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Abstract
Methylphenidate is a psychostimulant medication that produces improvements in functions
associated with multiple neurocognitive systems. To investigate the potentially distributed effects
of methylphenidate on the brain’s intrinsic network architecture, we coupled resting state imaging
with multivariate pattern classification. In a within-subject, double-blind, placebo-controlled,
randomized, counterbalanced, cross-over design, 32 healthy human volunteers received either
methylphenidate or placebo prior to two fMRI resting state scans separated by approximately one
week. Resting state connectomes were generated by placing regions of interest at regular intervals
throughout the brain, and these connectomes were submitted for support vector machine analysis.
We found that methylphenidate produces a distributed, reliably detected, multivariate neural
signature. Methylphenidate effects were evident across multiple resting state networks, especially
visual, somatomotor, and default networks. Methylphenidate reduced coupling within visual and
somatomotor networks. In addition, default network exhibited decoupling with several task
positive networks, consistent with methylphenidate modulation of the competitive relationship
between these networks. These results suggest that connectivity changes within and between
large-scale networks is potentially involved in the mechanisms by which methylphenidate
improves attention functioning.
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Methylphenidate (MPD) is a psychostimulant medication that is a highly efficacious and
widely prescribed treatment for attention deficit hyperactive disorder (ADHD). MPD
produces improvements in attention, motoric control, executive processing, and memory
(Swanson et al., 2011)—cognitive functions associated with distributed neurocognitive
systems. Previous studies have emphasized MPD effects on specific brain regions during
tasks specifically tailored to elicit selective activation (Cortese et al., 2012). More global
patterns of MPD effects on connectivity across distributed brain networks are still poorly
understood.

Intrinsic connectivity networks (ICNs) consist of distributed brain regions exhibiting
coherent activity (Greicius et al., 2003), and which are reliably detected (Damoiseaux et al.,
2006) from low-frequency oscillations of the blood oxygenation level dependent (BOLD)
signal during the resting state. Convergent evidence indicates that ICNs constitute
fundamental organizational elements of human neural architecture (Beckmann et al., 2005;
Laird et al., 2011). Individual ICNs have been implicated in specific neurocognitive
functions such as attention control and somatomotor processing (Menon and Uddin, 2010;
Yeo et al., 2011). Moreover, aberrant connectivity within specific ICNs is linked to
clinically-relevant symptom dimensions across psychiatric disorders (Menon, 2011). Thus
investigating alterations in ICNs during the resting state constitutes a powerful method to
understand distributed effects of acute drug administration.

A number of specific ICNs may be targets of MPD effects. The default mode network
(DMN) is a network of midline and lateral parietal regions that is implicated in internally
directed mentation (Raichle et al., 2001) and lapses of attention (Weissman et al., 2006), and
it exhibits a competitive relationship with task-positive networks (Corbetta and Shulman,
2002), such as dorsal and ventral attention networks and frontoparietal control network.
Previous task-based fMRI studies (Liddle et al., 2011; Nagano-Saito et al., 2008; Peterson et
al., 2009; Tomasi et al., 2011) have suggested the competitive relationship between these
networks (Fox et al., 2005) is enhanced by dopamine. Thus we hypothesized that MPD
would produce greater segregation between DMN and task-positive networks during the
resting state. We also had a priori hypotheses about MPD effects on motor processing
networks and visual network. Existing circuit models propose dopamine-mediated
interactions between striatum and motor cortex (Alexander et al., 1986) as well as striatum
and cerebellum (Hoshi et al., 2005), and previous fMRI studies with acute administration of
dopamine modulators [L-dihydroxyphenylalanine (L-Dopa), cocaine] found altered
connectivity in multiple motor regions including striatum, cerebellum, and motor cortex
(Cole et al., 2012; Kelly et al., 2009; Li et al., 2000). Additionally, Li and colleagues (2000)
found that cocaine reduced connectivity within visual cortex, with evidence suggesting that
greater decoherence in visual cortex is associated with high attention states (McAvoy et al.,
2012; Nauhaus et al., 2009). Thus we predicted that MPD would modulate resting state
connectivity in motor regions including striatum, somatomomotor network, and cerebellum,
and would reduce connectivity within visual network.

Seed-based methods are commonly used to investigate functional connectivity. These
methods have the advantage of identifying connectivity changes at well-defined regions, but
are they also restricted to investigating a single, or a handful, of selected regions, and require
potentially arbitrary choices of which a priori regions to investigate. In this study we
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coupled two methods that help to overcome restrictions with standard seed-based methods.
We used connectomic imaging methods to identity functional connectivity pairwise between
1080 regions of interest (ROIs) placed at regular intervals throughout the brain.
Additionally, we used multivariate pattern classification, which allows connectivity across
multiple regions and networks to simultaneously inform classification decisions (Heinzle et
al., 2012).

Methods and Materials
Participants and pharmaco-fMRI design

In this within-subject, double-blind, placebo-controlled, randomized, counterbalanced,
cross-over study, 32 right-handed healthy volunteers (16 females; age 20.6 +/− 2.0 years,
range 18–27) participated in two fMRI scanning sessions separated by approximately 1
week. Participants received either 40mg MPD or PBO 60 minutes prior to resting state
scanning. The dose of MPD was higher than typically used in clinical practice in order to
enhance blood levels, and predicted psychological and neural effects, in an acute dosing
context, consistent with recent studies (Clatworthy et al., 2009; Schlosser et al., 2009b).

All participants completed a Visual Analogue Scale (VAS) immediately prior to drug
ingestion as well as 30, 60, and 140 minutes afterwards (Figure 1). This scale consists of 20
items that measure cognitive and emotional state using adjective descriptors (e.g.,
‘stimulated’, ‘drowsy’), and responses were recorded on 4-inch bars anchored with ‘Not At
All’ and ‘Extremely’. Post-ingestion measures were adjusted by subtracting baseline
responses immediately prior to drug ingestion. They were then compared between PBO
versus MPD sessions via repeated measures ANOVA.

Resting State Paradigm
During resting state scans, a black fixation cross on a white background was displayed in the
center of the screen for 6 minutes. Participants were instructed to relax and keep their eyes
open and fixed on the cross. Participants next completed an attention control task and a
decision-making task, which are described in a separate report. Heart rate and respiration
measurements were acquired for group comparisons using paired t-tests.

Magnetic Resonance Imaging Image Acquisition
MRI scanning occurred on a Philips 3.0 Tesla Achieva X-series MRI (Best, The
Netherlands). We obtained a medium resolution T1-weighted anatomical scan, 180
functional volumes with a T2*-weighted, echoplanar acquisition sequence [GRE; repetition
time, 2000 ms; echo time, 25ms; flip angle, 90°; field of view, 22cm; 42 slice; thickness/
skip, 3.0/0mm matrix size equivalent to 64×64], and a high-resolution T1-weighted scan for
anatomic normalization [26cm FOV; thickness/skip, 1.0/0mm].

Preprocessing
A standard series of processing steps was performed using statistical parametric mapping
(SPM8; www.fil.ion.ucl.ac.uk/spm). Scans were reconstructed, slicetime corrected
(sequential ascending), and realigned to the first scan in the experiment to correct for head
motion, and co-registered with the high-resolution T1-weighted image (the medium-
resolution T1-weighted image was co-registered with the functional scans as an intermediate
step and then the high-resolution T1-weighted image was coregistered with the medium-
resolution T1-weighted image). Normalization was performed using the voxel-based
morphometry toolbox implemented in SPM8. The high-resolution T1-weighted image was
segmented into tissue types, bias-corrected, registered to MNI space, and then normalized
using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra
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(DARTEL) (Ashburner, 2007). Smoothing of functional data was performed with an 8mm3

kernel. Motion parameters were checked in order to identify and exclude all scans with
greater than 2mm movement. Summary motion statistics were calculated (mean
displacement, mean angle) and were compared across drug conditions via paired samples
Wilcoxon signed rank tests to account for non-normally distributed data.

In order to produce a whole-brain resting state functional connectome, we placed 4.25mm
radius ROIs encompassing 19 3x3x3mm voxels in a regular grid spaced at 12mm intervals
throughout the brain, yielding 1080 ROIs in total. Spatially averaged time series were
extracted from each of these ROIs. White matter and cerebrospinal fluid masks were
generated from the VBM-based tissue segmentation step noted above, and eroded using
FSL-Erode to eliminate border regions of potentially ambiguous tissue-type. Next,
regression was performed to remove the effects of nuisance variables, including six motion
regressors generated from the realignment step, as well as their first derivatives, and the top
five principal components of the BOLD time series extracted from each of the white matter
and cerebrospinal fluid masks—a method that has been demonstrated to also effectively
remove signals arising from the cardiac and respiratory cycle (Glover et al., 2000). The
time-series for each ROI was band-passed filtered in the .01 – .10 Hz range, and Pearson
product-moment correlation coefficients were then calculated pairwise between time courses
for each of the 1080 ROIs, yielding 582,120 total features. A Fisher’s r-z transform was
applied to improve distributional properties of the correlation values.

Multivariate pattern classification
Feature pruning

We utilized univariate feature pruning (Guyon and Elisseeff, 2003) to remove features
unrelated to classification and to accelerate computation, consistent with recent fMRI
pattern classification studies (Mwangi et al., 2012; Zeng et al., 2012). For each feature, a
paired sample t-value was calculated for the MPD versus PBO maps. Features were ranked
by the magnitude of t-value (unsigned) and the top n features in this ranking were retained
for classification. Based on pilot testing of other pharmaco-fMRI datasets (Sripada and
Phan, personal communication), pruned feature sets of sizes {50, 100, 500, 1000, 5000,
10000, ALL} were initially tested, with additional values to be tested if relatively clear
accuracy peaks failed to be identified.

Classification and performance evaluation
We used support vector machine (SVM) (Cortes and Vapnik, 1995) implemented in
SVMlight (Thorsten Joachims, http://svmlight.joachims.org/). We used softmargin SVM that
allows some misclassifications in order to obtain a wider classification margin (the C
parameter was set to the SVMlight default: [avg x*x] ^-1, where x is the feature vector), and
a linear kernel. Classifier accuracy was assessed with leave-one-out cross-validation
(LOOCV). Feature pruning was performed within each fold of the LOOCV to avoid bias.
Classifier performance was compared with a binomial distribution B(p,n), with p=0.5 and
n=32 samples (Bishop, 2007; Heinzle et al., 2012). Because a slightly different set of
features was retained during feature pruning at each fold of the LOOCV, we identified the
‘consensus connectome’, i.e., the subset of features that were retained at every fold of the
LOOCV (Dosenbach et al., 2010; Zeng et al., 2012), as the basis for visualization and
interpretation.

Visualization
Nodes in the consensus connectome were labeled according their network affiliation. We
utilized the network parcellation of Yeo and colleagues (Yeo et al., 2011) who investigated
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resting state networks in 1000 healthy individuals. Their parcellation has the advantage of
being derived from grid-based connectomic methods applied to resting state scans, highly
similar to the current study. Given strong a priori hypotheses about MPD effects on striatal
connectivity (Kelly et al., 2009), the Yeo parcellation map was augmented with an
additional striatal mask, created using the AAL system (Tzourio-Mazoyer et al., 2002), in
order to label any nodes that fell within this region.

Paired SVM
In this within-subject pharmaco-fMRI study, each subject underwent two scanning sessions
and produced two connectivity maps, one from their PBO session and one from their MPD
session. In order to account for the within-subject nature of the data, we utilized a ‘paired
SVM’ approach that uses delta maps produced by subtracting each subject’s drug and
placebo maps against each other as the basis for classification. Though the paired SVM idea
(Scholkopf et al., 2001) and related approaches (Connolly and Liang, 1988) have been
discussed and formalized in the literature, they are not widely used by researchers, and thus
we expand on the rationale for this approach below.

Within-subject designs are often used in order to provide information about the differential
contribution of the intervention condition on neural activation, over and above some
baseline. That is, it is assumed subjects vary in neural activation at baseline, and the goal is
to discern whether the intervention differentially affects the brain, factoring out this baseline
variation. In univariate parametric statistics, a paired t-test is used for this purpose. This test
computes delta maps between the intervention condition and baseline, and performs
statistical tests on these delta maps. Paired SVM offers an analogous approach in the SVM
framework.

Suppose that MPD does in fact produce highly reliable changes in functional connectivity.
For example, suppose that relative to PBO baseline, MPD reliably increases connectivity in
edges i1…ii and reliably decreases connectivity in edges d1…dj. But let us also suppose that
each subject has a variable baseline, so that while the differential change induced by MPD
relative to PBO baseline is highly reliable, the actual connectivity values observed during
MPD at features i1…ii and d1…dj vary considerably across subjects. Given these
suppositions, consider the unpaired versus paired approaches to SVM classification.

An unpaired SVM approach ignores the within-subject structure of the data. Each scan is
labeled as ‘PBO’ or ‘MPD’ and the SVM classifier attempts to learn how to distinguish
these two classes. The trained classifier is then applied to new test examples and attempts to
predict whether they are from the class ‘PBO’ versus ‘MPD’. The problem with this
approach is most apparent when we consider certain kinds of test cases. Suppose a certain
subject, S*, has unusually high baseline connectivity in features i1…ii and/or unusually low
connectivity in features d1…dj. Nonetheless, MPD exerts the same directional effect for this
subject as it does for other subjects with more usual baseline values—that is, MPD increases
connectivity in in features i1…ii and decreases connectivity in features d1…dj. An unpaired
SVM classifier will tend to predict that this subject’s PBO scan is from the class ‘MPD’,
owing to this subject’s unusual baseline values in features i1…ii and d1…dj. To prevent this
result, and more generally to account for each subject’s potentially variable baseline
connectivity, we need some way to provide the classifier with richer information not simply
about the value of features, but rather about the differences in values for features across
PBO versus MPD conditions.

In a paired SVM approach, rather than contributing a PBO and MPD map, each subject
instead contributes an MPD-PBO map and PBO-MPD map, and the classifier attempts to
distinguish the ‘MPD-PBO’ class from the ‘PBO-MPD’ class. Note that each subject’s
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MPD-PBO example will differ from that subject’s PBO-MPD example by reversal of sign
on all the features. As a consequence, the optimal hyperplane will be unbiased, i.e., a
hyperplane that goes through the origin. Despite this restriction on the placement of the
optimal hyperplane, the paired SVM classification problem is still well posed and,
importantly, it addresses the critical question of differential effects that was not possible to
address in the unpaired framework. In order to learn the difference between MPD-PBO
versus PBO-MPD delta maps and successfully generalize to new examples, the paired SVM
classifier must learn which are the features at which MPD reliably exerts additional effects
over and above PBO baseline. In particular, given our supposition that MPD reliably
increases connectivity in edges i1…ii and reliably decreases connectivity in edges d1…dj,
then the weight vector of a trained paired SVM classifier will reflect the importance of
features i1…ii and d1…dj in distinguishing MPD-PBO maps from PBO-MPD maps. Recall
that cases like subject S* (who had unusually high baseline connectivity in features i1…ii
and/or unusually low baseline connectivity in features d1…dj) presented a problem for
unpaired SVM. However, a paired SVM classifier that has been trained to distinguish MPD-
PBO versus PBO-MPD maps will not have any special trouble with S*. By posing the
classification problem in terms of delta maps, we have controlled for each subject’s
potentially variable baseline, and have forced the classifier to focus on the differential
effects of MPD over and above PBO baseline. In short then, within-subject designs are often
used to address questions about the effects of an intervention over and above baseline. A
paired SVM represents an attractive way to address this type of question in an SVM
framework.

In using paired SVM in the context of a leave-one-out cross-validation procedure, we
performed the following steps. First, we calculated MPD-PBO and PBO-MPD delta maps
for each of n subjects, yielding n*2 maps. Next, at each fold of the LOOCV procedure, we
trained a two-class linear SVM classifier on the delta maps from all the subjects except the
subject held out. That is, the classifier was presented with (n-1)*2 examples. This trained
classifier was next used to assign class labels to the two examples from the held out subject,
and mean accuracy across all folds of the LOOCV was computed.

In an online technical report (Scott, 2012; http://www.eecs.umich.edu/techreports/systems/
cspl/cspl-412.pdf), we demonstrate that two-class linear SVM on delta maps is formally
identical to a theoretically and empirically validated variant of SVM called one-class SVM.
This is analogous to the fact that paired-sample t-tests are formally identical to one- sample
t-tests performed on delta maps. The connection between our paired SVM approach and
one-class SVM has an added advantage of suggesting how to extend the method to use of
non-linear kernels, which could aid in detection of complex interactive effects among
features in classification of within-subject data. Since one-class SVM is not as well known
or as easily available to researchers, we continue to present our results in terms of two-class
SVM on MPD-PBO and PBO-MPD delta maps. This way of presenting the analysis is
simpler and more intuitive, and makes available to researchers a powerful way in the two-
class SVM framework to classify paired maps that arise from within-subject designs.

Results
Participants’ subjective reports of drug effects on the VAS scale were significantly different
during the MPD session versus PBO sessions. There was a significant main effect of
treatment, such that during the MPD session, participants were more ‘stimulated’ (p<0.039),
‘energetic’ (p<0.007), ‘alert’ (p<0.002), and ‘focused’ (p<0.026 ), and less ‘tired’ (p<0.013),
and ‘drowsy’ (p<0.048). Of note, no treatment x time point interaction was observed.
Participants' own guesses of whether they received MPD versus PBO did not deviate from
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chance at any time point immediately prior to, and after (30, 60, 140 minutes) drug ingestion
(binomial tests: all p’s>0.59).

Motion and physiological data
There were no movements greater than 2 millimeters for any session. Participants’ PBO and
MPD sessions did not differ in mean spatial displacement or mean angle (Wilcoxon signed
ranked tests: p’s>0.68), or in heart rate or respiratory rate (paired t-tests: p’s>0.70).

Pattern Classification Analysis
We found accuracy peaks at both 50 and 500 features (Figure 2). With 50 features in the
pruned feature set, the classifier exhibited 81% accuracy (p = 0.001; binomial test) in
classifying the delta maps (MPD-PBO and PBO-MPD) of each withheld subject, while with
500 features accuracy was 78% (p = 0.002; binomial test). Accuracy was comparable to that
achieved in a recent fMRI pattern classification of MPD effects during a working memory
task (Marquand et al., 2011). We report the results for both classifiers (i.e., 50 and 500
features). Of note, even though classification accuracy was slightly better at 50 features,
performance at both feature set sizes is quite similar, and other things being more or less
equal, a larger feature set should have better resolution in reflecting the way edges are
distributed across networks (i.e., this pattern should be less susceptible to chance variation
due to there being too small a sample of edges).

50 feature classifier—With 50 edges in the pruned feature set, there were 26 edges in the
consensus connectome, i.e., the set of edges that contributed to classification across all folds
of the LOOCV. Edges of the consensus connectome were concentrated in just a few major
networks. In particular, 23 of the 26 edges involved three networks (that is, at least one node
associated with these 23 edges was in these three networks): visual network (14 edges),
somatomotor network (9 edges), and default network (6 edges). The visual network
exhibited 10 intra-network connections. The default network decoupled with two task
positive networks, ventral attention network (2 edges) and somatomotor network (1 edge).
The cross-tabulation of edges with respect to the seven ICNs as well as striatum is shown in
Table 1.

Baseline connectivity under PBO and change under MPD: The mean connectivity during
PBO for edges in the consensus connectome was 0.29 (Pearson’s r) and was greatest in
edges that were entirely within the visual network (Figure 3). For the 10 edges that were
entirely within the visual network, mean baseline connectivity was r=0.52, while the
remaining edges exhibited baseline correlation of 0.10. Most edges decreased in strength in
the MPD session compared to the PBO session (22 of 26 decreased; see Table 1, Figure 3).
Mean changes in correlation were similar within visual network compared to outside visual
network (within visual: delta r =0.14, delta z=0.17; outside visual: delta r=0.14, delta
z=0.14).

500 feature classifier
Network affiliation of consensus edges: With 500 edges in the pruned feature set, there
were 240 edges in the consensus connectome (Table 2). Similar to the 50 feature classifier,
edges of the consensus connectome tended to be concentrated in just a few major networks.
In particular, 228 of the 240 edges involved three networks (that is, at least one node
associated with these 228 edges was in these three networks): default network (80 edges),
somatomotor network (79 edges), and visual network (69 edges). Three task positive
networks were also well represented in the consensus connectome: dorsal attention network
(28 edges), ventral attention network (34 edges), and frontoparietal network (23 edges). The
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visual network and somatomotor network exhibited a substantial number of intra-network
connections. In both networks, there were 27 edges within the network that decreased in
strength (Figure 4a and 4c). The default network exhibited decoupling with major task-
positive networks (Figure 4e) including somatomotor network (13 edges) and ventral and
dorsal attention networks (10 edges). It also decoupled with limbic network (10 edges),
especially with medial and lateral orbitofrontal regions.

Baseline connectivity under PBO and change under MPD: Similar to the 50 edge
classifier, mean connectivity during PBO was greatest in edges that were entirely within the
visual network (r=0.59). Excluding visual network, mean baseline connectivity in the
consensus connectome was weaker, but still modestly positive (r=0.12). Again, similar to
the 50 feature classifier, a substantial majority of the edges in consensus connectome
decreased in strength in the MPD session compared to the PBO session (172 of 240
decreased; see Table 2, Figure 4). The 68 edges that increased in strength primarily linked
pairs of regions that were in networks associated with attention and motor control, including
the ventral attention network, somatomotor network, and striatum. Mean changes in
correlation were similar within visual network compared to outside visual network (within
visual: delta r =0.11, delta z=0.16; outside visual: delta r=0.14, delta z=0.14).

Discussion
We investigated the distributed effects of MPD on the network structure of the resting brain
using connectomic imaging coupled with multivariate pattern classification. We demonstrate
that MPD produces a reliable multivariate neural signature. MPD’s effects were evident
across several ICNs, including visual, somatomotor, and default networks. Methylphenidate
reduced coupling within visual and somatomotor networks. In addition, default network
exhibited decoupling with several task positive networks, consistent with methylphenidate
modulation of the competitive relationship between these networks. These results suggest
that connectivity changes within and between large-scale networks is potentially involved in
the mechanisms by which methylphenidate improves attention functioning. Moreover, this
study goes beyond existing seed-based connectivity methods and demonstrates that
connectomic imaging coupled with multivariate pattern classification can delineate the
distributed effects of acute drug administration on large-scale brain networks.

We found that MPD produced widespread changes in patterns of connectivity across
distributed resting state brain networks. These diffuse alterations are consistent with known
cellular and systems level effects of the drug. MPDs mechanism of action involves blockade
of dopamine and norepinephrine re-uptake transporters (Volkow et al., 2002). Positron
emission tomography (PET) shows that MPD significantly increases levels of extracellular
dopamine in striatum (Schiffer et al., 2006; Volkow et al., 2002; Volkow et al., 1998), as
well as prefrontal and thalamic brain regions (Montgomery et al., 2007), while it increases
norepinephrine availability in thalamus, locus coeruleus, and to a lesser extent, medial and
lateral PFC (Hannestad et al., 2010). These neurotransmitters are in turn implicated in
fundamental regulatory functions that impact distributed circuits, including attention
networks (Arnsten and Li, 2005; Nieoullon, 2002; Posner and Rothbart, 2007; Ramos and
Arnsten, 2007), motor processing regions (Brooks, 2001), and mesolimbic circuits involved
in motivation and reward (McClure et al., 2003; Robbins, 2005). Previous fMRI studies
have examined MPD effects primarily in the context of cognitively demanding tasks (Liddle
et al., 2011; Marquand et al., 2011; Mehta et al., 2004; Peterson et al., 2009; Rubia et al.,
2009). The present study extends these results by providing clear evidence that during the
resting state, even in the absence of cognitive task performance, MPD produces a
distributed, reliably detected multivariate neural signature.

Sripada et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



With both the 50 and 500 feature classifiers, the consensus connectomes included multiple
edges within visual network that deceased in connectivity under MPD (Figure 3a). This
result is consistent with a previous resting state fMRI study by Li and colleagues (Li et al.,
2000) who used a seed-based approach and found reduced connectivity within visual cortex
due to cocaine, a potent releaser of synaptic dopamine. One interpretation of this finding is
in terms growing evidence that links diminished neuronal coherence within visual cortex,
especially between homotopic regions, with enhanced attentional states—for example eyes
open versus eyes closed rest (McAvoy et al., 2012) and strong visual stimulation (Nauhaus
et al., 2009). This hypothesis is further supported by a pharmaco-fMRI study (Ricciardi et
al., 2012) that found physostigmine, an acetecholinesterase inhibitor that increases alertness
and attention, reduces connectivity within the visual network during attention processing.
Thus it is possible that our finding of decreased in connectivity within the visual network
during MPD sessions reflects a high attention state produced by the drug.

With both the 50 and 500 feature classifiers, we observed prominent effects of MPD on the
resting state connectome involving the somatomotor network (Figure 3, Figure 4c, Figure
4d), and striatal regions (Table 1 and Table 2). These results are consistent with existing
circuit models that propose dopamine-mediated interactions between striatum and motor
cortex (Alexander et al., 1986) as well as striatum and cerebellum (Hoshi et al., 2005).
Previous fMRI studies have found that dopamine modulators including MPD and L-dopa
enhance activation in motor regions including striatum, primary and secondary motor cortex,
and cerebellum (Muller et al., 2005; Schlosser et al., 2009a), and normalize the activation
deficits in these regions observed in patient populations such as ADHD and Parkinson’s
(Buhmann et al., 2003; Haslinger et al., 2001; Rubia et al., 2009). Our findings thus add to
recent evidence involving other dopamine modulators [e.g., L-dopa (Cole et al., 2012; Kelly
et al., 2009); haloperidol (Cole et al., 2012; Tost et al., 2010)], in suggesting that
dopaminergic modulation of motor processing regions observed during task are also evident
during the resting state.

We found in evidence from the 500 feature classifier that multiple regions of default
network reduced their coupling with task positive ICNs including ventral attention network,
dorsal attention network, and somatomotor network (Figure 4e). Default network regions
also decoupled with medial and lateral orbitofrontal regions, which in previous studies have
been associated with attention control (Hampshire and Owen, 2006) and emotion regulation
(Ochsner and Gross, 2005). One interpretation of this finding is in terms of increased
segregation between default network and task positive ICNs, which may also be related to
the mechanism by which MPD produces enhanced attention functioning (Sonuga-Barke and
Castellanos, 2007). During externally-oriented tasks, the DMN and task positive networks
exhibit reciprocal interactions (McKiernan et al., 2003) with increased task-related activity
related to suppression of DMN activity. DMN intrusion during tasks associated with lapses
of attention (Weissman et al., 2006), and poorer task performance. suggesting that
information processing in task-positive networks is optimized when default network
intrusions are reduced. Moreover, dopaminergic modulation appears to alter the relationship
between DMN and task positive ICNs. In particular, during attention tasks, methylphenidate
administration increases activation of task positive regions and deactivation of DMN (Liddle
et al., 2011; Peterson et al., 2009; Tomasi et al., 2011), while dopamine depletion reduces
task-induced deactivations (Nagano-Saito et al., 2008). The reciprocal relationship between
DMN and task-positive ICNs is also present during the resting state (Fox et al., 2005), and
the degree of segregation between these two networks may be an important determinant of
attention functioning (Sonuga-Barke and Castellanos, 2007; Sripada RK, in press). For
example, Kelly and colleagues (2008) found that the degree of anti-correlation of these
networks during the resting state predicted reaction time variability in a subsequent attention
task. Of note, correlated activity between regions and networks is taken to represent
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information-processing relationships (Bressler and Menon, 2010). Thus, somewhat
speculatively, greater correlation between default and task-positive networks may represent
increased interference by default network processes in task-positive operations. Overall, our
finding that MPD produces reduces coupling of DMN and task positive ICNs thus adds to
the evidence that dopamine enhances the competitive relationship between these networks,
and raises the possibility that greater network segregation is involved in the mechanism by
which MPD improves attention functioning.

This study has several limitations and raises issues that require further study. First, we
performed resting state scanning roughly 60 minutes after administration of MPD, consistent
with prior studies (Peterson et al., 2009; Rubia et al., 2009; Schweitzer et al., 2004).
However, there is evidence that MPD produces peak effects roughly 90–120 minutes after
administration (Muller et al., 2005; Wargin et al., 1983). Our placement of resting state
scans prior to the peak window of methylphenidate effects may thus have resulted in
diminished MPD effects and contributed additional variance, since drug-levels tend to be
more stable after peak levels have been reached. Second, we used a grid-based parcellation
method that places 1080 ROIs at regular intervals throughout the brain. This method uses
partial sampling and averaging to down-sample the data, enhancing computational
feasibility, but potentially losing useful discriminative information. Compared to other
anatomical (e.g., Zeng et al., 2012) or functional (e.g., Dosenbach et al., 2010) parcellation
schemes, our grid-based method does require placing substantially more ROIs, and thus may
contribute many more irrelevant features to the classifier. It nonetheless has the advantage of
minimizing a priori assumptions about the spatial distribution of methylphenidate effects.
Future studies should directly compare the effectiveness of different ROI placement
methods for connectomic fMRI pattern classification studies.

Our interpretation of decreases in functional connectivity in terms of network segregation
requires clarification. We avoided use of global signal correction (‘global regression’) on
our resting state time series because the method is capable of introducing artifactual negative
correlations (Anderson et al., 2011a; Murphy et al., 2009). We used an alternative method
for removing non-neuronal noise—WM/CSF correction with principal components analysis
(see Methods for details)—which is unlikely to introduce these artifacts, though it may
allow residual non-neuronal signals to persist (Fox et al., 2009). A main finding of this study
is that MPD primarily produced decreases in connectivity, with MPD-attenuated edges
exhibiting modest positive correlation during PBO, which became near zero, or weakly anti-
correlated under MPD. We interpret this finding in terms of uncoupling of these regions due
to MPD. However, another interpretation is possible if global noise remained in our resting
state time series, despite our attempts at correction. If this is the case, it is likely we
overestimated the baseline correlation at these edges, and these regions were in fact
uncorrelated at baseline, and became modestly anti-correlated as a result of MPD [for a
related discussion, see Anderson and colleagues (2011b)]. Thus our hypothesis of increased
network segregation due to MPD might be interpreted either in terms of uncoupling or anti-
correlations of networks depending on whether or not significant global noise remained in
our data.

The methods used in this paper—connectomic imaging and multivariate pattern
classification with paired SVM—have wide applicability in pharmaco-fMRI investigations.
Psychoactive compounds are often predicted to affect distributed neurotransmitter systems
(Cooper et al., 2002), producing widespread affects across the brain. In this context,
standard seed-based methods coupled with mass univariate analysis present a dilemma for
researchers. If just one or a handful of seeds are used, effects may be missed either due to
erroneous a priori seed placement or failure to place seeds at all in certain regions. If too
many seeds are used, the need to correct for multiple comparisons can dramatically reduce
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power to detect effects. The multivariate connectomic methods used in the present study
avoid this dilemma and provide researchers with a novel approach for investigating
connectivity changes throughout the brain, while retaining sufficient power to detect drug-
induced effects.

In summary, we used connectomic imaging coupled with multivariate pattern classification
to investigate effects of MPD on resting state connectivity. We demonstrate that MPD
produces a reliable multivariate neural signature encompassing multiple large-scale
networks. Additionally, this study identifies promising new methods to probe distributed
effects of drugs on the network structure of the brain.
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Highlights

• We examine effects of methylphenidate (MPD) on resting state functional
connectivity

• 32 subjects, within-subject, double-blind, placebo-controlled, randomized,
counterbalanced, cross-over design

• Resting state connectomes analyzed with paired support vector machine
classifiers

• MPD impacted motor processing networks, and reduced coupling within visual
network

• MPD enhanced segregation of default network and task positive networks
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Figure 1.
Sequence of events during pharmaco-fMRI experiment.
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Figure 2.
Classification Accuracy versus Feature Space Size. ALL = all the features.
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Figure 3.
50 feature classifier: Consensus connectome. A support vector machine classifier was
trained to distinguish methylphenidate (MPD) and placebo (PBO) resting state connectomes.
Major networks within the consensus connectome, which served as the basis of
classification, are shown overlaid on a canonical brain. Methylphenidate effects were
concentrated in the visual, somatomotor, and default networks. Network affiliations of nodes
were assigned on an a priori basis according to the network parcellation map of Yeo and
colleagues (2011).
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Figure 4.
500 feature classifier: Consensus connectome. Methylphenidate reduced connectivity within
visual network and somatomotor networks (top panels). In addition, methylphenidate
reduced default network connectivity with multiple task positive networks (bottom panel).
Network affiliations of nodes were assigned on an a priori basis according to the network
parcellation map of Yeo and colleagues (2011).
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