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Abstract

That physiological oscillations of various frequencies are present in fMRI signals is the rule, not 

the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger 

causality, which allows us to more reliably and precisely estimate the Granger causality from 

experimental datasets possessing time-varying properties caused by physiological oscillations. 

Within this framework, Granger causality is redefined as a global index measuring the directed 

information flow between two time series with time-varying properties. Both theoretical analyses 

and numerical examples demonstrate that Granger causality is a monotonically increasing function 

of the temporal resolution used in the estimation. This is consistent with the general principle of 

coarse graining, which causes information loss by smoothing out very fine-scale details in time 

and space. Our results confirm that the Granger causality at the finer spatio-temporal scales 

considerably outperforms the traditional approach in terms of an improved consistency between 

two resting-state scans of the same subject. To optimally estimate the Granger causality, the 

proposed theoretical framework is implemented through a combination of several approaches, 

such as dividing the optimal time window and estimating the parameters at the fine temporal and 
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spatial scales. Taken together, our approach provides a novel and robust framework for estimating 

the Granger causality from fMRI, EEG, and other related data.

Introduction

Granger causality, a standard statistical tool for detecting the directional influence of system 

components, plays a key role in understanding systems behaviour in many different areas, 

including economics (Chen et al., 2011), climate studies (Evan et al., 2011), genetics (Zhu et 

al., 2010) and neuroscience (Ge et al., 2012; Ge et al., 2009; Guo et al., 2008; Luo et al., 

2011). The concept of Granger causality was originally proposed by Wiener in 1956 

(Wiener, 1956), and introduced into data analysis by Granger in 1969 (Granger, 1969). The 

idea can be briefly described as follows: If the historical information of time series A 

significantly improves the prediction accuracy of the future of time series B in a multivariate 

autoregressive (MVAR) model, then the Granger causality from time series A to B is 

identified. In classic Granger causality, time-invariant MVAR models are used to fit the 

experimental data of the observed time series.

However, a time-varying property is a common phenomenon in various systems. For 

example, the gene regulatory network in Saccharomyces cerevisiae was reported to evolve 

its topology (Luscombe et al., 2004) with respect to different stimuli or different life 

processes. A time-varying protein-protein interaction network for p53 was reported in 

(Tuncbag et al., 2009), and the authors subsequently suggested the use of a 4D view of a 

protein-protein interaction network, with time being the 4th dimension. In the primary visual 

cortex of anaesthetized macaque monkeys, ensembles of neurons have dynamically 

reorganized their effective connectivity moment to moment (Ohiorhenuan et al., 2010). The 

importance of a slow oscillation, such as the theta rhythm, in a neuronal system was 

analysed in (Smerieri et al., 2010). It should be pointed out that even if the time series data 

are observed to be weakly stationary (i.e., stationary in the second moment), the system 

configuration may be time-varying. A typical example of this is Xt = acos(ωt + Ut) + ξt, 

where t is time, a and ω are constants, Ut ~ U[−π, π] is a uniform distribution, and ξt is 

noise. It is thus natural to consider time-varying systems and attempt to understand their 

impact on the estimation of Granger causality.

Analysing systems with time-varying structures has recently attracted greater interest, and 

many statistical methods have been proposed. An adaptive multivariate autoregressive 

model using short sliding time windows was proposed in (Ding et al., 2000) to deal with a 

non-stationary, event-related potential (ERP) time series. Inspecting the directed 

interdependencies of electroencephalography (EEG) data, a short time window approach to 

define time-dependent Granger causality was proposed in (Hesse et al., 2003). Time-varying 

Granger causality was also modelled using Markov-switching models in (Psaradakis et al., 

2005). In these models, time-varying Granger causality was modelled using a hidden 

discrete Markov process with a finite state space. Wavelet-based time-varying Granger 

causality to establish the functional connectivity maps from fMRI data was suggested in 

(Sato et al., 2006). Considering the time-series data as independent and identically 

distributed observations, a method to infer the time-varying biological and social networks 
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was proposed in (Ahmed and Xing, 2009), but this method did not provide the directional 

information of the time-varying relationship between variables. In (Havlicek et al., 2010; 

Sommerlade et al., 2012), the dual Kalman filter was used to establish time-varying Granger 

causality between non-stationary time series. These approaches extended the classic Granger 

causality analysis to a non-stationary case through adaptive multivariate autoregressive 

modelling under the assumption that the coefficients in the time-varying MVAR model can 

be modelled by a random walk. As a response to research dealing with the time-varying 

properties in the MVAR model, and the definition of Granger causality as a function with 

respect to time, we propose the use of a robust global index for measuring the direct 

information flow between time series, despite the time-varying properties. Granger causality 

is currently a popular model for this purpose, but classic Granger causality does not consider 

the time-varying properties of the data. Moreover, it is a widely held misconception that the 

longer the time series we have, the more reliable the results that are obtainable for Granger 

causality.

The aims of this paper are twofold:

1. We answer the following question: What is the impact of the temporal scale in 

MVAR models on the resulting directional influence of Granger causality? For 

Gaussian variables, Granger causality is equivalent to the directed information 

transfer between variables. The question therefore becomes how the temporal scale 

in the MVAR model influences the estimation of the information flows between 

each variable within a system. In (Smith et al., 2011), the authors compared the 

performances of Granger causality analyses with different time lengths, and found 

that the longer the time series was, the better the performance. In their simulations, 

however, the underlying circuit stayed the same. In this paper, we investigate the 

effects of time-varying underlying circuits on a Granger causality analysis both 

mathematically and empirically.

2. The second aim of this paper is to provide an efficient algorithm for estimating the 

global Granger causality index between two time series without any prior 

knowledge of the TV-MVAR model. It should be emphasised that there is a trade-

off between the fineness of the change-point set and the accuracy of the estimation 

of the coefficients at each time window. Time windows that are too short might 

prevent a reliable estimation of the parameters. Time windows that are too long, on 

the other hand, might increase the probability of an incorrect inference of Granger 

causality. Based on Bayesian information criterion (BIC) and a change-point 

searching algorithm, we propose a method for determining the optimal size of a 

change-point set and the optimal change-points as a means to achieve the optimal 

balance between the fineness of the Granger causality and the accuracy of the 

model estimation. The theoretical results and algorithms were verified by 

estimating the average and cumulative Granger causalities on the simulated and 

experimental data, both of which confirmed that a finer change-point set provides a 

larger overall causality measurement.

To achieve the above goals, the effect of a time-varying causal structure on a Granger 

causality analysis was investigated mathematically, where the following notations were 
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used. Consider two time series x and y over time window [0,T]. The change-point set S1 = 

{0 = t0 < t1 < ⋯ < tm = T} defines the time-varying property of the MVAR model as 

follows: at each time window [tk−1,tk), the MVAR model is static, i.e., the interacting 

coefficients between variables are constants; in different time windows, however, these may 

differ. In this case, it becomes a time-varying MVAR (TV-MVAR) model. There are two 

alternatives for estimating the Granger causality from y to x in the TV-MVAR model with 

respect to the change-point set, S1. One is to estimate the local Granger causality at each 

time window [tk−1,tk) and then average them, which is called the average Granger causality, 

. The other is to average the variances of the residual errors locally at each small time 

window so that the cumulative Granger causality, , can be established by comparing 

the estimated variances of the residual errors of x by considering whether y can predict the 

future of x. The TV-MVAR model depends on the change-point set that divides the whole 

duration into finer time windows, as shown in Figure 1. We therefore need to address the 

relationship between the causality definition and the fineness of the change-point set in the 

TV-MVAR model.

We proved that both cumulative and average Granger causalities are generally 

monotonically increasing functions with respect to the fineness of the change-point set (see 

Figure 1 for a summary, and Appendices A, B, and C for theory proofs). That is, the finer 

the TV-MVAR model is, the larger the change-point set is, and the larger the (average and 

cumulative) Granger causalities that can be estimated. In particular, as shown in Theorems 

B1 and B4, under certain assumptions, the estimation of the coefficients in the coarser 

MVAR model is the (weighted) average among those of the finer model. Hence, if the “true” 

time-varying coefficients are nonzero but fluctuate at around zero, the “averaging” 

estimation may reduce the estimated Granger causality to zero and give an incorrect 

inference of Granger causality.

Empirically, we demonstrated the robustness of the proposed spatio-temporal Granger 

causality analysis by computing the Pearson’s correlation coefficients between the Granger 

causality patterns using two scanning sessions on the same subject from the enhanced 

Nathan Kline Institute-Rockland Sample (see Materials and Methods). By considering the 

spatio-temporal details of the fMRI data for the TV-MVAR model, Granger causality has 

much greater consistency across two scanning sessions for the same subject. In particular, 

the correlation coefficient greatly increases from 0.3588 using classic Granger causality with 

a static MVAR model and region-wise estimation, to 0.6059 through our approach, which 

includes the optimal TV-MVAR model and voxel-wise estimation.

The theoretical results have also been confirmed using two experimental fMRI datasets: a 

resting-state dataset and a task-associated dataset. For the resting-state fMRI dataset, the 

classic Granger causality analysis failed to identify any significant causal connectivity to the 

precuneus. In comparison, at a finer-scale for the TV-MVAR model, our Granger causality 

approaches indicate that the precuneus serves as a hub for information transfer in the brain. 

Information flows between the precuneus and visual regions were revealed, which is 

consistent with an experimental setting in which the data were collected when the subjects’ 

eyes were open. For the task-associated fMRI dataset, the estimation of the average Granger 
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causality for the attention blocks was found to be significantly larger than that estimated 

through classic Granger causality based on a static MVAR model for the whole time series 

for all twelve subjects used in the experiment.

Materials and Methods

Generation of Time Series with Time-varying Causal Structure

1) Generation of Time Series with Continuous Time-varying Causal Structure
—Consider two time series and the effective interdependencies between them, as described 

using the TV-MVAR model with a constant noise level. The time series were generated 

through the following toy model:

(1)

where

We generated this toy model 100 times by randomly setting the parameters u1 and u2 

according to a uniform distribution at an interval of [0,1]. For each model, the time series 

observations were generated for 1200 time steps. The parameters A12 and A21 correspond to 

the causal influences in the Y→X and X→Y directions, respectively. A significant nonzero 

causal coefficient indicates the causal influence in the corresponding direction. In this 

simulation, we specified a change in the causal coefficient from positive to negative.

2) Generation of Time Series with Stepwise Time-varying Causal Structure—
Consider a TV-MVAR model of two components with only one directional causal influence, 

X→Y; namely, setting the corresponding coefficient A21 to have nonzero values. This model 

was derived from Eq. (1) with the step-wise coefficients as follows:

(2)

where t1 = 215, t2 = 415, and t3 = 715. We generated two time series with 1200 time points 

and repeated this generation 100 times by randomly setting the parameter u1 from a uniform 

distribution at an interval of [0.5,1.5]. In this simulation, the causal coefficient A12 for the 

Y→X direction was set to zero, and thus there was no causal influence from Y to X, and the 

causal coefficient A21 varied across different time windows.

3) Generation of BOLD Signal with Time-varying Effective Connection—Herein, 

we simulated the fMRI time series of two brain regions, X and Y, for 400 s. By introducing a 

time-varying causal structure, the simulation scheme for the fMRI data in (Schippers et al., 
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2011) was adopted. First, a neuronal interaction (local field potential, or LFP) was simulated 

using a bi-dimensional first-order TV-MVAR model with a time step of 10 ms:

(3)

where

The model had an causal influence from X to Y of a predetermined time-varying strength, 

A21, with no influence from Y to X.

Second, both signals were convolved with the default hemodynamic response models from 

the SPM5 toolbox, and Gaussian noises were added as physiological noise in the BOLD 

response. The HRF was specified through seven model parameters: delay of response 

relative to onset (in seconds), delay of undershoot relative to onset (in seconds), dispersion 

of response, dispersion of undershoot, ratio of response to undershoot, onset (in seconds), 

and length of kernel. To investigate the effect of hemodynamic response variability on the 

Granger causality analysis, we systematically varied the delay of response ranging from 0 to 

5 s. To mimic the neuronal delay between the cause-region to the effect-region, time series Y 

was shifted by 50 ms against X before the convolution of the HRF (Deshpande et al., 2010; 

Schippers et al., 2011; Smith et al., 2012).

Third, BOLD signals were generated by down-sampling the convolved time series by 2 Hz 

as a high sampling rate, and 1 Hz as a low sampling rate (resembling an acquisition rate 

(TR) of an MR-scanner), and Gaussian noise was again added as acquisition noise. After 

each step, the signals were normalized to zero means and unit variances. The total amount of 

noise added was 20%.

Experimental fMRI Datasets

1) Multiband Imaging Test-Retest Pilot Dataset—This set of fMRI data comes from 

the enhanced Nathan Kline Institute-Rockland Sample. The whole dataset consists of 

resting-state fMRI recordings from two sessions for seventeen subjects (healthy, aged 19–

57, thirteen males and four females).

The fMRI data were collected using 3 Tesla, and forty slices were acquired for 900 volumes. 

Multiband echo planar imaging approaches enable the acquisition of fMRI data with 

unprecedented sampling rates (TR = 0.645 s) for full-brain coverage through an acquisition 

of multiple slices simultaneously at the same time. For more detailed information about this 

data set, please see the website at http://fcon_1000.projects.nitrc.org/indi/pro/

eNKI_RS_TRT/FrontPage.html.

Data pre-processing was performed using DPARSF software (Yan and Zang, 2010). The 

first fifty volumes were discarded to allow for scanner stabilisation. Since multiple slices 
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were excited simultaneously, a simple slice time correction might not work well. Given its 

short effective TR, such a correction is probably less important, and is therefore omitted in 

our data pre-processing. After the realignment for head-motion correction, the standard 

Montreal Neurological Institute (MNI) template provided by SPM2 was used for spatial 

normalization with a re-sampling voxel size of 3×3×3 mm3. After smoothing (FWHM = 8 

mm), the imaging data were temporally filtered (band pass, 0.01–0.08 Hz) to remove the 

effects of a very low-frequency drift and high-frequency noises (e.g., respiratory and cardiac 

rhythms). An automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) 

was used to parcellate the brain into ninety regions of interest (ROIs). To verify the principle 

of voxel-level Granger causality, the brain was also divided into 1024 ROIs with around 45 

voxels each according to a high-resolution brain atlas provided by (Zalesky et al., 2010).

2) Resting-State fMRI Dataset—The resting-state fMRI dataset is a subset of a large 

database, called the 1000 Functional Connectomes Project (Biswal et al., 2010), which is 

freely accessible at www.nitrc.org/projects/fcon_1000/. The dataset provided by Buckner’s 

group at Cambridge, USA, was used for the present study. This dataset consists of 198 

healthy subjects (75 males and 123 females, aged 18–30). The fMRI data (TR = 3 s) were 

collected using 3 Tesla, and 47 slices were acquired for 119 volumes. Further details about 

this dataset can be found at the website provided above.

The first five volumes were discarded to allow for scanner stabilization. DPARSF (Yan and 

Zang, 2010), which is based on SPM8, was used for pre-processing the fMRI data, including 

slice-timing correction, motion correction, co-registration, grey/white matter segmentation, 

and spatial normalization into a Montreal Neurological Institute (MNI) space, then and re-

sampled to 3×3×3 mm3. The waveform of each voxel was detrended and passed through a 

band-pass filter of 0.01 to 0.08 Hz. The data were smoothed spatially (FWHM = 8 mm). As 

a result, time series data with 114 time points from ninety brain regions (AAL-atlas) for 198 

subjects were achieved.

3) fMRI Dataset for Attention Task—The dataset of an fMRI time series for an 

attention-task experiment was provided by the Ding Group at the University of Florida, 

USA (Wen et al., 2012), which consisted of twelve subjects who successfully completed the 

task (eight females and four males, aged 20–28). This experiment adopted a mixed blocked/

event-related design. There were twelve attention blocks and twelve passive-view blocks, 

along with some fixation intervals. In each attention block, the subjects performed a trial-by-

trail cued visual spatial-attention task. The fMRI data were collected using 3 Tesla, and 33 

slices were acquired for 180 volumes for each of the six runs with TR 2s. The dataset was 

pre-processed by slice timing, motion correction, co-registration to an individual anatomical 

image, and normalization to the Montreal Neurological Institute (MNI) template, and then 

resampled to 3×3×3 mm3, using DPARSF. The hemodynamic response function (HRF) was 

convolved by the blocked rectangular function corresponding to the given experimental 

condition during the GLM analysis. For more detailed information about this dataset, please 

see (Wen et al., 2012).

For each attention block, there were thirty data points, lasting for 60 s. The task average 

response was removed from each attention block by subtracting the mean of the time series 
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data across twelve attention blocks. The first five data points (10 s) were discarded to 

eliminate the transient effects. The temporal mean was removed for each attention block to 

meet the zero mean requirement of the Granger causality analysis. Therefore, we had 300 

data points for the twelve attention blocks. Herein, the causality between the right intra-

parietal sulcus (rIPS) and right temporal-parietal junction (rTPJ) was studied. Time series of 

nineteen and seventeen voxels were used for rIPS and rTPJ, respectively (Wen et al., 2012).

Granger Causality in TV-MVAR

For two time series xt and yt, with t = 1,2,⋯, T, define a change-point set as an increasing 

integer series of 1 = t0 < t1 < ⋯ < tm−1 < tm = T + 1, denoted by S1. Consider the following 

piece-wise constant linear system to describe the directional influence from yt to xt :

(4)

where  and  are the estimated time-varying coefficients from S1. In addition, 

when ignoring the directed causality from yt to xt, Eq. (4) becomes

(5)

where  is the estimated time-varying coefficient in this model. At the kth time window, 

the Granger causality can be defined locally as

The average Granger causality with respect to S1 can be estimated through the average of the 

Granger causalities at the time windows and weighted by the corresponding window 

lengths:

(6)

If the length of each time window is uniform, it becomes

An alternative way to compute Granger causality is cumulating the residual square errors 

across all time windows. This is called cumulative Granger causality with respect to S1, and 

can be estimated by
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(7)

In particular, if random variable yt is stochastically orthogonal to xt at each time, i.e., E [(xt − 

Ext) (yt − Eyt)] = 0 for all t, the cumulative Granger causality can be estimated as

For details on the derivative of the Granger causality expressions, please see Appendix A. 

Herein, only a first-order regression model with one-dimensional variables is considered, but 

the approach and resulting work on a general high-order and high dimensional TV-MVAR 

model will be discussed in a future paper.

Since  obeys an F-distribution after proper scaling in each time window, the average 

Granger causality defined above can be considered in the null hypothesis as the summation 

of m independent F-distributed random variables whose degrees-of-freedom can be given 

according to the number of free parameters and the length of each time window, particularly 

1 and tk − tk−1 − 3. Therefore, the p-value for the significance of average Granger causality 

can be calculated. Similarly, cumulative Granger causality as defined above also obeys an F-

distribution with degrees-of-freedom of m and T-2m−1.

Optimal Time Window Division

In practice, the true time-varying structure of the data is unknown. In particular, we do not 

know how many change-points there are, or the length of each time window. Therefore, an 

algorithm for time-window division is necessary. Equivalently, we are searching for the 

optimal change-point set. The optimal time-window division indicates a trade-off between 

the satisfactory accuracy of the model parameter estimation and the lossless causal 

information established by the model. Mathematically, consider the following step-wise TV-

MVAR model

(8)

where I[tk−1,tk] is the characteristic function of time window [tk−1,tk), n(t) is a Gaussian white 

noise term,  represents a (constant) coefficient in the kth interval, and
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is the change-point set. Given the change-points, the model can be fit into each time window 

as , and the variance of the residual errors can be estimated for each time window, denoted 

by Σ̂
k. Therefore, the accuracy of the model can be defined based on the weighted average 

of the variances of the residuals in each time window as follows:

(9)

On the other hand, the information captured by this model can be measured based on the 

average Granger causality in all directions defined in the previous section, as noted by

(10)

To minimize the prediction error and maximize the detected causality information, the 

optimal window division can be derived by optimising the following cost function with the 

trade-off parameter λ

(11)

Given the trade-off parameter λ0 and lower bound l0 of the lengths of the divided time 

windows, the optimal change-points SOpt(m, λ0) can be established by solving the following 

constrained optimization problem

(12)

A constrained condition is required for a reliable estimation of the model coefficients in Eq. 

(8) at each divided time window. This constrained optimization problem can be solved 

based on the optimization functions provided in Matlab. In this paper, we used the fmincon 

function for a nonlinear constrained optimization problem.

To determine the parameter, we search for the optimal change-point set SOpt(m, λ) for 

different λ ∈ [λ1, λ2], and then calculate the Bayesian information criterion (BIC) for this 

change-point set as follows:

(13)

where LLFk stands for the log likelihood function established for the kth window. The first 

step is searching for the optimal change-point set with a series of given time windows, m ∈ 

[0,1,2,⋯, m0], and trade-off parameter, λ ∈ [λ1, λ2]. The second step is to compare the BIC 

values established by different change-point sets generated from the first step, and the one 

with the smallest BIC is then selected to define the optimal time window. Therefore, using 
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the fixed upper bound of the number of time windows, denoted by m0, the algorithm for the 

optimal time window division can be described as follows:

      Algorithm for optimal time window division

For λ = from λ1 to λ2

  For m = from 1 to m0

    Establish Sopt (m, λ) by solving the constrained optimization problem (12)

  End

  Calculate the BIC for each Sopt (m, λ) by (13)

End

Find the optimal Sopt (mopt, λopt) with the smallest BIC

Spatio-temporal Granger Causality

Furthermore, both spatial and temporal fineness are taken into the MVAR model. The idea 

of a spatial finer-scale for Granger causality estimation is similar to that of the time-varying 

Granger causality mentioned above. Consider a dataset of fMRI BOLD signals from m 

voxels in ROI A, and n voxels in ROI B. For each pair of voxels in these two ROIs, the 

Granger causality between the voxel pair is calculated for each subject, denoted by Fij, from 

the ith voxel in ROI A to the jth voxel in ROI B; the global Granger causality from ROI A to 

ROI B, namely, voxel-level Granger causality, is then defined as follows:

Furthermore, the temporal and the spatially fine-scales are combined together to give the 

optimal estimation of Granger causality by looking into the temporal details for each pair of 

voxels, which is called spatio-temporal Granger causality (stGC):

with e = a or c for average and cumulative (time-varying) Granger causalities, respectively. 

In comparison, classic Granger causality usually estimates the causality between two ROIs 

by averaging the time series data among all voxels for each ROI with a static MVAR model.

A Matlab package for the estimation of the spatio-temporal GC is available at http://

www.dcs.warwick.ac.uk/~feng/causality.html.

Results

Monotonicity of Granger Causality with Respect to Change-point Set

To demonstrate the monotonicity of the proposed Granger causality measurements, the 

proposed algorithms were applied to a simulation dataset with a continuous time-varying 
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causal structure. We used three different time-window lengths of 50, 200, and 400, and the 

corresponding change-point sets for these time windows denoted as Si, i = 1,2,3, 

respectively. Theorems B1 and B4 in Appendix B show that  and 

 hold if the parameters are precisely estimated since S1 ⊃ S2 ⊃ S3. 

To demonstrate this, 95% confidence intervals of 

and  were established for the causality results in 100 runs of the 

simulated toy model. Similarly, , i = 1,2,3 were defined, and their confidence intervals 

established. From Table 1, we can see that the estimated Granger causality for the same pair 

of time series decreases with respect to the length of the time windows. That is, the more 

change-points that are used in the TV-MVAR model, i.e., the finer the model is, the larger 

the Granger causality that can be estimated.

To show the accuracies of the model estimation, we compared the differences in the 

variances of the model residual errors given by different algorithms, including the static 

MVAR model by the whole time series, denoted by Err[1,1200], and the average variances of 

the model residual errors for the TV-MVAR model over the time windows, , as 

 for i =1,2,3. As shown in Figure 2A, the TV-MVAR models with 

different time-window lengths all have smaller variances than the static MVAR model fit 

onto the whole time series for all 100 toy models, i.e., Di > 0 holds for the 100 toy model 

runs. Among the models with different time window sets, the one with the smallest time-

window length, which had S1 as the change-point set, provided the most accurate estimation 

of the simulated time series.

Significance of Granger Causality

To compare the significance of the results detected by our time-varying Granger causality 

approach with those detected by classic Granger causality, we applied these algorithms on 

the simulation dataset with a stepwise causal structure. When the p-value was lower than the 

threshold, a significant directional influence was detected. In this simulation setup, a causal 

influence existed from X to Y, but not from Y to X. The usual definitions of the truth positive 

(TP), false positive (FP), truth negative (TN) and false negative (FN) were used. In addition, 

the maximum number of time windows was set to m0 = 5, and the trade-off parameter 

ranged from λ1 = 0.02 to λ2 = 1with a step size of 0.02. Five types of Granger causalities, 

classic Granger causality (classic GC), average Granger causality (average GC), cumulative 

Granger causality (cumulative GC), average Granger causality with optimally divided time 

windows (Opt average GC), and cumulative Granger causality with optimally divided time 

windows (Opt cumulative GC) were calculated based on the simulation data using a 

significance test.

As shown in Table 2, the classic GC failed to identify any causal influence between these 

two time series. Cumulative GC and average GC provided better results in terms of higher 

TP and TN rates than classic GC. Compared to other algorithms, average GC and 

cumulative GC with optimally time window division provided the best performances in 

terms of the TP and TN rates among all of the causalities. In particular, as shown in 

Theorems B1 and B4, under our assumption, in the coarser MVAR model, the estimation of 
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the coefficients is the (weighted) average of those of the finer model. As an intuitive 

interpretation, if the “true” time-varying coefficients are nonzero but have fluctuating signs, 

for example, they equal 1 at the first time interval and −1 at the last time interval with same 

length, the “averaging” estimation becomes zero owing to the neutralisation, even if the 

coefficient parameters are precisely estimated. Thus, in the static MVAR model, we will 

incorrectly infer that no Granger causality exists. A similar argument holds for a comparison 

of the finer and coarser MVAR models. Therefore, the coarseness of the TV-MVAR model 

might increase the probability of an incorrect inference of Granger causality.

To demonstrate the performance of the optimal GC estimations using time windows with 

equal lengths, we compared the accuracies of the results given by the optimal GCs with 

different time-window lengths. We found that better performances were achieved if their 

time-window division was similar to the real structure of the simulation data. Since the real 

change-points of this simulation were 215, 415, and 715, both algorithms presented better 

results when the time-window lengths were 100 or 300. In comparison, the performances 

worsened when the time-window lengths were either longer or shorter.

To test whether the larger magnitude of Granger causality estimated by the optimal GCs 

increases the false positive (FP) rate, Table 2 also lists the FP rates given by different GCs 

with different window lengths. We found that the FP rates of both cumulative GC and 

average GC with different window lengths were zero when the threshold of the significance 

was 10−12 (for the F statistics). Therefore, the FP rates of these two algorithms did not 

increase with respect to the GC values, as the lengths of the time windows shortened. Since 

the degrees-of-freedom of the F statistics depended on the number of change-points, the GC 

value increased with shorter time windows. However, since the corresponding F distribution 

also changed with the number of change-points, the FP rates might not have increased.

To assess the rationality of the BIC-based optimal time-window dividing algorithm, the BIC 

values were also reported and compared among the simulations. As shown in Table 2, good 

BIC values were achieved when the change-point set for the average and cumulative GCs 

was similar to the true structure of the simulated data. This suggests that the BIC values can 

work for choosing change-points to achieve the best performance. We chose the change-

point set optimally instead of using time windows with equal length. Table 2 also shows 

that, compared to algorithms with an equal time window division, algorithms with optimally 

change-point searching provide better TP rates, but slightly worse FP rates, namely, 3% for 

the opt cumulative GC, and 2% for the opt average GC, in the simulation data. Figure 2B 

shows that the real change-points for 100 simulations using the proposed BIC-based optimal 

algorithm were successfully identified for most of the simulations.

To compare the computational complexities among the different algorithms, we reported the 

running time of each algorithm on the simulated dataset. As listed in Table 3, because the 

method for optimally dividing the time windows is very time-consuming, the greater the 

number of time windows we used, the greater the amount of time that was required to run 

the algorithm. In practice, since the underlying time-varying structure of the data is 

unknown, we can either run the optimal time-window dividing algorithm, or try different 

time-window lengths and select the optimal length through a comparison of their BICs.
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Effect of Regional Variation in HRF on Granger Causality Analysis

The effects of the HRF delay of the response on the Granger causality analysis were 

simulated by setting the delay of the response relative to the onset of the HRF for brain 

region X as the parameter for brain region Y plus a delay ranging from 0 to 3 s. Therefore, 

the underlying causal influence existed from X to Y, but the HRF of cause-region X was 

slower than that of effect-region Y. We refer to this delay as the opposite HRF delay. The 

longer this delay is, the more difficult it is for a Granger causality analysis to detect the 

causal influence correctly. Setting the threshold of the p-value for a significant causality as 

10−6, Figure 2C plots the TP and FP rates of different algorithms as the opposite HRF delay 

varies from 0 to 3 s. Opt average GC and opt cumulative GC performed similarly during the 

simulation, and therefore, only the results for opt average GC are shown. We can see that the 

optimal Granger causality performed well as long as the opposite HRF delay was less than 

100 ms. When the opposite HRF delay was greater than 100 ms, the FP rate increased and 

the TP rate dropped rapidly. The TP rate increased again when the opposite HRF delay 

exceeded 0.4 s because an opposite HRF delay was generated by changing the shape of the 

HRF (Deshpande et al., 2010). We also carried out our simulations by changing the onset 

time of the HRF instead of changing its shape, and obtained similar results (data not shown).

To test whether the opposite delay in the HRF can be corrected for the optimal GC 

algorithms, we realigned the simulated BOLD signal according to the HRF delay between 

two regions by assuming that the regional HRF delay, especially the relative HRF delay 

between these two regions, can be accurately estimated. For example, when the HRF of 

region Y was estimated to be 3 s faster than that of region X, we realigned the time series of 

region X against that of region Y by discarding the first three and last three data points of the 

time series of regions X and Y, respectively, at a sampling rate of 1 Hz. The regional HRF 

delay was simulated by setting different parameters of the response relative to the onset in 

the canonical HRF in the SPM with the default settings, and the opposite HRF delay was 

varied from 2 to 5 s. Figure 3A shows the results given by the GC algorithm with BOLD 

signal realignment, when the sampling rate of the BOLD signal was 1 Hz. Setting a 

threshold of 10−9 for the p-value, classical GC failed to detect any causality in this case, but 

the proposed GC algorithms achieved much better TP and FP rates. However, the BOLD 

realignment worked for those integer HRF delays matching the sampling rate, but not for 

those delays that are not the integer times of the sampling period, which herein is 2.5, 3.5, 

and 4.5 s. Therefore, we tried to increase the sampling rate to 2 Hz, and simulated the BOLD 

signal again. In Figure 3B, without the BOLD realignment, the proposed GC algorithms 

failed to reliably estimate the causality because both the TP and FP rates are high. The 

BOLD realignment improved the performances of the proposed GC algorithms with a 100% 

TP rate and lower than 20% FP rate, as shown in Figure 3C. We can barely see the results 

for classic GC in Figure 3, since classic GC failed to detect any significant causal causality 

in all cases.

As demonstrated above, the proposed optimal GC algorithms may detect the right direction, 

the reversed direction, or the bi-direction of the causal influence between two regions as 

significant. However, what if there is no causal influence between the two regions? To test 

whether the down sampling and HRF convolution introduce false causal connections 
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between pairs of regions without any causal influence in neuronal activities, the proposed 

algorithms were applied to other simulation data by setting the causal coefficient, A21, in 

model (3) to zero, the neuronal delay to 50 ms, and the opposite HRF delay to 3 s. Setting 

the threshold of the p-value for significant causality as 10−6, the false positive rates for opt 

average GC and opt cumulative GC were 0.24% and 0.12%, respectively.

Performance Comparison of Simulated fMRI Dataset

First, classic Granger causality (classic GC), optimal GC approaches (opt average GC and 

opt cumulative GC), and dual Kalman filter cumulative GC (Dkf cumulative GC), which is 

defined in Appendix D, were applied to the simulated fMRI dataset described in the 

Materials and Methods section for a performance comparison. All results were obtained by 

repeating the simulation 100 times. Neither the neuronal delay nor the negative HRF delay 

was included in this simulation, as none of the lag-based methods work well in this case 

(Smith et al., 2012); however, such a performance comparison is informative when the lag-

based method is applicable (Friston et al., 2012; Wen et al., 2012). When coefficient matrix 

A was time-invariant, all approaches could detect the causality correctly, as expected. When 

the interaction coefficients were time-varying, in particular, with positive and negative 

values alternatively in different time intervals, as defined in Eq. (3), the optimal GC 

approaches were much more powerful than both classic GC and dual Kalman filter 

cumulative GC. To obtain a more global view of the results, the threshold of the p-values 

was varied from 0.05 to 0.001. We calculated the TP and FP rates of these three approaches, 

i.e., opt average GC, opt cumulative GC, and Dkf cumulative GC, accordingly, by repeating 

the simulation 100 times. As shown in Figure 2D, the proposed optimal GC approaches 

outperformed dual Kalman filter cumulative GC.

Increased Test-retest Reliability Obtained from Multiband Resting-State Dataset

Herein, the reliability of Granger causality can be measured based on the correlation 

between the results inferred for two series of scans of the same subjects. Granger causality 

was estimated between all directional pairs of brain regions, and the Pearson’s correlation 

coefficients were then calculated between these causality measurements for the two series 

scans. For each scan in the multiband test-retest pilot dataset, the Granger causality for each 

direction was averaged over seventeen subjects to provide the group Granger causality. The 

correlations of the group Granger causality between two series of scans demonstrate the 

reliability of Granger causality. Larger correlations might result in a higher reliability. As 

shown in Figure 4, the correlations in the group Granger causality between two series of 

scans increased monotonically with respect to the number of change-points. A significant 

correlation (r = 0.4751, p < 0.001) in the group Granger causality between two series of 

scans was observed when the Granger causality was calculated by employing nineteen time 

windows, while the correlation was around 0.3105 in the classical case.

To further demonstrate the effect of the spatial fine-scale details on the Granger causal 

inference, we compared the correlations established by voxel-level Granger causality with 

those by classic Granger causality in 100 randomly selected regions from 1024 ROIs by 

averaging the time series in the same ROI. By calculating the voxel-level spatial Granger 

causality instead of the classic Granger causality, the correlation increased from 0.3588 to 
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0.5125. Furthermore, the combined effects of the temporal and spatial fine-scale details were 

demonstrated on the test-retest reliability of the Granger causality for 100 regions randomly 

selected from 1024 ROIs. In Figure 5, by calculating the spatio-temporal Granger causalities 

(stGC), the correlation (r = 0.6059, p < 0.001) between the two scans was significantly 

improved to 0.6059.

Validating the Results from the Resting-State fMRI Dataset

1) Monotonicity and significance of Granger causality—In this example, the 

Granger causality was estimated using time windows with different lengths. In each time 

series, the first eighty time points were divided into two sets of time windows, including 

eight time windows with ten time points per window, i.e., change-point set S1 = {1,10, 20, 

40,50,60,70,80}, and two time windows with forty time points per window, i.e., change-

point set S2 = {1, 40,80}. The cumulative and average Granger causalities with S1 and S2 

were estimated for all directions between all pairs of brain regions for each subject. A 95% 

confidence interval of the differences  and  was 

established for each possible direction {i→j | i, j =1,2,⋯, 90 and i ≠ j}. For all directions, 

the lower bounds of these differences were still larger than 0, which is exactly consistent 

with our theoretical results, as shown in Figure 6B.

The results of the average and cumulative Granger causalities were well correlated, as 

shown in Figure 6A. Actually, if the data are generated by the TV-MVAR model, which is 

perfectly static in each time window, the cumulative Granger causality is larger than the 

average Granger causality (See Theorem C1 in Appendix C). Under the null hypothesis of 

non-causality, both Granger causalities approach zero as the size of the data becomes 

sufficiently large. Moreover, the average Granger causality converges to zero quicker than 

the cumulative Granger causality (Theorem C2 in Appendix C), i.e., the p-value of the 

significance of the average Granger causality may be smaller, as was also shown from the 

simulation results in the previous section (Table 2) in which the average Granger causality 

performed better than the cumulative Granger causality in terms of detecting the non-

causality. Therefore, in the following, the average Granger causality is calculated.

As discussed in Appendix B (Corollary B5), some causal connectivity may be missed if the 

Granger causality is estimated using the static MVAR model for the whole time series, 

owing to the correlation of the causality measurement and the time-varying causal 

coefficients. We studied individually the correlations between the causality measurements, 

the sum of the absolute values of the estimated causal coefficients, and the absolute value of 

the sum of the estimated causal coefficients across all time windows defined by the change-

point set (S1) in the TV-MVAR model. For 198 subjects, the absolute values of the median 

of this summation were plotted in Figure 7A against the median of the Granger causality for 

each direction. This correlation between the average Granger causality and the sum of the 

causal coefficients decreased for finer time windows, as compared with the classic Granger 

causality. In contrast, this correlation increased when the absolute value of the median of the 

sum of the causal coefficients was considered (Figure 7B). As shown in Eq. (A2) in 

Appendix A, summing the positive and negative causal coefficients in different time 

windows may lead to an elimination of both positive and negative causal influences. In other 
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words, the classic Granger causality, or Granger causality with a coarser-scale, tends to give 

a null prediction when the sum of the causal coefficients is near zero; however, a zero sum 

may be given by significant non-zero coefficients with different signs in different time 

windows.

The results for some particular examples are given in Figure 8. The classic Granger causality 

using the whole time series data gave near-zero1 causality measurements when the 

summations of the causal coefficients across all time windows were near zero for the 

directions ‘Precuneus_R→Hippocampus_R’ and ‘Thalamus_R→Precuneus_L’. However, 

both the average Granger causality and the classic Granger causality detected significant 

causality for the other three directions, as shown in Figure 8, since the sum of the causal 

coefficients across all time windows was larger than zero.

2) Granger causality mapping from the precuneus—The approaches discussed 

above were used to identify the Grange causality mapping from the precuneus, which is 

believed to be the core of many cognitive behaviours and self-conscience, and has been 

called the ‘mind’s eye’ (Cavanna and Trimble, 2006), to other brain regions. The proposed 

average Granger causality with the optimal time-window dividing algorithm (AGC-

OTWDA) was used for the resting state dataset by setting the maximum number of time-

windows to three. The significance of the causality influence was detected through a 

statistical test (see Materials and Methods). In contrast, an analysis was also carried out for 

each subject using the classic Granger causality.

The classic Granger causality based on the whole time series failed to detect any significant2 

causal connectivity from the precuneus, while the AGC-OTWDA identified directional 

neural circuits centred at the precuneus, as shown in Figure 9. Since this dataset was 

collected when the subjects’ eyes were open, the information flows from the precuneus and 

visual recognition network of the brain regions, marked in green in Figure 9, were very 

significant.

To ascertain that the relative variation of the HRF is not a significant confounding factor for 

the results of the precuneus, the cross-correlation function between the BOLD signals of two 

regions in each causal connection was examined. The peaks of the cross-correlation function 

appeared to have zero lag in more than 90% of the subjects for most of the pairs, except for 

those between the right precuneus (PCUN.R), the right Precental gyrus (preCG.R), and the 

opercular part of the right inferior frontal gyrus (IFGoperc.R), which had only 68% peaks 

with zero lag. Therefore, the relative variation of the HRF was not a significant factor in the 

causality results between the precuneus and the visual recognition network.

Validating Results on the Attention-Task fMRI Dataset

For the attention task, we detected the causality between rIPS and rTPJ. Granger causalities 

were estimated for all possible pairs of voxels and averaged as the spatial Granger causality. 

1The magnitude of the causality measurement is significantly larger than 0 if the lower bound of the 95% confidence interval of the 
causality in 198 subjects is greater than 0.0002 for the classical Granger causality, and 0.0726 for the average Granger causality.
2A significant causality was identified when its p-value was less than 0.05 in at least 73% of the subjects.

Luo et al. Page 17

Neuroimage. Author manuscript; available in PMC 2015 February 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Two methods were used to calculate the Granger causality. One was to concatenate the time 

series data in each attention block together into a long data series, and then compute the 

Granger causality. The other was to calculate the Granger causality for each attention block 

and average them, i.e., the average Granger causality defined above. For comparison, we 

applied these two methods to estimate the Granger causality of two directions, rIPS→rTPJ 

and rTPJ→rIPS, for twelve subjects.

As shown in Figure 10, the average Granger causality is clearly larger than the classic 

Granger causality. For both directions, the differences between the causalities established 

through the two different methods were calculated for all twelve subjects, and a paired two-

sample t-test was conducted to examine the difference, i.e., the average Granger causality 

subtracting the classic Granger causality. The right-tailed t-test suggested that the 

differences in both directions are significantly larger than 0 with p-values equal to 

6.6482×10−6 for rIPS→rTPJ, and 9.0040×10−5 for rTPJ→rIPS. These results are consistent 

with our theoretical analysis, i.e., the average Granger causality analysis across many shorter 

time series provided by multi-trails provides larger measurements than a single long-term 

series observation.

Discussion

Danger of Smoothing Out Causal Information in Long-term Recordings

When we have long-term recordings of two time series observations, how can we reliably 

estimate the Granger causality between the time series? A naive and intuitive approach to 

estimate the Granger causality is to apply all recordings into the MVAR model. This 

approach is based on the widely-accepted statistical belief that the more data that are used, 

the closer the result will be to the true value. However, in this paper, our theoretical analysis 

and numerical examples demonstrate that this may not be the case in an fMRI data analysis. 

The reliability of the statistical inference depends not only on how many datasets there are, 

despite their importance, but also on how finely the model describes the data.

In this paper, we discussed the effects of the fine-scaled details in the MVAR model on the 

Granger causality for detecting the directional information flows between time series data 

and applied the results to the fMRI data analysis. This effect was mathematically analysed, 

and it was concluded that both the temporal and spatial characteristics of the MVAR model 

affect the reliability of the Granger causality estimation. A smaller change-point set implies 

a coarser model, and a larger one implies a finer model. As we proved, the Granger 

causalities in the coarser model (with fewer change-points), including both the cumulative 

and average causalities, are smaller than those in the finer model (with more change-points). 

As demonstrated by the numerical simulations, the classic Granger causality becomes the 

lower bound of the average and cumulative Granger causalities (Corollaries B2 and B5), 

while the causality established using the real change-point set provides the upper bound. Our 

results demonstrate that the Granger causality depends on the model configuration, and thus 

‘the devil is in the details’.

The Granger causality was proved to be equivalent to the transfer information (entropy) 

between Gaussian processes. It has been widely argued that the definition of the information 
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strongly depends on the modelling configuration for the physical system (Jaynes, 1985). As 

argued by (Lloyd, 1989), coarse-grained modelling (such as imperfectly determined network 

evolution) may lead to information loss. Hence, the calculation of Granger causality, or the 

transfer of information, definitely suffers from the modelling configuration issue.

Trade-off between Preciseness of Estimation and Fineness of Modelling

For a given data set, if we use too many change-points for the TV-MVAR model to have a 

sufficient number of data points at each time window, we may obtain an inaccurate 

estimation of the coefficients for the model. In other words, a larger change-point set implies 

a finer model (possibly a larger Granger causality), but this may become an obstacle for the 

precise estimation of the Granger causality. Therefore, an optimal change-point set should 

be a trade-off between the preciseness of the statistic estimation and the fineness of the 

modelling. In this paper, we propose a novel algorithm for detecting the optimal change-

point set based on the Bayesian information criterion (BIC). As illustrated through a 

numerical simulation, this algorithm can correctly identify the change-points in the model 

and increase the reliability and significance for a Granger causality analysis. However, 

compared to the models with time windows of equal length, the optimal time-window 

dividing algorithm was shown to be time consuming. When we focus on the global index 

measuring the directed information flow instead of the exact evolution course of the 

underlying structure, the optimal time window can be determined by either the optimal time 

window dividing algorithm or by comparing the BICs given by the models with equally 

divided time windows with different lengths.

Effects of HRF Delay and Down-sampling on the Proposed Methods

The effects of the HRF delay on the Granger causality analysis have been discussed by 

many researches. In this paper, we found that, as the opposite delay increased, the TP rate 

dropped down and the FP rate rose, which is consistent with the previous results (Smith et 

al., 2012). In (Deshpande et al., 2010), the authors convolved the HRF with the local field 

potentials (LFP) recorded from a macaque, and found that even if the HRF delay opposed 

the underlying neuronal delays is as long as 2.5 seconds, the minimum detectable neuronal 

delay will still be on the order of a hundred milliseconds. Most recently, Schippers et al. 

(2011) conducted another simulation-based investigation for the same issue, and found that 

Granger causal inference can successfully detect over 80% of the cases when the influences 

flowing toward a region with a faster hemodynamic delay if the neuronal delays are above 1 

s. These results suggest that the Granger causality analysis (GCA) performs well when the 

HRF delay between regions is short; however, when the HRF delay is long, additional 

procedures must be taken to minimize the effects of the HRF delay on the results given by 

the GCA. In this paper, we tried to de-convolute a neuronal signal from a BOLD signal 

using an advanced Kalman filter (Havlicek et al., 2011), but no significant improvement was 

observed (data not shown). Assuming that a regional HRF delay can be estimated 

accurately, the performance of the GCA can be improved by realigning the BOLD signals 

from two regions to control the HRF delay. Note that, to make this realignment work, the 

sampling rate of the BOLD signal must be finer than the HRF delay between the two regions 

of interest. Typically, the TR from an fMRI is around 2 to 3 s for whole brain imaging, and 

by sacrificing the spatial coverage and spatial resolution, the temporal resolution can be as 
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high as 500 ms (Arichi et al., 2012). Fortunately, the speed of an fMRI has been rapidly 

increasing (Feinberg and Yacoub, 2012), and a sub-second whole-brain fMRI has already 

been made available (Feinberg et al., 2010). In fact, the most recent advance in MRI 

technology has enabled a temporal resolution of as fast as 50 ms (Boyacioglu and Barth, 

2012). Meanwhile, the accurate and robust estimation of HRF in a BOLD signal has been a 

fundamental and hot issue for a long time in the area of fMRI data analysis, and many 

estimation methods have been proposed, including the Friston et al.’s classical paper (1994) 

and the most recent development by (Wang et al., 2011), among many others. Therefore, an 

accurate estimation of the regional HRF and a realignment of the BOLD signal to correct the 

HRF delay are some of our future aims for a GCA of fMRI data.

Comparison with Filter-based Approaches

Considering the regional variation of HRF and physiological noise, we simulated the fMRI 

time series. Based on this dataset, we compared the performances of the proposed optimal 

Granger causality (GC) approaches with the classic GC and dual Kalman filter cumulative 

GC, and discussed the effects of the regional variation of the HRF on the Granger causality 

analysis. The optimal GC approaches outperformed the other two methods for this 

simulation. We do not intend to imply through this example that our approaches must be 

better than the dual Kalman filter approach. However, the extension of our GC definition to 

other approaches handling time-varying dynamics is definitely an interesting and important 

issue that may provide new insight into GC and time-varying dynamics theories, and is one 

of our future research aims.

Precuneus Role as a Hub during a Resting State

For another resting-state fMRI dataset, the proposed approach succeeded in detecting a 

number of Granger causal interdependencies, from the precuneus to other brain regions, 

which cannot be inferred by the classic Granger causality, based on the static MVAR model 

for the whole BOLD time courses. In particular, a circuit centred at the precuneus to the 

visual network provided proof of the pivotal role played by the precuneus in visual 

cognition.

Possibility of Detecting a Status Change in fMRI Data

In attention-task fMRI data, our approach with spatio-temporally finer-scale details detected 

the information transfer flows between the brain areas of rIPS and rTPJ. One possible 

application for this method is detecting the status change in the data. However, the 

experimental design used in this study for the attention-task was a mixed blocked/ER 

design. The stimuli were randomized for each subject and block (see the experimental 

design). The responses were not required for all stimuli, and were therefore also 

randomized. Both the randomized stimuli and responses might impact the dynamics of the 

BOLD signal, as well as the block onset and offset. This could cause the detection of 

unpredictable change-points within the block. Therefore, the current experimental design is 

not optimal for this purpose, which may be a separate issue of importance. An additional 

experimental design and the development of a new method may be required in the future.
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Further Directions in Spatio-temporal Granger Causality Algorithm

The proposed framework, called spatio-temporal Granger causality, consists of several 

modules, including change-point detection, parameter estimation, and causality estimation. 

We emphasize that the current algorithm is not the optimal, since a more sophisticated 

method for each module may improve the overall performance of the analysis. Our future 

work will aim at finding better algorithms for a more precise estimation of the global 

Granger causality under the current framework, using up-to-date approaches for each 

module and a comparison with the existing algorithms (Cribben et al., 2012; Havlicek et al., 

2010; Hemmelmann et al., 2009; Hesse et al., 2003).

Conclusions

The estimation of Granger causality is heavily influenced by the model used. Our results 

show that a coarse-grained approach/model may average out the meaningful information, 

since ‘devil is in the details’. The widely held belief that better statistics (Granger causality) 

result from a longer recording of a dataset is not always true if the whole long-term time 

series is incorporated into the coarse-grained MVAR model. Instead, we suggest that the 

optimal strategy is to divide a long-term recording into a number of time windows using 

some optimal BIC-based algorithms. A reliable estimation of the Granger causality by a 

finer-scale MVAR model both in time and space can be achieved.

We proposed a new framework for inferring the Granger causality between groups of times 

series by taking the finer-scale details into the MVAR model. Our approach shows power to 

detect an information transfer between brain regions based on fMRI BOLD signals and to 

enhance the reliability of the estimation. This idea and approach may give rise to a new 

angle toward the debate of the reliability of Granger causality for fMRI data, particularly the 

resting-state fMRI time courses.
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Appendix A: Solution of the time-varying linear regression

To build up a theoretical analysis of the Granger causality, we assume that the time series 

are generated by the following the first-order (discrete-time) time-varying multivariate 

autoregressive (TV-MVAR) model:

(A1)
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where nt is white Gaussian noise statistically independent of x and y:

Here, δt,t' is the Kronecker delta. Without loss of generality, we can suppose that xt and yt are 

centred, i.e., all means are equal to zeros, and the variances of xt and yt both equal to 1, by 

multiplying coefficients a1 (t) and b1 (t) by their variances, respectively. Moreover, we 

assume that the correlation between xt and yt are stationary, i.e., E(xtyt) = c for a constant c∈

[0,1]. Thus, we can perform a simple linear transformation to make x and y orthogonal:

which implies that zt has its mean equal to 0 and its variance equal to 1, and is uncorrelated 

with xt. Thus, (A1) becomes:

with ã1 (t) = a1 (t) + b1 (t)c, . Hence, we can discuss this problem 

assuming that xt and yt are uncorrelated that will not lose generality. Therefore, in the 

following, we assume that xt and yt are uncorrelated.

Considering the time-varying linear regression system (A1), we estimate the Granger 

causality with different time-window split. More generally, we consider (2) or (3) to replace 

the intrinsic system. To estimate the theoretical values of the time-varying Granger 

causalities by averaging or cumulating as mentioned in the main text, first, we are to 

estimate the parameters  and  by minimizing the following residual square 

errors across the whole time interval:

which is equivalent to a series of minimisation problems:

for all k = 1,⋯, m. It can be seen that the (expectation of) the solution should be
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(A2)

Appendix B: Monotonicity of the Ganger causalities of TV-MVAR models

Monotonicity of cumulative Granger causality

By the estimation of the coefficients, Eq. (A2), the cumulative Granger causality with the 

given time window lengths can be estimated as:

where

We have the following result.

Theorem B1

For two change-point sets S1 and S2, if S1 ⊆ S2, then

Proof—Let S1 be composed of the following integer series:

Since the increasing integer series S2 contains S1, we can denote S2 as follows;

In other words, in each time interval defined by S1, for instance, from tk−1 to tk we denote 

 as the integers in S2, which are located between tk−1 and tk. For 

simplicity, we let . Then, the TV-MVAR model with respect to S2 can be 

formulated as

(B1)
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First, we are to prove that US1 ≥ US2 and VS1 ≥ VS2 that are essentially the same. So, we 

need to prove one of them, for instance, VS1 ≥ VS2.

In fact, we rewrite VS2 as follows:

where  denotes the order of  in the ordered integer set S2.

Thus, it is sufficient to show that in each time window of S1, it holds that

We note that

and

Hence,

(B2)
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owing to the well-known fact that the weighted algebraic average is less than the square 

average with the weighting. This implies VS1 ≥ VS2. So, it is with US1 ≥ US2.

From VS1 ≥ VS2, we immediately have

Combined by US1 ≥ US2, we can derive

This means . From (B2), one can see that the inequality holds if and only if

(B3)

holds for all q = 1,⋯, nk and all k.

From Theorem B1 and its proof, in particular Eq. (B3) as the sufficient and necessary 

condition for . We immediately have the upper and lower bounds of the 

cumulative Granger causality.

Corollary B2

Let S0 = {1,T +1} and S* be the ordered time point set that exactly comprise of the change-

points in the TV-MVAR. Then, for any ordered time point set S, we have

This corollary shows that the static (classic) Granger causality actually is the lower-bound of 

the cumulative Granger causality. And, if the time series are exactly generated by TV-

MVAR (A1) with the change-point set S*, the cumulative Granger causality based on it is 

the upper bounds of all.

We should point out that Theorem B1 holds under the condition that one switching time set 

is contained in the other. It does not imply that the more change-points are, the larger 

cumulative Granger causality it will have.

Conjecture 1

If |S2|≥|S1|, then .

We claim that this conjecture is not true by a simple counter example. Let T = 6, S1 = 

{1,4,7}, S2 = {1,3,5,7}, and S = {1,7}. We suppose that the data is produced by the model 
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(5) with a constant a1 and b1 (t) is periodic with a period 2, i.e, b1 (1) = b1 (3) = b1 (5) and 

b1 (2) = b1 (4) = b1 (6). But the two values do not equal pair-wisely. It is clear that for S2, 

the parameters can be estimated as

which equals to the whole average

So, the corresponding Granger Causality with S2 can be estimated equal to that of the static 

MVAR model (the change-point is composed of S), i.e., .

Noting that , where the strict inequality is because of 

. So, we have  despite |S2|>|S1|. Let us 

consider a numerical example with a1 (t) = 1,  for all t, and b1 (1) = b1 (3) = b1 (5) = 

1 and b1 (2) = b1 (4) = b1 (6) = 0. Direct calculations lead that

However,

Monotonicity of average Granger causality

Another approach to estimate the Granger causality of TV-MVAR model is to estimate the 

Granger causality at each time windows (between switching) can average them according to 

the length of each time window. Recall S1 = {1 = t0 < t1 < ⋯ < tm−1 < tm = T+1} as an 

increasing integer sequence that denotes the change-point and the TV-MVAR model as

(B4)

At each time window, the Granger causality can be estimated as
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With

Then, we estimate the Granger Causality by the TV-MVAR model (B4) as follows:

named the average Granger causality, the weighted average according to the lengths of the 

time windows. To investigate the relationship between the average Granger causality and the 

fineness of temporal resolution, we need the following lemma:

Lemma B3

For any positive integer T, any m real constants , any T nonnegative constants 

with  and any positive constants , we have the following inequality

where  and .

Proof—Let us consider the following function with respect to  and 

with

We make minor modifications on the problem according to the following three facts.
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First, noting

if we replace ct by |ct| in V, which is denoted by V̂, then we have V ≤ V̂.

Therefore, without loss of generality, it is sufficient to prove V̂ ≤ 0 by considering the case 

that all ct are nonnegative.

Second, considering

which is positive in the case that there is at least one positive ct with nonzero pt.

So, it is sufficient to consider the case that all ct are positive;

Third, it holds

owing to the Jensen’s inequality.

In summary, we can consider the following function instead of V:

Letting yt = (ct)2, owing to the fact that all ct are nonnegative, y = [yt], with fixed c2 and σ2, 

we are going to show that Ṽ is nonnegative by considering the following maximization 

problem:

(B5)

To solve (B5), we introduce the following auxiliary Lagrange function:
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By the Karush-Kuhn-Tucker conditions, the necessary conditions of the minimum of (B5) 

include:

This leads (i) pt = 0 or (ii)  and

(B6)

In other words, for these yt with nonzero pt, if we are to solve yt from the above equalities as 

a function with respect to σ, λ, μ, γ, c2 and ν, which are independent of the index t, then we 

can only have one expression from (B6). It should be emphasized that we are not solving the 

values of yt but its expression with respect to the t-independent quantities, σ, λ, μ, γ, c2 and 

ν. Therefore, the possible minimum points of R(y, ν) only has one single value of yt. So it is 

with

It can be seen that if yt and  can only have a single value respectively, then Ṽ (y, ν, Σ) = 0. 

So, the maximum of Ṽ (y, ν, Σ) is zero. Hence, the intrinsic V has its maximum equal to 

zero. Therefore, lemma B2 is proved and the equality holds if and only if yt and  can only 

have a single value respectively.

Theorem B4

Let S1 and S be2 two sequences of increasing integers. If S1 ⊆ S2, then

Proof—We denote the sets S1 and S2 by the symbols as in the proof of Theorem B1. 

According to (B1), the Granger causality at the time window of S2, the k-th window of S1 

and the q-th can be written as:

where
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Then, the average Granger causality with respect to S2 is

Note

and

Compared with , we can rewrite the term of , i.e., , as follows:
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where

Since

Theorem B3 can be derived by directly employing Lemma B3. In addition, the inequality 

holds if and only if  and  can only pick values independent of the index q 

(but possibly depending on the index k), respectively.
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Similar to Corollary B2, from Theorem B4 and its proof, in particular the sufficient and 

necessary condition for . We immediately have the upper and lower bounds 

of the cumulative Granger causality.

Corollary B5

Let S0 = {1,T +1} and S* be the ordered time point set that exactly comprise of the change-

points in the TV-MVAR model. Then, for any ordered time point set S, we have

This corollary shows that the static (classic) Granger causality actually is the lower-bound of 

the average Granger causality. And, if the time series are exactly generated by TV-MVAR 

(A1) with the change-point set S*, the average Granger causality based on it is the upper 

bounds of all.

We should also emphasize that the following conjecture is not true.

Conjecture B2

If |S2|≥|S1|, then .

That is to say, the average Granger causality is monotonic with respect to the containing 

relation between the change-point set, but not monotonic with respect to the size of the 

change-point sets. A counter-example can be easily established by the same way as in 

Remark 1.

Appendix C: Comparison between cumulative and average Ganger 

causalities

Magnitude comparison

Actually, the two sorts of Granger causalities of the TV-MVAR model do not have definite 

magnitude relation. First, we show in the following theorem, the relation that cumulative 

Granger causality is greater than the average Granger causality with the same change-point 

set is conditional.

Theorem C1

Let S be a sequence of increasing integers. If the following quantity

with
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is independent of the index k, then

Proof—Let S = {1 = t0 < t1 < ⋯ < tm−1 <tm = T + 1}. And, with the same notations we used 

above, we have

and

Let . Thus, we can rewrite them as

and

In addition, letting
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due to the condition, θk is independent of k, which is denoted by θ. Thus, we have

and

Thus, we can conclude , owing to the Jensen’s inequality. This completes the 

poof.

From Theorem C1, if the TV-MVAR system is time-varying with the segments well known, 

which implies that at each time window, the system is static, we can conclude that the 

average Grange causality is smaller than the cumulative Granger causality. On the other 

hand, if the condition in Theorem C1 is not satisfied, then it will not be surprising that 

 holds. Here is a counter-example. A special situation is to solve the time-

varying regression model (A1) as a static one, i.e., taking all time points as the change-point 

set, i.e., S = {1,⋯, T + 1}. By a proper transformation, we can still let the variances of y and 

x equal to 1 for all time. Let a1 (t) = 0 for all t. But the variance of the noise may be time-

varying. The defined Granger causalities become:

Pick T = 3, b1 =1, , σ3 = 1. Then,
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Comparison between the asymptotic square moments under null 

hypothesis

For simplicity, we suppose that the time-varying system (A1) is a switching system with 

equal-length time windows and the segment points are exactly known. The general case will 

be treated in our future paper. Thus, (A1) becomes a series of static linear system as follows:

(C1)

Here,  for all k. Under the null hypothesis, namely, the coefficients b1 (t) = 0 

hold for all t, (C1) becomes

(C2)

Their residual squared errors at each time window are

Then, the CGS and AGC can be formulated as follows respectively:

as n goes to infinity. Therefore, the cumulative Granger causality converges the following in 

distribution:

and the average Granger causality converges to:

with each
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So, their asymptotic expectations are

as n → ∞.

The dominant converge rates are same, equivalently . Then, let us take a look at their 

asymptotic square moments. By the square moment of the F-distribution and simple 

algebras, we have

As for the AGC, with , we have

With

which implies

holds in the asymptotic sense, i.e, if n is a sufficiently large. Therefore, in the asymptotic 

squared meaning, for m > 1, we have

asymptotically. In other words, the average Granger causality converges to zero more 

quickly than the cumulative Granger causality.
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Theorem C2

Under the setup as mentioned above,  for m > 1.

And, the larger m is, the higher asymptotic converge rate the average Granger causality is 

than the cumulative one.

Appendix D: Dual Kalman filter cumulative Granger causality (Dkf 

cumulative GC)

We used the dual Kalman filter as in (Havlicek et al., 2010; Sommerlade et al., 2012), which 

can be described as the following MVAR

(D1)

where Ak (t) are the time-varying coefficients and  are the white noises. Define

and Eq. (D1) can be rewritten as

(D2)

associated with a random walk process for the time-varying coefficients

(D3)

By the dual Kalman filter approach, the time-varying coefficients can be estimated, and then 

the residuals of Eq. (D2) can be used to define a cumulative GC by the same fashion as the 

cumulative GC in the paper

(D4)

where T is the length of the time course,  is the noise term in Eq. (D2) for the x-

component with considering the inter-dependence from y-component, and  is the noise 

term in Eq. (D2) without considering the inter-dependence from y-component. As in 

(Havlicek et al., 2010), the dkfGCY→X and the dkfGCX→Y can be computed by estimating 

the model parameters, and the p-value of these causality statistics can be established by 
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bootstrap. The readers are refer to (Havlicek et al., 2010) for more details about the 

parameter estimation procedure and the bootstrap for significance.
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Highlights

Granger causality increases monotonically with temporal resolution.

A new framework was proposed for Granger causality at finer spatial-temporal scale.

Higher reliability of causality was achieved at fine spatial-temporal scale.

Information flows between the precuneus and the visual regions were revealed.
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Figure 1. 
Monotonicity of the cumulative and average Granger causalities. If we consider finer time 

windows with the same length, the change-point set can be derived from the window length, 

and thus the causality established by different change-point sets can be equivalently denoted 

by the corresponding window lengths mi for Si.
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Figure 2. 
Results of the simulation model: (A) Residual variance comparison between the models 

established from the whole time series and those models fitted on different time window 

sets. (B) Optimally detected change-points for 100 simulations. (C) Mean of the TP and FP 

rates given by different methods for each HRF delay in 100 simulations. (D) The TP rate is 

plotted against the FP rate given by different approaches for each threshold of the p-values 

in 100 simulations
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Figure 3. 
Effects of the HRF delay and down sampling on the Granger causality analysis (GCA). (A) 

Performances of GCAs after a realignment of the BOLD signals between two regions to 

correct the opposite HRF delay when the sampling rate was 1 Hz. (B) Performances of 

GCAs when the sampling rate was 2 Hz. (C) Performances of GCAs after a realignment of 

the BOLD signals when the sampling rate was 2 Hz.
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Figure 4. 
Correlation of the mean of the group Granger causalities (GC) between two series of scans 

upon the same subject set, versus the number of time windows for the average Granger 

causality. The inset plots show the correlation between two scans of the selected number of 

windows, where each circle represents the GC between two ROIs parcelled by AAL atlas.
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Figure 5. 
Correlation between the Granger causality between two series of scans for the same set of 

subjects. The causality measurements were calculated through different methods: (A) 

traditional Granger causality, (B) voxel-level Granger causality, (C) average Granger 

causality, and (D) spatio-temporal Granger causality.
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Figure 6. 
Granger causality results of the resting-state dataset. (A) Average Granger causality versus 

cumulative Granger causality on the resting state dataset. (B) Comparison of the average 

Granger causality established by different time window lengths.

Luo et al. Page 47

Neuroimage. Author manuscript; available in PMC 2015 February 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7. 
Granger causality versus the sum of the causal coefficients across time windows. The causal 

coefficients were estimated for each time window defined by S1 for each subject. The 

medians of the causality among 198 subjects were established using different change-point 

sets, including S1, S2, S3, and the whole time series without a change-point (specified as the 

titles for subplots in the figure). Different change-point sets gave different Granger causality 

values, since the Granger causality value increased as the time window lengths decreased. 

(A) Correlation to the absolute value of the median of the sums of the causal coefficients 

over all time windows. (B) Correlation to the median of the sums of the absolute values of 

the causal coefficients over all time windows. The p-values for all correlations are below the 

significant threshold.
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Figure 8. 
Boxplot for the sum of the causal coefficients across all time windows of the change-point 

set, S1.
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Figure 9. 
Information flows from precuneus inferred by the average Granger causality based on the 

optimal time window dividing algorithm. The brain regions for visual recognition are 

marked in green, the primary visual cortex is marked in yellow, the sensory motor areas are 

marked in red, and the attention areas are marked in purple. The arrows marked by dotted 

lines indicate potentially false predictions owing to the regional variation of the HRF. The 

brain regions are defined by AAL90, as in DPARSF (Yan and Zang, 2010).
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Figure 10. 
Comparison between the classic Granger causality (classical GC) and average Granger 

causality (average GC) for an attention-task dataset.
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Table 1

The 95% confidence intervals of the differences between the cumulative causality measurements established 

from time windows with different lengths.

direction X→Y Y→X

quantile 0.025th 0.975th 0.025th 0.975th

0.0078 0.0321 0.0053 0.0341

0.0085 0.0448 0.0109 0.0453

0.0002 0.0128 0.0003 0.0229

0.0078 0.0285 0.0055 0.0333

0.0105 0.0437 0.0116 0.0480

0.0002 0.0156 0.0003 0.0264
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