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The social significance of recognizing the person who talks to us is obvious, but the neural mechanisms that mediate
talker identification are unclear. Regions along the bilateral superior temporal sulcus (STS) and the inferior frontal
cortex (IFC) of the human brain are selective for voices, and they are sensitive to rapid voice changes. Although it
has been proposed that voice recognition is supported by prototype-centered voice representations, the involve-
ment of these category-selective cortical regions in the neural coding of such “mean voices” has not previously
been demonstrated. Using fMRI in combination with a voice identity learning paradigm, we show that
voice-selective regions are involved in the mean-based coding of voice identities. Voice typicality is encoded on a
supra-individual level in the right STS along a stimulus-dependent, identity-independent (i.e., voice-acoustic)
dimension, and on an intra-individual level in the right IFC along a stimulus-independent, identity-dependent
(i.e., voice identity) dimension. Voice recognition therefore entails at least two anatomically separable stages,
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each characterized by neural mechanisms that reference the central tendencies of voice categories.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Human listeners can recognize individuals from their voices
(i.e., auditory percepts of human vocalizations) alone and can rapidly
learn new voice identities (i.e., voice-based percepts of person identity).
Cortical regions involved in voice recognition have been mapped out,
but it is not yet known how those regions represent voice knowledge.
Here we test the hypothesis that in category-selective regions voice
identities are represented in a prototype-centered voice processing
hierarchy. In particular, we ask whether and how cortical activity re-
flects typicality in newly-learned voice categories. We will refer to this
as mean-based neural coding of voices.

Two cortical regions have been reported to be sensitive to conspe-
cifics' vocalizations. These regions are intriguingly similar in the primate
and human brain and include regions along the superior temporal sulcus
(STS) (in macaques: Petkov et al,, 2008; in humans: Belin et al.,, 2000,
2011; Ethofer et al., 2009b; Grandjean et al., 2005) and the inferior
frontal cortex (IFC) (in macaques: Romanski and Goldman-Rakic, 2002;
Romanski et al., 2005; in humans: Fecteau et al., 2005; von Kriegstein
and Giraud, 2006). Strong anatomical and functional connections have
been found between the STS and the ipsilateral IFC in both primates
(Hackett et al., 1998; Romanski et al., 1999) and humans (Ethofer et al.,
2012). Furthermore, STS and IFC are not only voice-selective but also
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sensitive to short-term voice stimulus similarity, as demonstrated in
rapid fMRI adaptation and carryover effects (STS: Andics et al, 2010,
2013; Belin and Zatorre, 2003; Latinus et al,, 2011; Wong et al., 2004;
IFC: Andics et al., 2010, 2013; Latinus et al.,, 2011). Short-term sensitivity
here refers to mechanisms typically active within the range of a few sec-
onds (cf., short-term repetition suppression, Epstein et al., 2008). This
short-term sensitivity for voice similarity is an important requirement
for the ability to tune in to voice stimuli, but it is not sufficient for the rep-
resentation of long-term voice knowledge. Long-term here refers to pro-
cesses relying on representations that need to be stored for longer than a
few seconds (cf., long-term repetition suppression, Epstein et al., 2008).
We adopt this definition in the present study. Neural storage of voice
knowledge in the much longer term (e.g. weeks, months) is a topic for fu-
ture research. Although it seems plausible that category-selective cortical
regions are there to represent category knowledge for more than just in
the short term, there is little evidence so far that the voice-selective STS
and IFC contribute to representing voice knowledge for more than a
few seconds.

This study asks whether the STS and IFC perform this function
and elaborates on the recent proposal that long-term voice knowl-
edge is represented in the human brain in a prototype-centered
way. Mean-based neural coding appears to be a powerful way to rep-
resent individual stimuli in a category space (e.g., Panis et al., 2011). A
possible mechanism for mean-based coding is neural sharpening
(Hoffman and Logothetis, 2009): the coding of central values in rele-
vant object dimensions becomes sparser with more experience. Neu-
ral sharpening reflects long-lasting cortical plasticity and so could be
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used for positioning stimuli in long-term object spaces. For faces,
mean-based coding was found behaviorally (Leopold et al., 2001;
Rhodes and Jeffery, 2006), in primates (Leopold et al., 2006), and
also with human fMRI localizing the mechanism in face-selective
fusiform regions (Loffler et al., 2005). It has been argued that
mean-based coding can also result from long-term adaptation
(Kahn and Aguirre, 2012), a mechanism that is sensitive to stimulus
distributions. Recent behavioral (Bruckert et al., 2010; Latinus
and Belin, 2011; Latinus et al., 2009; Mullennix et al., 2009; Papcun
et al, 1989) and neuroimaging studies (Andics et al., 2010) also
suggest that there is mean-based coding for voices. In other words,
voice representations appear to be centered around prototypes in
long-term memory.

Long-term mean-based coding for voices has nevertheless not yet
been demonstrated in voice-selective cortical regions. Andics et al.
(2010) found mean-based coding for voices in several regions, but
some of these regions (the deep posterior STS and the orbital/insular
cortex) are not voice-selective. Other regions (the amygdala and the
anterior temporal pole) appear to be involved in the multimodal inte-
gration of person identity rather than in pure voice identity processing
(Andics et al,, 2010; Belin et al.,, 2011; Latinus et al,, 2011). Although
recent findings suggested IFC involvement in the representation
of long-term stored objects (Latinus et al, 2009), to date there is
thus no evidence for long-term mean-based voice encoding in the
core category-selective cortical regions, namely the STS and the IFC.

It has been proposed that voice recognition involves not only
mean-based voice encoding but also separate processing stages for
voice-acoustic and voice identity analysis (Belin et al., 2004, 2011;
Bestelmeyer et al., 2012; Charest et al., 2013; Scott and Johnsrude,
2003). This proposal, however, has received little direct support
so far in the form of functional-anatomical correspondences between
voice-processing stages and voice-selective regions. In the framework
of mean-based coding, voice-acoustic analysis corresponds to an
identity-independent, supra-individual representation of voice typical-
ity, while voice identity analysis corresponds to an identity-dependent,
intra-individual representation of voice typicality. These definitions will
be adopted in the present study. Note that typicality is thus defined here
with respect to the materials in the experiment, and not judgments of
typicality collected, for example, in a rating study.

Recently, Latinus et al. (2011) attempted to dissociate acoustic
from identity effects in voice processing, but their design focused on
short-term effects of acoustic and identity changes. Short-term acous-
tic processing was found in both the STS and the IFC and short-term
identity processing was found in the IFC only. These short-term ef-
fects may be indicators of long-term voice processing mechanisms,
but those mechanisms have not yet been tested directly. The present
study therefore tested the hypothesis that long-term mean-based
voice encoding is present both at voice-acoustic (supra-individual)
and at voice identity (intra-individual) levels of processing, and aimed
to specify the role of the two core voice-selective cortical regions in
these two levels.

We performed an fMRI experiment using a within-subject
voice-training paradigm. Listeners were trained on two consecutive
weeks to categorize voice stimuli on a voice morph continuum as
belonging to either of two talkers characterized by the two continuum
endpoints (morph0O, morph100). During training the entire continuum
was sampled and the acoustic center of the trained stimulus space was
identical across weeks (morph50). The feedback during training on
week1 and week?2 specified different voice identity category boundary lo-
cations on each week (morph36 or morph64). After each training session,
we could separately manipulate two perceptual properties of the voice
stimuli: their perceived acoustic centrality (i.e., degree of prototypicality
defined by the acoustic space, independent of identity feedback) and
their perceived identity centrality (i.e., degree of prototypicality of a
new voice identity, as defined by a voice-training procedure, indepen-
dent of acoustic properties). Our design also allowed us to separately

test for short-term effects (e.g., rapid adaptation indicating stimulus
similarity sensitivity in the 0-5 second range) and long-term effects
(e.g., long-term adaptation or neural sharpening indicating norm-based
coding in the >5 second range) within a single experiment.

We hypothesized that cortical representations of the voice-acoustic
space are organized along an acoustically central to acoustically periph-
eral dimension, and thus should not be modulated by voice identity
feedback. Acoustically central stimuli should have sharper neural
coding than acoustically peripheral stimuli and hence we predicted
that there should be less activity for central than for peripheral stimuli
in voice-acoustic regions. We also hypothesized that voice identity
representations are organized along a feedback-defined typical to
atypical dimension, and that this typicality is fully independent of
voice-acoustic properties. We predicted that the activity of voice identi-
ty representations generated by identity-typical stimuli should there-
fore be less than the activity generated by atypical stimuli.

Material and methods
Participants

Eighteen Dutch female listeners (19-24 years) with no reported
hearing disorders were paid to complete the experiment. Written in-
formed consent was obtained from all participants. One person was ex-
cluded because of a failure to perform the task during training. Two
further participants were excluded because of poor learning perfor-
mance during training (i.e., voice identity categorization performance
per morph level did not significantly differ from the 50% chance level
in the final training block before scanning, one-sampled, two-tailed
t(14) <1, p > .4). The analyses presented here were based on the
remaining 15 subjects.

Stimulus material

We selected two perceptually similar voices from a voice pool that
contained recordings from young male nonsmoking adult native
speakers of Dutch with no recognizable regional accents and no
speech problems pronouncing Dutch monosyllables (Andics et al.,
2007). The voices were unfamiliar to the listeners. Recordings were
made in a soundproof booth using a Sennheizer Microphone MEG62,
a MultiMIX mixer panel, and Sony Sound Forge. All stimuli were dig-
itized at a 16 bit/44.1 kHz sampling rate and were volume balanced
using Praat software (Boersma and Weenink, 2007). A single token
was selected per voice identity, of the word mes (knife). The two to-
kens were acoustically similar: average pitches were 122 Hz and
113 Hz, and stimulus lengths were 482 ms and 492 ms respectively.

We then created a voice morph continuum using the speech manip-
ulating algorithms of STRAIGHT (Kawahara, 2006). The speech signals
were decomposed into three parameters: an interference-free spectro-
gram, an aperiodicity map and a fundamental frequency (FO) trajectory.
These parameters were then logarithmically interpolated segment by
segment. Finally, a 100-step stimulus continuum with equidistant inter-
mediate levels was resynthesized. The endpoints (levels morphO and
morph100) were also resynthesized. Average syllable duration was
487 ms (audio samples can be found at http://mpi.nl/people/andics-
attila/research).

Training design

Listeners received multiple-phase voice identity training on two
consecutive weeks. During the entire course of training, listeners
were presented with words from the voice morph continuum and
were instructed to make forced-choice decisions on talker identity
after every word they heard. To allow initial assignment of talker
names (Peter and Thomas) on response buttons to voice identities
(voice A and voice B), listeners were presented three naturally
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produced monosyllables from each talker before the experiment. The
whole continuum was sampled each week. The assignment of talker
names to voice identities and to dominant or non-dominant index
fingers was counterbalanced across participants. The full stimulus
range was sampled both during training and at test, but there was
no exact stimulus overlap between the two parts (i.e.,, the morph
levels used at training were different from those used at test; see
below). Two training conditions were used: listeners were trained
on different voice identity boundaries (morph36 or morph64) on
the first and second weeks. The category boundary was made explicit
by giving feedback according to a predefined boundary at 36% voice B
morphs one week and at 64% the other week. Therefore, morphs
between the two boundaries were trained to be categorized as voice A
one week (when the boundary was at 64%), but as voice B the other
week (when the boundary was at 36%). This training manipulation
was amplified by presenting more stimuli from the most ambiguous
parts of the continuum (Appendix A): The mean of all stimuli from
each voice identity category was a 10% distance from the category
boundary. The order of training conditions was counterbalanced across
participants. Participants were not informed about the category bound-
ary shift. The reason to use a continuum between two highly similar
voices was to ensure that the boundary shift, while being large relative
to the continuum, is not too large acoustically, and therefore remains
unnoticed by the listeners.

Training procedure

Stimuli were presented via headphones binaurally, at a comfortable
listening level. In each of two weeks participants received 72 min of
training over 2 days, with 3 training sessions of 18 min each on day1
and a single training block of 18 min on day2. Training was followed
by an fMRI test session on day2 in each week. Stimuli on consecutive tri-
als were physically different. Stimulus ordering was otherwise random
and varied across listeners. Training trials were 3000 ms long and in-
cluded visual feedback (i.e., whether responses were correct, incorrect
or late), presented from 2100 to 2400 ms after trial onset. Training
phases contained 360 trials (12 repetitions of 30 morph levels). The
manipulation appeared to be successful in that all participants reported,
after the experiment, that they thought that they had heard various
exemplars of natural voices only and that they were convinced that
the trained voices were two actual persons' voices.

Conditions of interest

The critical stimuli in the fMRI test were morphs05, 33, 67 and 95.
The categorization training defined identity membership of these
stimuli (belonging to voice identity A or B), although these specific
morph levels were not presented during training. Morph05 and
morph33 always belonged to voice A, while morph67 and morph95
always belonged to voice B. The critical voice morphs also differed
in terms of their distributional position on the stimulus continuum:
Morph05 and morph95 were close to the endpoints, while morph33
and morph67 were close to the middle of the continuum — these
morphs are referred to as peripheral and central stimuli, respectively.
The trained voice identity and the centrality of these critical stimuli
did not change across training sessions. But, crucially, the perceived
typicality of the central voice morph stimuli changed as a function

Table 1
Characterization of conditions.

of the training condition. During voice identity boundary 36% train-
ing, morph67 was a typical exemplar of voice B (i.e., far from the
identity boundary), and morph33 was an atypical exemplar of voice
A (i.e., close to the identity boundary); but during voice identity
boundary 64% training, morph33 was a typical exemplar of voice A,
and morph67 was an atypical exemplar of voice B. These morphs, de-
pendent on whether they were far from (>30 morph steps) or close
to (=3 morph steps) the actual voice identity boundary, are referred
to as typical and atypical stimuli, respectively. Note that acoustically
peripheral stimuli were always far from the trained voice identity
boundary, so they were always typical for one of the voices. There-
fore, all critical stimuli fall into one of three types: peripheral-typical,
central-typical or central-atypical. To control for the distance
from the trained voice identity boundary across all typical stimuli
when comparing these conditions, only those peripheral-typical stimu-
li were considered whose distance from the boundary matched central-
typical stimuli's distance from the boundary (=31 morph steps). The
conditions of main interest are summarized in Table 1.

fMRI test: design and procedure

Every listener was tested twice with fMRI. Stimuli consisted of pairs
of tokens, each voice morphs of mes. The tokens used in the fMRI
tests were morphs05, 33, 50, 67 and 95. There was an onset delay of
800 ms between tokens. Listeners were instructed to ignore the first
voice and identify the second one (no feedback was given). FMRI tests
were identical across the two weeks, but the pairs could fall into differ-
ent condition categories on week1 and week2 depending on the identity
boundary training. Each test session included 13 token pair types
(Appendix B), with 20 repetitions of each type. A silent condition with
40 repetitions was also added. Token pair types were evenly distributed:
each chunk of 15 consecutive trials included one of each token pair type
and two silent trials. Consecutive trials were always physically different,
and also different with respect to the corresponding experimental con-
dition (Appendix B), but stimulus ordering was otherwise random.

Identical morph pairs were used to test for long-term adaptation
(or neural sharpening) effects. We tested acoustically central and
peripheral stimuli, and identity-typical and -atypical stimuli, all defined
with respect to their positions in the constant acoustic space and the
training-varied identity space (Table 1). Short-term adaptation effects
were controlled in the tests of long-term effects because the pairs of
morphs in each condition were always identical, and consecutive
morph pairs were sufficiently distant (>5 s). Short-term effects of
voice similarity were tested by comparing responses to identical versus
non-identical morph pairs. We assumed that, in voice-selective cortical
regions, identical pairs elicit reduced activity compared to non-identical
pairs, due to rapid adaptation in response to stimulus repetition. Within
non-identical pairs, we further differentiated between coarse and fine
within-pair changes, determined by distance in morph steps.

Voice-selective regions were defined in a separate localizer run
with blocks corresponding to (1) vocal sounds (verbal and nonver-
bal), (2) non-vocal sounds (animals, sounds from the environment,
music) matched for number of sources, in duration, and overall energy
and (3) silence. Participants were instructed to passively listen to the
stimuli. Stimuli were controlled using Presentation software (www.
neurobs.com). During imaging, stimulus presentation was synchronized
by a trigger pulse with the data acquisition. Stimuli were delivered

Condition Critical morphs Distance from acoustic center Distance from identity boundary Decision difficulty
Boundary = morph36 Boundary = morph64

Peripheral-typical 05 95 45 morph steps 31 morph steps Easiest (96%)

Central-typical 67 33 17 morph steps 31 morph steps Medium (88%)

Central-atypical 33 67

17 morphs steps

3 morph steps Hardest (81%)
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binaurally through MRI-compatible headphones (Commander XG, Reso-
nance Technology Inc., Northridge, CA).

fMRI data acquisition

Measuring auditorily induced hemodynamic changes with fMRI re-
mains a technical challenge: While continuous sampling methods suffer
from scanner noise interference, sparse sampling methods have to cope
with a decrease in signal-to-noise ratio caused by the disturbance of
steady-state magnetization and subsequent loss of statistical power.
We used a 3 T Siemens scanner and an in-house modified scanning
protocol with scan-on periods for functional data acquisition and
scan-off periods for stimulus presentation. For scan-off periods, gradi-
ent switching was removed to reduce scanner noise, but slice selective
excitation pulses were played out to keep the magnetization in the
steady state (see Schwarzbauer et al., 2006 for a similar protocol). Stim-
uli were always presented during scan-off periods. To further reduce
scanner noise in all periods and to minimize period length at the same
time, parallel imaging was used and no fat suppression was applied. A
TR of 1200 ms was used. Trial onset-to-onset delay (i.e., the time be-
tween trials) was 8400 ms. Five functional volumes were acquired for
each trial. For the main tests EPI-BOLD fMRI time series were obtained
from 24 transverse slices covering temporal lobes and the inferior part
of the frontal lobes with a spatial resolution of 3.5 x 3.5 x 3.5 mm,
including a 0.5 mm slice gap (TE = 30 ms, ascending slice order;
300 trials; GRAPPA 2; sequence = SCAN-SCAN-SCAN-SCAN-SCAN-
SILENT-SILENT; slice nr = 24; jittering: stimulus1 starts 200-800 ms
after silent pulse onset). In total, each test session included 300 trials.
The test was conducted as a single run lasting 45 min, including 4
half-minute breaks after each 8.4 min.

For the voice localizer there were 39 transverse slices and a longer
silent gap between acquisitions (TR = 2000 ms; sequence = SCAN-
SILENT-SILENT-SILENT-SILENT). Stimulus blocks of 8 s, corresponding
to vocal sounds, non-vocal sounds and silence were presented after
each volume. In total there were 20 blocks of each type (62 volumes in-
cluding one dummy scan at the beginning and one extra scan at the end).
All other parameters were identical to the main test settings. In addition
to the functional time series, a standard T1-weighted three-dimensional
scan using a turbo-field echo (TFE) sequence with 180 slices covering
the whole brain was collected for anatomical reference at the end of
the second scanning session, with 1 x 1 x 1 mm spatial resolution.

fMRI data analysis

Image preprocessing and statistical analysis were performed using
SPM5 (www.filion.ucl.ac.uk/spm). Phantom image files were added
before normal preprocessing to fill missing volume gaps (created by
scan-offs). These phantom images were removed again after design
specification but before model estimation by editing the design ma-
trices. The functional EPI-BOLD images were realigned, slice-time
corrected, spatially normalized, and transformed into a common ana-
tomical space, as defined by the SPM Montreal Neurological Institute
(MNI) T1 template. Next, the functional EPI-BOLD images were spa-
tially filtered by convolving the functional images with an isotropic
3D Gaussian kernel (10 mm FWHM). The fMRI data were then statis-
tically analyzed using a general linear model and statistical parametric
mapping (Friston et al.,, 2007). Every token pair was modeled as a sepa-
rate event, using constant epochs corresponding to the average token
length, starting from the onset of the second token. To account for differ-
ences in response times (RT), we also performed an a-posteriori confir-
matory analysis modeling each event (i.e. token pair) with an epoch
length equal to the RT specific to that trial, using the variable epoch ap-
proach as described by Grinband et al. (2008). As in the main analysis,
the onset of each epoch was positioned at the onset of the second
token (also corresponding to response time onset). For the main and

confirmatory analyses, condition regressors were constructed per
token pair type (Appendix B).

Regressors for silent trials and, to model potential movement artifacts,
realignment regressors for each run were also included. A high-pass filter
with a cycle-cutoff of 128 s was implemented in the design to remove
low-frequency signals. Single-subject fixed effect analyses were followed
by random effects analyses on the group level. The whole-volume
functional localizer run's statistical test was first thresholded at
p <.001 uncorrected at the voxel-level (in order to define the supra-
threshold clusters) and then family-wise-error (FWE) corrected at
the cluster level (p <.05). The main run's statistical tests were small-
volume corrected using the three significant clusters of the functional
localizer as regional masks, and therefore FWE-corrected at the voxel
level (p < .05).

Results
Flexibility in voice identity learning

During training, overall identification accuracy was 69%. As a large
proportion of the training stimuli came from the most ambiguous parts
of the morph continuum (Appendix A), this overall hit rate does not di-
rectly reflect poor performance, but rather a very demanding training re-
gime. Performance was much better for morph levels corresponding to
unambiguous parts of the continuum than for those corresponding to
ambiguous parts of the continuum (see Fig. 1). Identification accuracy
clearly improved across blocks, especially in week1 for the unambiguous
parts of the continuum (from 76% in block 1 to 92% in block 4). The in-
creased accuracy level that was reached in the last block of weekl
persisted over a one week delay and was found for all blocks in week2,
despite the fact that a new boundary had to be learned (see Fig. 1).

A repeated-measures ANOVA of behavioral responses at the final
block of training and during fMRI with the factors boundary (i.e., wheth-
er the trained voice identity category boundary was at morph36 or at
morph64) and level (training: morph1, 34, 46/54, 66, 99 — matched to
those used at test; test: morph5, 33, 50, 67, 95) confirmed that the
boundary manipulation led to a training-related shift in voice identity
judgments for ambiguous levels of the voice morph continuum
(Fig. 2; training: boundary F(1,14) = 855, p <.001, level F(4,56) =
730, p <.001, boundary x level F(4,56) = 146, p < .001, linear compo-
nent of the interaction F < 1, quadratic component of the interaction
F(1,14) = 738, p <.001; test: boundary F(1,14) = 19.3, p = .001,
level F(4,56) = 330, p <.001, boundary x level F(4,56) = 2.61, p =
.089, linear component of the interaction F < 1, quadratic component
of the interaction F(1,14) = 104, p = .006). Note that the training-
related shift in voice identity judgments for the ambiguous morph
levels, as reflected in the quadratic component of the boundary by
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Fig. 1. Voice identification accuracy per week and per training block, for ambiguous
and unambiguous parts of the continuum. ‘Ambiguous part’ and ‘unambiguous part’
correspond to morph levels that are less than 10 morph steps from the actually trained
voice identity boundary or more than 10 steps, respectively. Error bars represent stan-

dard error of the mean.
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Fig. 2. Voice categorization per voice identity boundary training condition during training and at test. (a) Training: categorization performance in the final training block of each
training session, data for morph levels matched to those used at test (e.g., morph50 refers to the average of two trained morph levels neighboring morph50). (b) Test: categoriza-
tion during scanning sessions, data for morph pairs with no change. Error bars represent standard error of the mean.

level interaction, was significant not only at the end of training but also
during the fMRI test. This is evidence that the within-participant,
across-week boundary manipulation indeed worked. The reason why
the boundary shift is smaller in the scanner than at the end of training
is likely to be because of the more demanding experimental settings
during fMRI: longer inter-trial intervals; voice pairs were presented
but responses had to be made on the second stimuli only; scanner
noise; and no feedback.

The proportion of correct decisions was used to judge decision diffi-
culty per condition. We found that at test peripheral-typical trials were
easier than central-typical trials (mean difference (%correct) = 7.66,
t(14) = 4.78, p < .001); and central-typical trials, in turn, were easier
than central-atypical trials (mean difference (%correct) = 7.54,
t(14) = 3.07, p = .008; Table 1). These differences in decision diffi-
culty were also reflected in RTs during fMRI Responses for peripheral-
typical trials were faster than those for central-typical trials (mean
difference (RT) = 107 ms, t(14) = 4.10, p <.001); and responses for
central-typical trials, in turn, were faster than those for central-atypical
trials (mean difference (RT) = 38 ms, t(14) = 2.55, p = .023).

Voice-selective regions

Voice-selective regions were defined in a separate localizer run
(Belin et al., 2000), contrasting vocal and non-vocal sounds (see
Methods). Four regions survived an uncorrected p <.001 threshold
(t(14) > 3.79): the bilateral STS and the bilateral IFC, but the left
IFC region did not reach a cluster-level family-wise error (FWE)
corrected level of significance (Table 2). These findings confirmed
that the voice-selective regions include both superior temporal and
inferior frontal regions.

Table 2
Voice sensitive regions as determined by the functional localizer.
Voice > non-voice Size (voxels) p (cluster-corr) t(14) X y z
Right STS 2647 <0.001 11.87 48 —32 4
10.81 60 0 -8
9.16 56 —20 -2
Left STS 2350 <0.001 896 —60 —16 4
857 —44 10 —24
832 —58 —44 16
Right IFC 467 0.002 6.24 56 18 24
5.14 42 14 32
4.94 48 6 34
Left IFC 30 0.785 498 —52 32 6

Height threshold was p < 0.001 (t(14) = 3.79). For each cluster, the table displays at
most 3 local maxima more than 8.0 mm apart.

Mean-based coding of acoustic properties

The effect of “distance from acoustic center” (i.e., distance from
morph50) was investigated by contrasting acoustically peripheral
and acoustically central stimuli. We predicted that, in regions that
code acoustic centrality, peripheral stimuli would elicit greater activity
than central stimuli, independently of how typical those stimuli are in
the feedback-driven identity space (i.e., peripheral-typical > central-
typical = central-atypical; Table 1). We found that only a single
voice-selective cluster in the right STS was sensitive to stimulus position
in the acoustic space set by the experiment (Table 3). In this region
response reduction was found for acoustically central compared to
peripheral voice stimuli. As this contrast controlled for short-term
adaptation effects (by presenting no-change morph pairs in each of
the contrasted conditions), we propose that the response reduction
found in the STS was caused by long-term adaptation or a neural sharp-
ening mechanism acting on a long-term stored representation in the
voice-acoustic space organized around the acoustic center. This finding
of mean voice representations in the right STS is similar to proposed
mean face representations in the fusiform face region (Loffler et al.,
2005). We suggest, however, that the mean voice we describe here is
derived from the experiment, and not from a life-time of experience

Table 3
Significant BOLD effects in the main analysis.

Contrast ROI p t(14) x y z

Long-term acoustic centrality

Peripheral-typical > central-atypical Right STS 0.003 6.63 64 —26 0

Peripheral-typical > central-typical ~ Right STS 0.008 5.79 66 —34 4

Long-term identity centrality

Central-atypical > central-typical Right [IFC  0.021 4.16 44 16 30

Central-atypical > peripheral-typical Right IFC 0.022 4.07 48 8 36

Short-term similarity

Coarse change > no change -

Coarse change to central > Right STS 0.050 4.47 66 —36 2
no change, central Left STS 0.022 498 —64 —20 O

Coarse change to peripheral >
no change, peripheral

Fine change between identities >
no change (matched)

Fine-change within identity >
no change (matched)

ROIs were defined using the voice localizer run's voice vs nonvoice contrast, thresholded at
p <.001 (uncorrected). Contrasts were thresholded at p <.001 (t(14) = 3.79). The table
displays FWE-corrected p values where significant. No significant effects were found with
these contrasts for other ROIs, nor with any further contrasts (e.g., with the reversed tests)
for any of these ROIs.
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(as in Loffler et al.), thus demonstrating the adaptive nature of the
mean-based code.

The long-term stored representation of the voice-acoustic space was
further investigated to see whether activity in the space was modulated
by voice identity training. We found no evidence suggesting that this
was the case, that is, there was no stronger response in the right STS
or anywhere else to morph33 for the test sessions where listeners
were trained on morph64 as the identity category boundary (i.e., to cen-
tral-typical stimuli) compared to the test sessions where listeners were
trained on morph36 (i.e., to central-atypical stimuli). This suggests that
the acoustic space representation was independent of voice identity
feedback.

A confirmatory analysis that modeled trial-specific RTs using a vari-
able epoch approach (Grinband et al., 2008; see Methods) yielded very
similar results for the same contrasts (Table 4), but note that in one of
these tests coding of acoustic centrality in the voice-selective STS was
found bilaterally. The similarity of results across analyses nevertheless
suggests that the STS findings cannot be explained by across-condition
differences in voice identity decision difficulty, as reflected in the RTs.

Mean-based coding of voice identity

The effect of “distance from identity boundary” (i.e., distance from
morph36 or morph64) was tested by contrasting identity-atypical and
typical stimuli. We predicted that in regions that code identity centrality,
identity-atypical would elicit greater activity than identity-typical stim-
uli, independently of how central or peripheral those stimuli are in the
acoustic space (i.e., central-atypical > central-typical = peripheral-
typical; Table 1). We found that only a single voice-sensitive cluster in
the right IFC was modulated by voice identity training (Table 3). In
this IFC region response reduction was found for the same voice stimuli
when trained as more prototypical versus less prototypical encounters
of a talker. This contrast controlled for both short-term adaptation ef-
fects (by presenting no-change morph pairs in each of the contrasted
conditions) and for acoustic variation (by contrasting conditions with
exactly the same stimuli, but after differing voice identity training).
We therefore propose that the response reduction found in the IFC
was caused by a neural sharpening mechanism acting on long-term
stored, prototype-centered representations in a voice identity space.

Table 4
Significant BOLD effects in the confirmatory analysis accounting for RTs.

Contrast ROI p t(14) X y z

Long-term acoustic centrality

Peripheral-typical > central-atypical Right STS 0.035 4.65 50 —28 6

Peripheral-typical > central-typical Right STS 0.029 4.73 54 —-26 4
Left STS 0.015 511 —58 —10 8

Long-term identity centrality
Central-atypical > central-typical Right IFC  0.004 5.15 50 8 38
Central-atypical > peripheral-typical Right IFC 0.032 3.67" 46 4 34

Short-term similarity
Coarse change > no change Right STS 0.059 4.38 66 —22 8
Left STS 0.016 524 —62 —24 16
Coarse change to central > -
no change, central
Coarse change to peripheral > -
no change, peripheral
Fine change between identities > -
no change (matched)
Fine-change within identity > -
no change (matched)

ROIs were defined using the voice localizer run's voice vs nonvoice contrast, thresholded
at p <.001 (uncorrected). Contrasts were thresholded at p <.001 (t(14) = 3.79). The
table displays FWE-corrected p values where significant. No significant effects were
found with these contrasts for other ROIs, nor with any further contrasts (e.g., with the
reversed tests) for any of these ROIs.

* Thresholded at p <.002 (t(14) = 3.44).

Importantly, this response reduction was found for acoustically
distant identity-typical voice stimuli that were associated with differ-
ent person identities. A repeated-measures ANOVA on percent signal
change values in the peak coordinate of the central-atypical vs
central-typical test in the right IFC [44, 16, 30] was also performed
with the factors voice identity (A, B) and identity centrality (identity-
typical, identity-atypical). Beyond an obvious main effect of identity
centrality (F(1,14) = 16.95, p = .001), we found no main effect of
voice identity (F< 1) and no interaction of the two factors (F < 1).
These data confirm that the identity centrality effect in IFC is equally pres-
ent for each of the two voice identities we tested. This suggests that IFC
maintains multiple prototype-centered voice identity spaces — perhaps
one for each voice identity.

Further analyses confirmed that the IFC findings are not caused by
across-condition differences in decision difficulty. First, no IFC modu-
lation was found for an analog contrast with a similar difference in
decision difficulty (Table 1) but without a difference in the distance
from the trained category boundary (namely, for the central-typical >
peripheral-typical contrast). Second, a confirmatory analysis that
accounted for RT differences on a trial-by-trial basis yielded the same
pattern of results (Table 4).

Rapid adaptation for voice changes in the STS

Further tests included non-identical morph pairs with coarse or fine
voice changes that, through comparison to identical morph pairs, were
used for investigating short-term adaptation effects. We demonstrated
short-term adaptation for voice stimuli in voice-sensitive regions of the
STS. Response reduction was found bilaterally in the STS for identical
voice stimulus pairs compared to voice pairs with a coarse voice change,
but no adaptation effect was found with a finer voice change. The loss of
adaptation effect with finer voice changes was not modulated by voice
identity properties (i.e., we found no adaptation in voice-selective
regions for either fine between-identity changes or for fine within-
identity changes). This pattern of activity indicates short-term coarse
acoustic processing in the voice-selective STS. Interestingly, however,
the adaptation effect with coarse voice changes was only present when
no-change stimuli were acoustically central, and disappeared when
no-change stimuli were acoustically peripheral. That is, short-term adap-
tation was modulated by long-term acoustic centrality in the voice-
sensitive STS (Table 3). Note that the RT-modulated follow-up analysis
confirmed the presence of the adaptation effect with coarse voice
changes, but note that it was modulated by acoustic centrality (Table 4).

Discussion

We aimed at specifying the role of voice-selective cortical regions
in maintaining long-term voice knowledge. Earlier studies have indi-
cated that voices may be represented in prototype-centered voice
spaces (Andics et al., 2010; Bruckert et al., 2010; Latinus and Belin,
2011; Latinus et al, 2009; Mullennix et al., 2009; Papcun et al.,
1989) and that the STS (Andics et al., 2010; Belin and Zatorre, 2003;
Latinus et al., 2011; Wong et al.,, 2004) and IFC (Andics et al., 2010;
Latinus et al., 2011) are core voice processing regions, showing
voice selectivity and short-term sensitivity to voice similarity. But
these voice-selective regions of the STS and the IFC have not previ-
ously been shown to be involved in long-term mean-based voice cod-
ing, and indeed there has to date been no other evidence of long-term
neural coding of voice prototypes. Here we performed an auditory
fMRI study combined with a training manipulation. Listeners were
trained on the same voice morph continuum but with different
voice identity category feedback on two consecutive weeks, each
time followed by scanning. After each training session, we could sep-
arately manipulate two perceptual properties of the voice stimuli:
their perceived acoustic centrality (independent of identity feedback)
and their perceived identity centrality (independent of acoustic
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properties). The main results are: (1) there is long-term encoding of
acoustic centrality of voices in the right STS, and (2) there is long-term
encoding of identity centrality in the right IFC (Figs. 3a, b). We also con-
firmed that the bilateral STS is sensitive to short-term acoustic similarity
of voices.

The present study therefore not only supports a hierarchical
model of voice recognition, that is, that there exist distinct voice
processing functions with distinct anatomical locations (Belin et al.,
2004), but, critically, it also characterizes the neural mechanisms
of these processing stages: our results provide evidence that both
long-term acoustic and identity processing mechanisms are based
on mean-based neural coding, and that these long-term codes are
maintained in voice-selective regions of the STS and the IFC.

With respect to the role of the STS, previous work has established that
regions of the bilateral (but right-lateralized) STS are voice-selective and
play a key role in voice recognition (Andics et al., 2010; Belin et al., 2000;
Formisano et al,, 2008; Gervais et al, 2004; Latinus et al, 2011; von
Kriegstein and Giraud, 2004; Warren et al., 2006) and talker normaliza-
tion in word recognition (Wong et al.,, 2004). Even though there is
agreement that the STS is a functionally highly heterogeneous region
(Beauchamp et al.,, 2004), with distinct subregions having different
properties and functions, even within the domain of voice processing
(von Kriegstein and Giraud, 2004), its exact role in the hierarchical
model of voice recognition is still debated. Crucially, there are differing
views on whether the voice-selective right STS is also involved in iden-
tity processing of voices (Warren et al., 2006), or whether it is involved
in acoustic processing exclusively (Andics et al., 2010; Latinus et al.,
2011). In other words, does STS keep track of who is speaking or does

B Acoustic centrality

a) B Voice sensitivity

0.8

0.6

0.4+

0.2

0 Supra-individual
voice space (STS)

STS IFC

-0.2

W peripheral > central [ atypical > typical

Intra-individual
11 voice space (IFC)

it only encode how the voice sounds in relation to other voices?
Andics et al. (2010) found that listeners' individual sensitivity to voice
similarities in a right mid STS region correlated with pre-scan voice rec-
ognition performance, but they suggested that this measure reflected
sensitivity to short-term acoustic similarity rather than long-term iden-
tity similarity. The present results show that the STS is involved in both
short-term acoustic processing and in long-term acoustic processing
(with a clear right-hemisphere dominance), but not in long-term iden-
tity processing.

We also tested for short-term identity sensitivity, but found no signif-
icant regions. Previous studies claiming to have found short-term identity
processing in the STS have possible acoustic confounds. Warren et al.
(2006) found that regions along the bilateral STS responded more strong-
ly to change than to no change of speaker. They argued that the STS
is therefore crucial for voice identity processing. However, this contrast
had possible acoustic biases, since the changing speaker condition
necessarily contained greater acoustic variation than the fixed speaker
condition. So these findings may be evidence of short-term acoustic
processing. The mid STS certainly appears to be a crucial stage of
the voice recognition pathway, but we suggest that it does not encode
person identity (i.e., intra-individual voice typicality) information.
Based on the present findings we can make the case that the voice-
selective right mid STS encodes acoustic centrality by maintaining a
supra-individual, feedback-independent, norm-based acoustical voice
space.

It should be noted that neural sharpening and long-term adaptation
(long-term in the sense that its time-scale is longer than a few seconds,
but still within the time-scale of the experiment and not over months or

[] 1dentity centrality Short-term sensitivity

D Acoustic-peripheral
[] 1dentity-atypical

[ Acoustic-central
Identity-typical

Fig. 3. Acoustic centrality and identity centrality representations of voices. (a) Contrast maps overlaid on a rendered brain, displaying voice sensitivity: voice vs nonvoice localizer
(red), acoustic centrality: peripheral-typical vs central-typical (blue), identity centrality: central-atypical vs central-typical (yellow) and short-term sensitivity: coarse change
(to central) vs no change (central) (green) contrasts. (All tests are thresholded at p <.001, t(14) = 3.79; and masked by the voice localizer, thresholded at p <.001, t(14) = 3.79.)
(b) Bar graph displaying percent signal change in the peak coordinate of the acoustic centrality test (peripheral-typical vs central-typical) in the right mid STS [66, — 34, 4] and in the
peak coordinate of the identity centrality test (central-atypical vs central-typical) in the right IFC [44, 16, 30]. Error bars represent standard error of the mean. (c¢) A schematic illustration
of mean-based representations of acoustic and identity properties in intra-individual and supra-individual voice spaces.
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years) are both possible (and plausible) neural mechanisms behind these
long-term acoustic centrality effects in the right STS. The present experi-
ment was not designed to distinguish between sharpening and adapta-
tion accounts. Instead, our study distinguishes between short-term and
long-term centrality effects, and between acoustic and identity effects.
Nevertheless, we argue that our findings demonstrate that STS responses
reference the central tendencies of the voice stimulus distribution, as de-
rived from the experiment, and not from a life-time of experience. This
is the phenomenon we refer to as ‘mean-based coding’, and it is indepen-
dent of the underlying mechanism. Note that the concept of the adaptive
mean-based codes for voices described here is in contrast with the pro-
posed life-long mean-based codes for faces in Loffler et al. (2005).

With respect to the role of the rIFC, the importance of prefrontal re-
gions in the processing of voices has been demonstrated only recently,
in extracellular recording experiments with primates (Romanski and
Goldman-Rakic, 2002; Romanski et al., 2005). These studies showed
that neurons in the macaque ventrolateral prefrontal cortex respond
stronger to conspecifics' vocalizations than to nonvocal auditory stimu-
li. An analog region with a similar response pattern was identified in the
human brain (Fecteau et al., 2005), responding more strongly to speech
and to nonlinguistic vocalizations than to non-voice stimuli, and to
emotional than to neutral vocalizations. Other studies have also sug-
gested that the IFC is involved in voice processing (Andics et al., 2010;
Bestelmeyer et al., 2012; Charest et al., 2013; Ethofer et al., 2009a;
Latinus et al., 2011; Stevens, 2004; von Kriegstein and Giraud, 2004,
2006), that IFC responses to voices are enhanced after learning more
about the voices (von Kriegstein and Giraud, 2006), and that the IFC
is sensitive to short-term voice-acoustic (Andics et al., 2010; Latinus
et al., 2011) and voice identity changes (Latinus et al., 2011). The pres-
ent study provides the first demonstration that individual voice identi-
ties are represented in a prototype-referenced manner in the human
prefrontal cortex. A single region in the right IFC responded more
strongly to identity-atypical than to identity-typical stimuli when all
acoustic properties of the stimuli were controlled. Our results thus sug-
gest that the right IFC contributes to long-term voice knowledge. More
specifically it appears to encode voice identity centrality (i.e., how far a
given voice stimulus is from an average of the listener's memory of
that specific person's voice). Recent findings in voice gender and
voice attractiveness processing come to similar conclusions. Charest
et al. (2013) proposed that the IFC reflects stimulus ambiguity and
long-term voice gender representations. Bestelmeyer et al. (2012) dem-
onstrated that less attractive voices elicit greater IFC activity, indepen-
dently of acoustic properties. These studies and the present findings
converge on the claim that the voice-sensitive IFC is involved in linking
voice representations to basic, long-term social concepts such as person
identity, person gender and person attractiveness.

Recently, Latinus et al. (2011) made an attempt to dissociate
acoustic from identity effects in voice processing, using a training
paradigm with voice morph continua, but despite these similarities
there are major design differences between it and the present study.
First, the study by Latinus and colleagues focused on short-term sensi-
tivity effects but was not designed to capture long-term effects. Stimu-
lus relations were systematically manipulated within morph pairs, but
there were no long-interval comparisons across the different types of
pairs. Their contrasts, however, were not free of long-term acoustic
effects. In the present study, however, the multi-level manipulation of
conditions (i.e., both within and across morph pairs) allowed us to iden-
tify effects of short-term and long-term similarity sensitivity simulta-
neously. Second, the acoustic and identity contrasts in the Latinus et
al. study were not fully independent. In the present study, in contrast,
the within-subject, multi-session training paradigm allowed us to test
for identity effects with acoustic variation fully controlled. In spite of
these design differences, our results can easily be reconciled with
those of Latinus et al. (2011). In our view, the results of both studies
converge in suggesting that the STS is involved in short-term acoustic
similarity processing. Latinus et al.'s findings also indicate that the IFC

is involved in short-term processing of either acoustic or identity simi-
larities of voices and in Andics et al. (2010) it was found to be involved
in short-term acoustic processing. In the present study, however, the
[FC was not found to be involved in short-term identity processing.
We therefore suggest that to date there is no convincing evidence for
the involvement of the IFC, and, in fact, of any other cortical regions,
in short-term identity processing. Instead, IFC appears to support
short-term acoustic processing and, critically, long-term voice identity
processing.

Andics et al. (2010) found that several other cortical regions
contribute to long-term identity-based voice knowledge, including a
deep posterior STS region, the anterior temporal poles and the amyg-
dala — but, unlike in the present study, not the voice-selective IFC. No
long-term effects in STS and IFC were found in Andics et al. (2010),
probably because these are not large effects and those findings were
based on whole volume tests only, while here we restricted our
search space to the voice-selective regions.

One important difference between the two studies is that here we
trained two voice identities, one at each endpoint of the morph con-
tinuum, while in the Andics et al. (2010) study a single voice identity
was trained, in the middle of the morph continuum. Consequently,
here we could ask whether there are multiple intra-individual voice
spaces maintained in a certain brain region — this could not test be
tested in the Andics et al. study. We indeed found that [FC's long-term
voice identity codes reference the central tendencies of each of the
two trained voice identities.

The present results show that short-term adaptation is not inde-
pendent of long-term acoustic centrality in the voice-sensitive STS.
One possibility is that this interaction could reflect differences in the
magnitude of the response in this STS region. But if that was the
only reason for the dependence, then we would expect greater
short-term adaptation effects for peripheral than for central stimuli,
proportional to the magnitude of the response. On the contrary, we
found that short-term adaptation is stronger for acoustically central
(i.e., more expected) than for acoustically peripheral (i.e., less expected)
stimuli: this is in accordance with recent findings demonstrating greater
short-term repetition suppression for expected than for non-expected
stimuli in category-selective regions (Andics et al., 2013; Summerfield
et al,, 2008). That is, although acoustically peripheral (less expected)
stimuli elicit greater brain responses than central (more expected) stim-
uli, it seems that the repetition of peripheral (less expected) stimuli
leads to weaker (and not to stronger) adaptation effects than the repeti-
tion of central (more expected) stimuli. This shows that the size of
a short-term adaptation effect may not necessarily be proportional to
the corresponding response magnitude. Short-term predictability
(whether in the short-term a stimulus is more or less expected) thus
seems more crucial in the case of a central (long-term more expected)
stimulus than in the case of a peripheral (long-term less expected)
stimulus.

In previous studies, short-term acoustically driven adaptation
effects were found in both the STS and the IFC (Andics et al., 2010,
2013). The discrepancy in short-term adaptation results between
the present study and that of Andics et al. (2010) is probably due to
differences in design. First, short- and long-term effects were tempo-
rally more distinct in this study. We presented voice pairs with a
within-pair stimulus-onset asynchrony (SOA) of 800 ms and an
across-trial SOA of 8400 ms. In the Andics et al. (2010) study single
stimuli were presented with an SOA of 2500 ms. So ‘short-term’
here means 800 ms, while in the earlier study it meant 2500 ms;
‘long-term’ here means at least 7000 ms (8400 minus 800 ms
minus maximal jitter of 600 ms), while in the previous study it
meant at least 5000 ms. So the time gap between adaptor and target
was shorter here, and the chance for carry-over from earlier trials was
lower. Second, listeners here had a voice A or voice B task, while in
the previous study there was a voice A or not A task. Third, here we
associated each voice with a name, while in the Andics et al. (2010)
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study the trained voice was associated with a name and a face. Fourth,
the present study had a classical adaptation design (with repetition
and alternation trials), similar to that in Andics et al. (2013), but
with a lower overall proportion, and thus a lower expectation of
repetition trials than in the (2010) study. Indeed, short-term adapta-
tion effects are known to be extremely sensitive to design details such
as time gap between adaptor and target stimulus (Grill-Spector et al.,
2006), possible carry-over from earlier trials (Aguirre, 2007), task
(Cohen Kadosh et al., 2010; Wagner et al., 2000), cross-modal associ-
ations during a pre-test training (Latinus et al., 2011), and attention
or expectation effects (Andics et al., 2013; Larsson and Smith, 2012;
Summerfield et al., 2008).

It is worth noting that we found mean-based voice coding almost ex-
clusively in the right hemisphere. This converges with clinical (Van
Lancker and Canter, 1982) and neuroimaging studies (Belin and Zatorre,
2003; von Kriegstein and Giraud, 2004) reporting greater sensitivity for
talker-related features of voice stimuli on the right side of the brain.

Furthermore, the voice learning task listeners were exposed to in
this study is very far from the complexity of voice learning under natural
circumstances. Many aspects of voice variability are not accounted for,
and it is possible that the mechanisms described here are not specific
for voice processing. Nevertheless, we argue that we have described
neural mechanisms that are crucial for voice identity processing. First,
our participants reported that they thought they had heard natural
voices only. Second, we first specified cortical regions that are known
to be selective for voices, using a well-established functional localizer
(as in Belin et al,, 2000), and then we tested how brain responses in
these voice-selective regions are modulated by voice stimuli's distribu-
tional properties and by voice identity feedback. So, rather than opti-
mizing for stimulus relevance and specificity, we optimized for
cortical relevance and specificity, and tried to characterize neural coding
mechanisms in brain regions that are clearly relevant for natural voice
processing. Third, in a behavioral study (reported in Chapter 3 of
Andics, 2013), we tested if voice recognition based on training with
the stimuli used here generalizes to other, untrained words. We found
that it does, even after a shorter training, and even to words with no
segmental overlap.

Appendix A. Training stimuli
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Finally, it is important to note that our findings should be general-
ized to other voice learning contexts only with caution. We did not
test whether prototype-centered category formation takes place in
other kinds of voice learning situations. Indeed, it has been argued
that category representations are in part determined by the learning re-
gime (Goldstone, 1994). Along these lines, Gentner and Margoliash
(2003) demonstrated that neural responses of starlings to conspecific
vocalizations are not independent of the training method. The findings
presented here are consistent with the mean-based coding account,
but further research is clearly required to fully understand how
human listeners cope with the difficulties of voice learning in less
constrained contexts.

In conclusion, we propose that the right middle STS processes incom-
ing voice stimuli with respect to their distance from the representation of
a supra-individual “mean voice” category (i.e., the average across talkers
of the listener's recent voice-acoustic history). This representation does
not seem to be biased by voice identity information, rather it collapses
across individual voices. The right IFC, in contrast, processes voice stimuli
with respect to their distance from representations of “individual mean
voices” that are the average of the listener's recent memories of the voices
of specific individuals. According to this view, the IFC maintains multiple
“individual mean voice” representations, one for each voice remembered
(see Fig. 3¢ for a schematic illustration of the proposed representations).
In this study, we presented the first evidence for this multilevel
long-term mean-based coding in voice-selective cortical regions.
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Trained voice identity ~ Trained identity boundary =~ Mean of all trained morphs

Stimulus morph levels used during training

A 36 26
B 36 46
A 64 54
B 64 74

1
37
1
65

10 17 22 25 27 28 29 30 31 32 34 34 35 35
37 37 38 38 38 39 39 39 40 42 46 55 66 99
34 45 54 58 60 61 61 61 62 62 62 63 63 63
65 66 66 68 69 70 71 72 73 75 78 83 90 99

Appendix B. Experimental conditions as defined by token pair types of the fMRI tests. For example, ‘05_50_b36’ refers to the token pair
type in which the first stimulus was morph 05, the second stimulus was morph50, and the trained identity boundary was at morph36
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