lord et al., 2012; Zeng et al., 2012),
autism (n = 2, Anderson et al., 2011; Murdaugh et al., 2012), epilepsy (n = 1, Zhang et al.,
2012) prenatal cocaine exposure (n = 1, Deshpande et al., 2010) and multiple sclerosis (n =
1, Richiardi et al., 2012). Beyond differences in the disorders examined, studies vary in
modeling approach, feature selection or extraction algorithms as well as cross validation
employed.

The indices (i.e., features) of intrinsic functional architecture utilized also vary. Most
authors have opted for exploratory whole brain approaches using graph theory measures or
whole-brain intrinsic functional connectivity based on the application of structural or
functional parcellation atlases. Others have focused on regional measures of variance
(Cheng et al., 2012; Sato et al., 2012), and regional or global graph statistics (Bassett et al.,
2012; Cheng et al., 2012; Dai et al., 2012; Dey et al., 2012; Lord et al., 2012; Sato et al.,
2012; Zhang et al., 2012; Zhu et al., 2008). Fewer studies have focused on indices of
functional architecture emerging from models of the pathophysiology of the disorder. In one
example (Craddock et al., 2009), functional connectivity of 15 regions-of-interest emerging
from the depression literature were entered into the prediction analyses. Interestingly,
selecting brain regions on the basis of expert opinion improved overall prediction accuracy
from 53% for whole-brain unbiased exploration to 75% in a study of schizophrenia
(Venkataraman et al., 2012). Yet, none of these studies alone or in combination point toward
a common feature or feature set for each of the disorders examined. Instead, they should be
considered proofs-of-concept on which the next wave of examinations will be built.

Gaps and needs in predictive modeling with R-fMRI measures
Better datasets—Most studies (but see exceptions, e.g., Colby et al., 2012; Fair et al.,
2012; Yu et al., 2013) have focused on two-class prediction — probands with a diagnosis
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are contrasted to healthy controls. These first generation studies have been conducted with
generally small samples (mean group size is 27.6 ± 17.5) with the exception of the efforts
based on the ADHD-200 Competition (ADHD Consortium, 2012). In 2012 the ADHD-200
Consortium made available a dataset of individuals with ADHD and controls (ages 7–21
years; 285 individuals with ADHD and 491 controls in the training set; 78 individuals with
ADHD and 93 controls reserved for the holdout set) and announced a global competition to
develop novel diagnostic predictive algorithms and to identify potentially useful ADHD
biomarkers (ADHD Consortium, 2012). As a result, nine papers were published on ADHD
classification using intrinsic functional connectivity indices alone or in combination with
other modalities (Bohland et al., 2012; Chang et al., 2012; Colby et al., 2012; Dai et al.,
2012; Dey et al., 2012; Eloyan et al., 2012; Fair et al., 2012; Sato et al., 2012; Sidhu et al.,
2012). This represented a marked increase from the one prior study on ADHD diagnostic
prediction (Zhu et al., 2008). While the ADHD-200 Global Competition demonstrated the
utility of data sharing to promote discovery science, similar gaps and needs can be identified
across the entire field. The ADHD-200 Global Competition also underscored that there is
still much work to be done to achieve biomarkers based on R-fMRI metrics. For example,
the best classifier performance in the competition was achieved not by using R-fMRI
features, but by taking advantage of the male predominance and the tendency to manifest
lower IQ which characterizes ADHD (ADHD Consortium, 2012; Brown et al., 2012).

Biomarker identification and evaluation will require massive datasets that provide sufficient
variance for the disease under inquiry, while also including other disorders so that
specificity can be ascertained (Dudley and Butte, 2009). Acquiring such large samples, in a
reasonable amount of time, requires collaborative data collection efforts that span many
imaging sites. Ideally such collaboration would be coordinated, such as the Alzheimer’s
Disease Neuroimaging Initiative (Mueller et al., 2005), in which variance in experimental
procedures, such as scanning protocols, has been minimized. But such initiatives are costly.
Alternatively, efforts such as the International Neuroimaging Data-sharing Initiative (INDI)
(Mennes et al., 2012), 1000 Functional Connectomes Project (Biswal et al., 2010), and
consortia like the ADHD-200 (ADHD Consortium, 2012) and the Autism Brain Imaging
Data Exchange (ABIDE) (Di Martino et al., in press) are amassing such datasets post-hoc.
Although each of these are confounded by between site variation in experiment protocols,
they provide the best current hope for identifying biomarkers, until large coordinated
initiatives are established.

Real world assessment of biomarker properties—Overall, as shown in Table 1, the
reviewed studies yielded moderate-to-excellent accuracy, sensitivity, and specificity —
providing an optimistic outlook for functional connectivity based clinical diagnostics. But
these estimates of external validity (generalization ability) do not provide a realistic picture
of the positive (probability of having the disease given a positive test) and negative
(probability of not having the disorder given a negative test) predictive value of the
biomarker. This requires incorporating information about disorder prevalence (Grimes and
Schulz, 2002). We calculated these measures for the reviewed literature using recent
estimates of disorder prevalence from Centers for Disease Control and Prevention Mortality
and Morbidity Weekly Reports. Positive and negative prediction values (PPV and NPV,
respectively) are calculated from sensitivity (SS), specificity (SP) and prevalence (Prev)
using the following equations (Altman and Bland, 1994):

(1)
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(2)

There is a remarkable disparity between the performance estimates reported in the literature
and clinical utility, some of which lead to strikingly different conclusions about the relative
quality of modeling approaches. For example, the performance (prediction accuracy,
sensitivity, specificity) of the modeling approach employed by Tang et al. (2012) (93%,
86%, 100%, respectively), and Du et al. (2012) (93%, 93%, 93%) are very similar. The two
methods would be tied if the J-statistic (J = SS + SP − 1) (Youden, 1950) were used to
compare them, but PPV gives a drastically different picture (100% vs. 27.4% for Tang et al.
and Du et al., respectively). This disparity is due to the low population prevalence of
schizophrenia (0.6%), which results in Eq. (1) being dominated by specificity, resulting in a
72.6% change in PPV from a 7% change in specificity. A consequence of this phenomenon
is that the best performing classifiers for diagnosis are those that model healthy individuals
well, and are hence of limited utility for understanding disease processes. We note that
specificity is calculated based on the ability to differentiate the disease state from healthy
controls, and not for differentiating among diseases. Future studies will need to incorporate
larger datasets that span multiple disorders to adequately evaluate the clinical utility of
prospective biomarkers (Dudley and Butte, 2009).

The manner in which training levels are generated also impacts the clinical utility of a
learned model. A common presumption of predictive modeling for disease state
classification is that current standards of most clinical diagnoses (e.g., clinical interview and
self report assessments) are limited because they are subjective and that we need better
objective diagnostic markers (Linden, 2012). But the labels used to train classifiers are
determined using the same clinical diagnostic criteria that are acknowledged as imprecise.
As a result, the model can only be optimized to attain the same level of diagnostic
confidence as was obtained by the initial methods. Although the resulting model may
incorporate measures of physiology, it is not necessarily any more sensitive to biological
factors than other methods. One way to address this issue is to employ modeling methods
that treat the labels as noisy, or otherwise incorporate some measure of label confidence
(Lawrence and Schoelkopf, 2001).

Needs and gaps in applying predictive modeling to brain mapping—Although
prediction ability is an end in itself, we often desire to be able to map the brain regions and
interactions that are most relevant to the prediction. Machine learning algorithms are highly
optimized for obtaining accurate prediction but tend to be black boxes, from which the
information that led to the prediction is not easily extracted. Feature weights, which
determine the prediction equation, can be extracted from linear models and visualized, but
this is rarely possible for non-linear (kernel) methods (Bishop, 2006). Once extracted, there
is no clear statistical theory for thresholding the weights to determine which have
statistically significant involvement, although nonparametric methods such as bootstrapping
can be used (McIntosh and Lobaugh, 2004). Instead practitioners turn to feature selection
methods to identify the most relevant subset of features for the predictive model.

Feature selection methods can be categorized as filter methods, wrapper methods and
embedded methods, all of which impact the interpretation of the results in different ways
(Guyon and Elisseeff, 2003). Filter methods apply a (typically univariate) statistical test to
exclude features that are not statistically dependent on the training labels. When univariate
methods are used as a filter, features may be excluded that would otherwise improve
prediction if multivariate interactions were considered. Wrapper methods address this issue
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by optimizing the feature set based on prediction ability. Model training is performed
several times with a different subset of features, and the subset with the best prediction
accuracy is chosen. Embedded methods directly incorporate constraints into the modeling
algorithm to reduce the feature set. All of these methods must be run inside cross-validation
(CV) to avoid overfitting and optimistic estimates of the ability of the model to generalize
(Pereira et al., 2009). This often leads to different features being selected for each iteration
of CV, which complicates the issue of feature interpretation, e.g. the same model learned
from a different subset of observations identifies a different set of features (Craddock et al.,
2009). Additionally, the constraints used in model learning impart different properties to the
selected features. For example, LASSO (least absolute shrinkage and selection operator), a
popular embedded method, limits the number of non-zero feature weights in the model to
the number of observations. Additionally, when highly correlated features exist, LASSO
will tend to exclude a subset of them even though they may possess predictive power (Wang
et al., 2007). Thus, features identified using this method do not represent all of the features
that are involved in a disease process of interest and the exclusion of a feature does not mean
that it is not involved in the disease process.

If features are appropriately scaled prior to model training then the model weights can be
interpreted as a measure of a feature’s relative importance to the model (Guyon and
Elisseeff, 2003). Additionally, it is tempting to interpret the sign of the model weight as an
indication of the relationship between the feature and the predicted label (Mourao-Miranda
et al., 2005). For example, a positive weight might indicate that the feature is greater for the
class corresponding to positive labels, or is positively correlated with a continuous label.
However, when using multivariate methods, these relationships are much more complicated.
The sign of a feature’s weight does not necessarily match group differences identified
through univariate methods, and it may change based on the inclusion of another feature
(Craddock et al., 2009). Details of the modeling algorithm must also be considered when
interpreting model weights. In support vector classification, model weights reflect the border
between groups, whereas in Fisher’s linear discriminant analysis, the weights reflect
differences between group means (Bishop, 2006).

Multivariate regression algorithms are an alternative to classification that has been used to
predict brain maturity from resting state functional connectivity (Dosenbach et al., 2010).
Only one study to date has leveraged continuous measures of disease severity with pattern
recognition (Lynch et al., 2013). Such regression-based methods are obviously of interest for
the dimensional perspectives being increasingly embraced, as discussed below in the section
on Nosological limitations and extreme comparisons. The only impediment to the wider
application of multivariate regression approaches is the requirement for sufficiently large
data sets.

Finally, we note that although leave one out cross validation methods are typically used to
train and test predictive models, they are prone to overfitting, particularly when large
numbers of models are tested with small samples (Rao et al., 2008). To generate estimates of
prediction accuracy that can be considered for real world applications, completely
independent datasets should be used to train and test a given model, which also requires
large, well-characterized datasets.

Neurosurgical planning — an opportunity for clinical application of R-fMRI
methods

Functional brain mapping may be used both to predict the efficacy of neurosurgical
treatment and to avoid neurological deficit. Brain surgery typically involves the lesioning,
inactivation by brain stimulation or removal of a pathological region (e.g., for tumor, tremor,
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psychiatric disorders or epilepsy). Precisely identifying both the pathological regions to treat
as well as the functional regions to spare is the key to an optimal outcome (Haberg et al.,
2004). Challenges arise due to the fact that sensorimotor and language regions cannot be
identified by anatomy alone (Ojemann, 1979; Steinmetz et al., 1990) and when pathological
regions are not readily detectable with structural imaging. This is further complicated when
we consider that many neurosurgical treatments are directed towards disorders of brain
networks, as is likely the case for epilepsy (Spencer, 2002), movement disorders
(Niethammer and Eidelberg, 2012), and psychiatric disorders (Llinas et al., 1999).

Electrical stimulation mapping — a questionable gold standard
Investigators are currently focusing on improving existing methods to define “eloquent”
(sensorimotor and language) areas that must be preserved during surgical procedures using
R-fMRI methods (Martino et al., 2011; Zhang et al., 2009). The gold standard for
localization of function remains direct cortical electrical stimulation mapping (ESM) with
over 100 years of neurosurgical experience (Horsley, 1909; Pendleton et al., 2012). For this,
a patient must remain awake while having a craniotomy and direct cortical stimulation is
applied to small (1 cm) patches. This temporarily mimics the effect of ablation while
cognitive function is tested (Ojemann, 1979). Awake craniotomy can result in patient
anxiety, increased operating time and difficulty with anesthesia. Intraoperative ESM can
produce seizures and the absence of ventilator control in an awake patient can produce
hypercarbia and consequent brain swelling (Silvergeld, 2001). An alternative approach
frequently used in epilepsy surgery involves implanting invasive electrode arrays to
precisely identify the seizure onset zone as well as to perform ESM extraoperatively
(Bancaud et al., 1970; Wyler et al., 1984). However, this too carries risks, including
requiring two procedures to implant and explant electrodes, patient discomfort, brain
swelling and infection (Hamer et al., 2002). A sampling problem is inherent to ESM in that
intraoperative time limits testing to a few sites, and extraoperative mapping is limited by the
extent of the electrode array. Also, ESM cannot be used to test function of tissue within the
depths of sulci unless a time-consuming intrasulcal dissection is performed or penetrating
depth electrodes are implanted. Finally, ESM may falsely localize function by activating
distant areas through corticocortical connections, questioning its status as the gold standard
(Sinai et al., 2005).

Gaps and needs in the use of task-based fMRI for neurosurgical planning
Clearly, a noninvasive methodology to image cortical function without sampling bias that is
sensitive to activity in deeper regions and that does not disrupt function would be desirable.
While task-based fMRI has been used extensively to study normal brain function, the
clinical utility of this method has yet to be firmly established (Hill et al., 2000; Mehta and
Klein, 2010; Roux et al., 2003). A major factor that limits clinical utility involves poor task
performance in patients with cognitive impairment and neurological deficits — the very
patients who need neurosurgical intervention (Pujol et al., 1998). The low amplitude of task-
related changes in the BOLD signal requires repetition, resulting in fatigue that is further
complicated when multiple functions must be tested. Unlike most clinical studies where
inferences are made by comparing results across groups, neurosurgical planning requires a
precise within-subject spatial correspondence of intraoperative navigation with preoperative
results (Kekhia et al., 2011). Due to these issues, the correspondence of ESM results with
preoperative task-based fMRI is inconsistent (Kunii et al., 2011; Mehta and Klein, 2010;
Roux et al., 2003; Ruge et al., 1999; Rutten et al., 2002).

Readiness of R-fMRI-based neurosurgical planning
Due to minimal requirements for subject performance and the large amplitude spontaneous
fluctuations of the BOLD signal, R-fMRI may be quite useful when neurosurgical planning
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requires localization of brain function (Bottger et al., 2011; Matthews et al., 2006; Shimony
et al., 2009; Tie et al., 2013; Zhang et al., 2009). A brief (6–10 min) scan can produce
consistent maps of functional zones within single individuals reliably (Kokkonen et al.,
2009; Tie et al., 2013) and with an even higher correspondence with results of ESM than
task-based methods (Zhang et al., 2009). Resting functional connectivity may also be used
to define pathology that is elusive using standard structural imaging. Brain tumor infiltration
alters intrinsic functional connectivity — this provides information regarding the residual
presence of function and also defines the extent of brain tumor invasion that may not be
evident on structural MRI (Martino et al., 2011). In patients undergoing epilepsy surgery,
areas within the ictal onset zone show increased R-fMRI intrinsic functional connectivity
compared to data from a large (N = 300) normative sample (Stufflebeam et al., 2011).
However, others have shown seizure-generating areas that are functionally disconnected
from non-irritative brain areas both with R-fMRI (Bettus et al., 2010, 2011; Pittau et al.,
2012) and using electrocorticography (Warren et al., 2010). These findings pave the way to
use functional connectivity measures to guide the placement of invasive electrodes for
confirming the localization of epileptic foci as well as to guide the extent of resection for
both brain tumors and epileptogenic zones.

Intrinsic functional connectivity measures may also predict surgical outcome, and this may
be particularly useful in determining whether a particular individual or a disease syndrome
in general is appropriate for neurosurgical intervention. Increased contralateral connectivity
with temporal lobe epilepsy has been shown to predict failure of unilateral temporal
lobectomy (Negishi et al., 2011). Increased connectivity within the posterior cingulate has
been shown to correlate with postoperative memory decline after ipsilateral temporal lobe
resection (McCormick et al., 2013). Network measures using metabolic imaging to aid in the
medical and surgical evaluation of movement disorders is well-established (Eidelberg,
2009). Both noninvasive magnetoencephalography (Martino et al., 2011) and invasive
electrocorticography (Schevon et al., 2007; Warren et al., 2010) have demonstrated that
synchrony measures predict the extent of brain tumors and the epileptogenic zone. It
remains to be determined whether R-fMRI connectivity measures will detect intrinsic
network abnormalities better than metabolic or electrophysiological methods. However,
within-individual correspondence of electrophysiological and fMRI-based resting
connectivity measures (He et al., 2008; Keller et al., 2011, 2013) suggests that R-fMRI
should provide substantial supplemental information with superior spatial resolution and
sampling in a less invasive fashion.

In summary, R-fMRI functional connectivity holds great promise for advancing
neurosurgical treatment. Efforts are well under way to improve surgical treatment for
epilepsy, movement disorders and brain tumors. The ability to resolve intrinsic functional
connectivity networks opens a window of possibility to predict results using invasive brain
stimulation for the treatment of other neurological disorders, such as dementia and coma, as
well as a variety of psychiatric disorders.

Prerequisites for attaining clinical utility with R-fMRI measures: rethinking
practices
Significance chasing and approximate replications

A recent commentary noted that clinical neuroscience, including neuroimaging, is
characterized by “significance chasing with underpowered studies,” and “approximate
replications” (Kapur et al., 2012). Clinical neuroimaging studies routinely report statistically
significant results with 15–30 subjects per group. Though this is understandable given the
challenge and expense of recruiting clinical samples to meet typically restrictive criteria,
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such sample sizes are vastly underpowered given the high dimensionality of imaging data.
Statistical correction for multiple comparisons often proves to be insurmountable for
investigators, necessitating limiting the scope of explorations of the connectome (e.g., to
specific circuits or networks) or loosening statistical thresholds and expanding the type 1
error rate. Not surprisingly, failure to replicate is the rule (Ioannidis, 2005). As a result,
roughly similar findings (e.g., same general brain structure/region, different subdivision) are
interpreted as approximate replications, and methodological differences and sample size
limitations are cited as likely explanations for failure to truly replicate (Kapur et al., 2012).

This situation is not limited to neuroimaging — large-scale datasets are required for
attaining scientifically valid biomarkers. The molecular genetics community first confronted
this challenge at the 1996 Bermuda Summit. The resulting Bermuda Principles were adopted
to effect radical culture change through open data sharing http://www.genome.gov/
10506376. They specifically mandated: 1) release of sequence assemblies larger than 1 kb
within 24 h, 2) immediate publication of finished annotated sequences, and 3) making the
entire sequence freely available in the public domain. With a few notable exceptions
(Milham, 2012; Weiner et al., 2012), the neuroimaging community has been slow in
embracing open data sharing. Change in the cultural ethos supported by financial investment
from funding agencies is needed to implement an open science culture needed to generate
the prerequisite large-scale neuroimaging datasets.

Nosological limitations and extreme comparisons
As recently highlighted by the U.S. National Institute of Mental Health (NIMH) Research
Domain Criteria Project (RDoC) http://www.nimh.nih.gov/research-funding/rdoc/
index.shtml, the lack of specificity between findings of abnormal brain function and
categorical diagnostic classifications of psychiatric illness precludes the identification of
meaningful biomarkers to inform clinical diagnosis or prognosis, or to provide novel targets
for therapeutic interventions. The default network (DN) is a case in point, given the ever-
increasing number of diagnostic categories in which DN abnormalities are being reported
(Fox and Greicius, 2010). The DN is a distributed set of brain regions associated with
spontaneous cognition, internalized thought and emotion regulation that are consistently
deactivated during the performance of goal-driven cognitive tasks (Andrews-Hanna, 2012;
Andrews-Hanna et al., 2010; Raichle and Snyder, 2007). Dysregulation of the DN
commonly manifests as failure to deactivate during goal-directed cognitive task performance
or abnormal activation during tasks probing emotion and internal mentation, and is
associated with a broad array of psychiatric disorders (e.g., ADHD, autism, depression,
social phobia, PTSD) and their related symptoms (e.g., rumination in depression, attention
lapses in ADHD) (Zhang and Raichle, 2010). The lack of a specific association of DN
dysregulation with any one disorder prevents disorder-centric perspectives from achieving a
more comprehensive understanding of DN dysregulation as a pathophysiologic process.
Beyond implicating DN dysregulation in these disorders, current imaging methods and
diagnostic category-based frameworks are unable to provide an understanding of the
underlying mechanisms at the systems level and their behavioral associations (Castellanos
and Proal, 2012).

The NIMH has recently called for an alternative approach to understanding mental illness in
terms of its underlying pathophysiology rather than symptomatology. Specifically, NIMH
has cited the need for a neuroscience-based classification approach for parsing psychiatric
illness (“neurophenotyping”), and is encouraging the RDoC framework as a first step in its
evolution. The guiding principles of RDoC entail adopting a dimensional perspective that is
agnostic about current diagnostic categories while intentionally crossing multiple levels of
analysis (i.e., genes, molecules, cells, circuits, physiology, behavior, self-reports,
experimental paradigms).
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Importantly, the RDoC framework addresses another key limitation of the current clinical
neuroimaging literature — namely, reliance on extreme comparisons (i.e., prototypical
patients against super healthy controls) (Kapur et al., 2012). Although this strategy is
powerful for implicating abnormal brain function (e.g., DN dysregulation) or structure in
any given disorder, it does not provide a means for assessing the specificity of findings to
the disorder under inquiry (Kapur et al., 2012). Accordingly, such studies are not
informative regarding challenging differential diagnoses or for parsing the many
comorbidities often present in affected individuals (Kelly et al., 2012). Given the high
heterogeneity within categorical diagnostic groups and blurry boundaries between disorders
which are the general rule, efforts that directly address heterogeneity are expected to lead to
better identification of biomarkers. Two recent examples include Chabernaud et al. (2012),
which demonstrated the presence of dimensional brainbehavior relationships for
internalizing and externalizing symptoms extending across categorical diagnostic boundaries
(i.e., ADHD vs. typically developing children), as well as relationships that differed between
categories, and the ADHD-200 Consortium, which demonstrated distinct neural signatures
underlying ADHD subtypes (combined type, predominantly inattentive)(Fair et al., 2012).

Hypothesis-driven versus exploratory/discovery science
Hypothesis-testing has represented the predominant model in the functional neuroimaging
community since its inception — largely due to reliance on relatively small sample sizes and
focus on task-based imaging approaches. However, 21st century science is increasingly
being defined by large-scale discovery science-based efforts to understand complex systems
using massive datasets. Referred to as “Big Data” research, these efforts are yielding
unprecedented results in domains ranging from genetics (ENCODE Project Consortium,
2013) to physics (The ATLAS Collaboration, 2012), astronomy (Raddick and Szalay, 2010),
and medicine (Conger, 2012). The seeds of discovery science have particularly taken root in
the R-fMRI imaging community. Grassroots initiatives, such as the 1000 Functional
Connectomes Project (FCP) (Biswal et al., 2010), and International Neuroimaging Data-
sharing Initiative (INDI) (Mennes et al., 2012) have yielded datasets sufficient in size to
demonstrate the feasibility and utility of generating novel hypotheses via discovery science.
Efforts such as the Brain Genomics Superstruct Project http://clinicaltrials.gov/ct2/show/
NCT01552460, the Nathan Kline Institute-Rockland Sample (Nooner et al., 2012) and
Openfmri.org https://openfmri.org/ are tantalizing the community with the prospect of more
carefully coordinated, large-scale datasets, such as the Human Connectome Project (Van
Essen et al., 2012), upon which discovery can truly be carried out.

The Big Data research model represents the best hope for the R-fMRI community to deliver
on the promise of clinical applications within a reasonable time. But as noted, biomarkers
are not necessarily neuroscientifically meaningful or interpretable; rather they are indicators
of some link to a disease process. There is also tremendous value in using a priori
knowledge and targeted hypotheses to narrow the range of exploration, thereby moderating
computational complexity. In the final analysis, neither hypothesis-driven nor exploratory
research will be sufficient on its own. Exploratory results emerging from Big Data are no
less likely to be false (Ioannidis, 2005). Large datasets can yield statistically significant yet
trivial results and no result is believable until it has been replicated in independent
adequately powered samples and preferably by independent investigators.

Breaking through the age barrier
While the challenges of discovering biomarkers in adults are substantial, they pale by
comparison to the difficulty and importance of carrying out this work in a developmental
framework. About 2/3 of psychiatric disorders originate in the first two decades of life
(Kessler et al., 2005), with several manifesting symptoms within the first two to three years
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of life (e.g., autism, selective mutism, pediatric anxiety disorders, intellectual disability).
Accordingly, the psychiatric community is increasingly turning to brain imaging with hopes
of developing objective tools akin to pediatric physical growth charts, which would allow
for monitoring brain development from early infancy. Such normative assessments would
introduce the concepts of early detection, intervention and prevention to psychiatry. Sleep-
based imaging studies of intrinsic brain function are diminishing many of the challenges
associated with task-based studies of the developing brain (Dinstein et al., 2011), with data
successfully collected even in the neonatal (Gao et al., 2009) or fetal stages of life
(Thomason et al., 2013).

Importantly, the potential of sleep-based imaging studies of early developing populations
needs to be tempered with methodological and interpretational considerations. Most notably,
an emerging literature has suggested that while the wakeful and sleeping intrinsic functional
architectures are grossly similar (Fransson et al., 2009; Liu et al., 2008; Redcay et al., 2007),
dynamic modulation between states exists (e.g., the anterior–posterior connectivity of the
DN decreases markedly during deep sleep) (Boly et al., 2012; Brodbeck et al., 2012;
Horovitz et al., 2009; Samann et al., 2010; Spoormaker et al., 2012). The implications are
two-fold. First, findings (e.g., population differences and dimensional brain-behavior
relationships) obtained during sleep may not necessarily generalize to wakeful states, and
vice versa. Second, efforts focused on mapping lifespan trajectories from birth to adulthood
(i.e., longitudinal and cross-sectional studies) cannot assume that sleep-based imaging
during early development and wakeful imaging starting in childhood can be treated as
equivalent. Rigorous examination, and possibly multimodal imaging (e.g., simultaneous R-
fMRI/EEG), will be required to link trajectories obtained during sleep with those in wakeful
states. Additional tasks include the need for continued refinement of protocols to accomplish
sleep-imaging studies in toddlers (e.g., habituation to scanner sounds) (Redcay et al., 2007)
and exploration of the changing impact of physiologic parameters (see section on Gaps and
needs in evaluating the validity of R-fMRI measures) on imaging over the course of
development (e.g., pulse rates vary by age: newborn −70 to 190 beats/min, preschool-age
−80 to 120, 16 year-old − 60 to 100; respiration: newborn 30–60 breaths per minute,
preschooler − 20 to 30, 16 year-old: 12–20).

Finally, it is worth noting that while sleep-based R-fMRI imaging studies will undoubtedly
play a crucial role in mapping human brain function during early brain development, they
are unlikely to be ideal for clinical applications in the long run. The challenges of obtaining
scans without sedation, the risk of which is generally not justifiable for research in children,
and the stubbornly high costs of fMRI, limit the ability to obtain serial scans in at-risk or
affected individuals. Thus the greatest value of MRI data may be in leveraging the value of
ancillary methods that are less cumbersome or expensive, e.g., EEG, optical imaging
(Cooper et al., 2012; Mesquita et al., 2010; Niu et al., 2012; White and Culver, 2010) and
future techniques yet to come.

Conclusions
Fueled by the success of R-fMRI, functional connectomics is emerging as a mainstream tool
for brain-based biomarker identification for neurological and psychiatric illness. The present
work reviewed the extant evidence fueling the growing enthusiasm in the field, while
highlighting major gaps and needs at every stage of the scientific process (e.g., study design,
sampling, data acquisition, data analysis, interpretation) that can hamper progress and
potentially lead the field astray. Fortuitously, the recent success of R-fMRI is coinciding
with conceptual and cultural breakthroughs (e.g., the RDoC-based dimensional
reconceptualization of psychiatric illness, open science initiatives, the emergence of the Big
Data research model, and increased application of multivariate pattern analysis), that are
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providing a compass for the field. Importantly, while the bulk of the research reviewed in
the present work focused on the diagnosis of psychiatric illness, this is only a piece of the
puzzle. As recently noted by Kapur et al., the real impact of imaging-based biomarkers will
be through the identification of biological mechanisms that can lead to effective
stratification based on disease risk, expected treatment response and prognosis. These are
the ambitious goals and hopes of functional connectomics in the era of Big Data.
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Fig. 1.
Receiver operating characteristic (ROC) curves for between-group differences with a range
of large effect sizes.
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