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Abstract

The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of

structural and functional connectivity in the healthy adult human brain. However, we know that

there are important individual differences in such patterns of connectivity, with evidence that this

variability is associated with alterations in important cognitive and behavioral variables that affect

real world function. The HCP data will be a critical stepping-off point for future studies that will

examine how variation in human structural and functional connectivity play a role in adult and

pediatric neurological and psychiatric disorders that account for a huge amount of public health

resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive

and emotional processes that will delineate a core set of functions relevant to understanding the
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relationship between brain connectivity and human behavior. In addition, the HCP is using task-

fMRI (tfMRI) to help delineate the relationships between individual differences in the

neurobiological substrates of mental processing and both functional and structural connectivity, as

well as to help characterize and validate the connectivity analyses to be conducted on the

structural and functional connectivity data. This paper describes the logic and rationale behind the

development of the behavioral, individual difference, and tfMRI batteries and provides

preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a

group and individual level.
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The primary goal of the Human Connectome Project (HCP) is to delineate the patterns of

structural and functional connectivity in the healthy adult human brain and to provide these

data as public resource for biomedical research. However, we know that there are important

individual differences in such patterns of connectivity even among persons with no

diagnosable neurological or psychiatric disorders, and there is increasing evidence that this

variability is associated with alterations in cognitive and behavioral variables that constrain

real world function (Bassett et al., 2009; Song et al., 2008; van den Heuvel et al., 2009). For

example, higher IQ among healthy adults is associated with shorter path length and higher

global efficiency in measures of brain functional connectivity (Li et al., 2009) as well as

greater global connectivity in prefrontal cortex (Cole et al., 2012), thus providing evidence

that more efficient connectivity contributes to more effective cognitive function. As another

example, developmental research is increasingly suggesting that maturation of functional

and structural networks in the human brain underlies key aspects of cognitive and emotional

development (Fair et al., 2009; Fair et al., 2007; Hwang et al., 2012; Imperati et al., 2011;

Stevens et al., 2009; Supekar et al., 2009; Zuo et al., 2010).

The data to be collected on healthy adults in the Human Connectome Project will be a

critical stepping-off point for future studies that will examine how variation in human

structural and functional connectivity play a role in adult and pediatric neurological and

psychiatric disorders that collectively incur a huge economic cost to the country US (e.g.,

estimated $320 billion in 2002 alone)(Insel, 2008). Indeed, an extensive empirical literature

already provides evidence for impairments in both structural and functional connectivity in

psychiatric disorders such as autism (Vissers et al., 2012), schizophrenia (Fitzsimmons et al.,

2013; Fornito et al., 2012; Repovs et al., 2011; Whitfield-Gabrieli and Ford, 2012), ADHD

(Fair et al., 2012) mood disorders (Hulvershorn et al., 2011; Strakowski et al., 2012),

addiction (Sutherland et al., 2012), neurological disorders such as stroke (Carter et al., 2010;

He et al., 2007), Tourette syndrome (Church et al., 2009; Worbe et al., 2012) and multiple

sclerosis (Hawellek et al., 2011; He et al., 2009; Rocca et al., 2009; Schoonheim et al.,

2013), and the cognitive consequences of prematurity (Constable et al., 2008; Gozzo et al.,

2009; Mullen et al., 2011; Panigrahy et al., 2012; Schafer et al., 2009). Thus, a critical

component of the HCP is collecting behavioral measures of a range of motor, sensory,
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cognitive and emotional processes that will delineate a core set of functions relevant to

understanding the relationship between brain connectivity and human function. Another

critical component of the HCP is to use task-fMRI (tfMRI) to help delineate the

relationships between individual differences in the neurobiological substrates of cognitive

and affective processing and both functional and structural connectivity. tfMRI data will

also help characterize and validate the connectivity analyses to be conducted on the

structural and resting-state functional data. The goal of this paper is to describe the logic and

rationale behind the development of the behavioral, individual differences and tfMRI

batteries and to provide preliminary data on the patterns of activation associated with each

of the fMRI tasks, at both a group and individual level.

Individual Differences in the Human Connectome Project

Our goal was to identify and utilize a reliable and well-validated battery of measures that

assess a wide range of human functions and behaviors in a reasonable amount of time (3–4

hours total, to satisfy subject burden considerations). As requested by the NIH Request for

Applications for the Human Connectome Project, the base for our assessment of human

behavior is the set tools and methods developed by the Blueprint-funded NIH Toolbox for

Assessment of Neurological and Behavioral function (http://www.nihtoolbox.org), which

was designed to generate an efficient and comprehensive battery of assessment tools for

projects exactly like the HCP. The NIH Toolbox includes measures of cognitive, emotional,

motor and sensory processes that were selected based on a consensus building process and

were designed to be used in healthy individuals between the ages of 3 and 85 years.. These

tasks were developed and validated using assessment methodologies that included item

response theory and Computer Adaptive Testing where appropriate and feasible. Based on

discussions with our External Advisory Board, and interactions among the members of the

consortium, we expanded the battery of HCP behavioral tests to include measures of the

following domains not covered by the toolbox: 1) subthreshold symptoms of mood, anxiety,

and substance abuse -- information we thought would be of great interest to researchers

using this database to generate and test predictions about variations in behaviors and

symptoms relevant to psychiatric, substance and neurological disorders; 2) additional

measures of visual, memory and emotion processing; 3) personality; 4) delay discounting (as

a measure of self-regulation and neuroeconomic decision making) (Dalley et al., 2008;

Shamosh et al., 2008); 5) fluid intelligence as a measure of higher-order relational reasoning

that has been linked to important individual differences in both life function and brain

function (Burgess et al., 2011); 6) menstrual cycle and hormonal function for women; and 7)

sleep function, which may be highly relevant to understanding individual differences in

behavior. Task selection also reflected the preferences of the NIH Human Connectome

Project Team (program officials of the participating NIH Blueprint Institutes and Centers),

as voiced by the NIH Scientific Officer of the project, Dr. James Bjork. Each of these

assessments is described in more detail below.

To illustrate how these data might be used to examine the behavioral relevance of individual

differences in functional or structural connectivity, investigators will be able to (for

example) examine how variation in scores on the NIH Toolbox working memory task relates

to variation in: 1) the amplitude of spontaneous resting-state fluctuations in timeseries
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associated with individual functional parcels from whole-brain parcellation; 2) connection

strengths between network nodes (parcels), such as will be estimated via a) full or partial

correlation matrices derived from the timeseries associated with whole-brain parcellation of

rfMRI data, and/or b) probabilistic tractography estimated between different nodes from

dMRI data; 3) ICA component spatial maps identified in the resting state data, or task based

activation data during the working memory task; 4) connectivity metrics associated with

specific regions of interest to working memory (e.g., superior parietal cortex, etc.), or 5)

connectivity metrics associated with “hub” or “rich club” regions (Buckner et al., 2009;

Collin et al., 2013; Harriger et al., 2012; van den Heuvel and Sporns, 2011). As another

example, investigators will be able to examine how variation in personality variables such as

extroversion or neuroticism relate to variation in the kinds of connectivity measures

described above, including connectivity metrics associated with specific regions of interest

to neuroticism or extroversion (e.g., amygdala, caudate, etc.).

tfMRI in the Human Connectome Project

Our primary goals in including tfMRI in the HCP were to: 1) help identify as many “nodes”

as possible that can guide, validate and interpret the results of the connectivity analyses that

will be conducted on resting state fMRI (R-fMRI), resting state MEG (R-MEG) and

diffusion data; 2) to allow a comparison of network connectivity in a task context to

connectivity results generated using R-fMRI; and 3) to relate signatures of activation

magnitude or location in key network nodes to individual differences in performance,

psychometric measures, or other phenotypic traits. To accomplish these goals, we developed

a battery of tasks that can identify node locations in as wide a range of neural systems as is

feasible within realistic time constraints. These “functional localizers” will: 1) aid in the

identification of nodes that will be used in analyses of network structure; 2) help validate/

interpret the location of functional areas identified in the R-fMRI analyses; and 3) provide a

comparative metric for examining how individual differences in behavioral and genetic

measures relate to individual differences in functional and structural connectivity measures.

A subset of these tasks will be combined with T-MEG to allow analyses of the flow of

information among the nodes identified in key networks at a much finer timescale than

possible with BOLD fMRI (see (Larson-Prior et al., in press) this issue).

There are numerous ways in which the regions of activation identified in the tfMRI data

could be used to facilitate the examination and interpretation of the functional and structural

connectivity data. Some examples that the HCP has discussed include: 1) using peaks

identified in the task data as validation for parcellation schemes used on the resting state

connectivity data or diffusion data (e.g., do peaks fall in areas identified as low transition

points between areal boundaries (Cohen et al., 2008; Nelson et al., 2010); 2) using peaks

identified in the task data to subdivide regions identified in the resting state connectivity

data (e.g., when there are different peaks from different tasks domains located within a

larger “region” identified with resting state connectivity data); 3) examining whether

boundaries of regional activations identified in the tfMRI data map to boundaries identified

by other methods (e.g., rsfMRI, myelin maps, etc.); 4) examining whether parcellation

results from task-based connectivity data correspond to results from resting state data or

diffusion data; or 4) using peaks from task data as input to seed-based connectivity or tract
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tracing approaches. We are confident that other investigators will identify additional creative

and innovative ways in which the tfMRI data can be used to help guide, validate and

interpret the functional and structural connectivity data.

Our choice of tfMRI tasks was driven by the following considerations. We aimed to identify

nodes: 1) in well-characterized neural systems; 2) in as wide a range of neural systems as

possible (e.g., cortical and subcortical; primary sensory, higher level cognitive and

emotional regions, etc.); 3) with activation locations that are reliable over time in individual

subjects; 4) with activations consistently detectable in most individuals (sensitivity); and 5)

that are associated with a broad range of cognitive and affective processes of interest to the

NIH Blueprint Institutes. In addition, it was necessary that a subset of the tasks must be

suitable for T-MEG. Like the expanded HCP behavioral battery, the domains examined for

tfMRI were chosen based on discussions with our External Advisory Board, interactions

among the members of the consortium, and the preferences of the NIH Human Connectome

Project Team, as voiced by the NIH Scientific Officer of the project, Dr. James Bjork. Our

initial piloting targeted a broad range of domains that sampled diverse neural systems of

interest to a wide range of investigators, including: 1) visual and somatosensory-motor

systems; 2) category-specific representations; 3) language function (semantic and

phonological processing); 4) attention systems; 5) working memory/cognitive control

systems; 6) emotion processing; 7) decision-making/reward processing; and 8) episodic

memory systems. Table 1 lists the candidate tasks and domains that drove our initial pilot

testing. This table includes information on the relevant processing domain/neural systems,

exemplar regions reported to be activated in the tasks, citations providing empirical evidence

of their utility as functional localizers in individual subjects, and any existing evidence

regarding their test-retest reliability. As described in the methods, there were (are) two

phases to the HCP (also see (Van Essen et al., In press; Van Essen et al., 2012)). As

described in more detail in the methods, phase I of the HCP involved a broad array of pilot

testing for pulse sequences, hardware, software and task paradigms (both in and out of the

scanner). During this pilot testing, we optimized the length and design of the tasks,

compared different paradigms for assessing similar functions and brain networks, and

examined the degree of unique brain coverage provided by the different tasks. Phase II is

ongoing and involves data acquisition on a large sample of extended twin sibships (Van

Essen et al., In press; Van Essen et al., 2012) using the paradigms and pulse sequences

optimized in Phase I. Phase II will generate a publicly available database on normative

patterns of structural and functional brain connectivity, and relationships to individual

differences in cognition, emotion, and function.

In our design of the tfMRI battery, our goal was to be as efficient as possible, so as to

include the maximum number of tasks possible within an amount of time feasible given

subject burden concerns. More specifically, this goal involved three types of design choices.

First, where possible, we opted to use block design paradigms rather than event-related

paradigms, given their enhanced efficiency (Liu et al., 2001). Although we recognized that

event-related designs can afford more sophisticated analyses in many cases, we felt that the

efficiency benefits of blocked designs were more important for this specific project. One

consideration in making this decision was that because HCP data will be publically
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available, investigators can use block-design HCP findings as a springboard for future

investigations using more granular task variants and modeling approaches. At the same time,

there were some tasks for which we were concerned that a blocked design would alter the

psychological process of interest to the point of invalidating the paradigm. For such tasks

(dorsal and ventral attention systems, gambling), our piloting included an explicit

comparison of blocked and event-related versions. Second, where possible, we built in

multiple types of contrasts within a task to allow us to address different processes and

different brain systems within one task. For example, as described in the methods, the

working memory task (an N-back task with 2- and 0-back load levels) was conducted with

multiple stimulus types. One can ignore stimulus type and focus on only memory load

comparisons to identify dorsal-frontal and parietal regions involved in working memory and

cognitive control. Alternatively, one can collapse across memory load and focus only on

stimulus type comparisons to identify temporal, occipital and parietal regions that respond to

specific stimulus types. Third, if our pilot analyses suggested that activation of a set of brain

regions associated with a specific function could be identified within the context of another

task, we did not include a separate task to isolate those regions. For example, our piloting

included a task using point-light walkers (Antal et al., 2008) to assess regions associated

with biological motion. However, our phase I results revealed that these same brain regions

were also activated in the social cognition task that involved objects moving in biologically

plausible ways. Thus, our final battery did not include a separate biological motion task.

The discussion above provides our logic and rationale for the design of the behavior and

individual difference batteries as well as the TFMRI. Below we provide specific details

about each of the tasks and measures, describe the results of the initial Phase I piloting, and

provide preliminary data on the patterns of activation associated with each of the fMRI

tasks, at both a group and individual level, during the ongoing Phase II data collection.

Methods

Overview

We conducted several pilot studies during Phase I of the HCP, prior to the start of the main

data collection in Phase II. In the main text of this manuscript, we present data from Phase II

so as to familiarize readers with the exact protocol that will be applied in the full sample of

1200 individuals. We present data from the Phase I pilot studies that informed our decisions

as to what to include in Phase II in Supplemental Materials and refer to it where appropriate.

Participants

We present behavioral data from the 77 participants whose data will be part of the first

quarter data release of Phase II. We also present imaging data from 20 of these participants

who are unrelated to each other. For a complete description of our inclusion and exclusion

criteria, please see (Van Essen et al., In press; Van Essen et al., 2012) for additional details.

Briefly, all participants are between the ages of 22 and 35, with no previously documented

history of psychiatric, neurological, or medical disorders known to influence brain function.

Of the 77 participants included in the report of the behavioral data, 58 are female and 19 are

male, 3 are between the ages of 22–25, 27 are between the ages of 26–30 and 47 are
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between the ages of 31–35 [see (Van Essen et al., In press)] for reasons for reporting ages

this way). Of the 20 participants whose imaging data is included in the current report, 12 are

female, 1 is between the ages of 22–25, 5 are between the ages of 26–30 and 14 are between

the ages of 31–35.

Behavioral and Individual Difference Paradigms

NIH Toolbox Behavioral Measures—The Toolbox measures (see http://

www.nihtoolbox.org for full development history), are either fully computer-administered

and scored using algorithms embedded in the software, or tester-administered with the

results input through a standard interface into the same database. The HCP is using the

majority of the Toolbox measures (see Table 2), but is not using any Toolshed measures.

The HCP is not using the visual acuity measure from the Toolbox because it requires a

larger testing space than was available (see below for alternative measure included in the

HCP) and is not using the balance measure. The HCP staff underwent extensive training

with the Toolbox staff prior to the launch of Phase II. For the majority of the participants, all

of the NIH Toolbox measures will be administered in the same behavioral session, lasting

approximately 1.5 hours.

Non-Toolbox Behavioral Measures—We felt that there were several additional

domains of behavior and individual differences not covered by the NIH Toolbox that would

be important to assess. Thus, we also collect the following measures in an additional

behavioral session that lasts approximately 1.5 to 2 hours. This battery is implemented in a

web-based platform developed by the Gur laboratory at the University of Pennsylvania (Gur

et al., 2001b; Gur et al., 2010), and uses some of the measures that their group has

developed. Here we describe the additional tests being administered (see Table 3), and full

details on the task parameters can be found in Supplemental Materials.

Visual Processing: The HCP is assessing three different components of visual processing,

using; 1) the Electronic Visual Acuity (EVA) system running the Electronic Early Treatment

of Diabetic Retinopathy (E-ETDR) protocol (Beck et al., 2003; Moke et al., 2001) to assess

visual acuity; 2) the Farnsworth Test to assess color vision -- a valid and reliable measure

that provides more quantitative information than the commonly used Ishihara Test (Cole,

2007); and 3) the Mars Contrast Sensitivity Test (Arditi, 2005), to assess contrast sensitivity

-- a brief, valid and reliable measure that improves upon the traditional Pelli-Robson

measure (Dougherty et al., 2005; Haymes et al., 2006; Thayaparan et al., 2007).

Self-Regulation: We are measuring self-regulation using a delay discounting paradigm that

captures the undervaluing of rewards that are delayed in time. We use a version of the

discounting task that identifies ‘indifference points’ at which a person is equally likely to

choose a smaller reward (e.g., $100) sooner versus a larger reward later (e.g., $200 in 3

years). Based on the work of Green and Myerson (Estle et al., 2006; Green et al., 2007), we

use an adjusting-amount approach, in which delays are fixed and reward amounts are

adjusted on a trial-by-trial basis based on participants’ choices, to rapidly hone in on

indifference points. This approach has been repeatedly validated to provide reliable

estimates of delay discounting (Estle et al., 2006). As a summary measure, we use an area-
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under-the-curve discounting measure (AUC) that provides a valid and reliable index of how

steeply an individual discounts delayed rewards (Myerson et al., 2001), with one measure

for both a high monetary amount ($40,000) and one for a smaller monetary amount ($200).

Sustained Attention: We measure continuous sustained attention using the Short Penn

Continuous Performance Test (Number/Letter Version) (Gur et al., 2001a; Gur et al., 2001b;

Gur et al., 2010).

Verbal Memory: To complement the NIH Toolbox measure non-verbal episodic memory,

we are assessing verbal episodic memory using Form A of the Penn Word Memory Test

(Gur et al., 2001b; Gur et al., 2010).

Visual-Spatial Processing: The NIH Toolbox does not contain any measures of visual-

spatial processing. Thus, we are measuring spatial orientation processing using the Variable

Short Penn Line Orientation Test (Gur et al., 2001b; Gur et al., 2010).

Emotion Processing: The NIH Toolbox contains only self-report measures of emotional

function. Thus, to obtain a behavioral measure of emotion processing, we are using the Penn

Emotion Recognition Test (Gur et al., 2001b; Gur et al., 2010).

Fluid Intelligence: Although the Toolbox contains measures of crystallized IQ (e.g.,

vocabulary acquisition), an aspect of IQ strongly influenced by educational opportunities,

and measures of executive function (which are both theoretically and empirically related to

fluid intelligence), it does not contain a specific measure of fluid intelligence. This construct

is strongly linked to specific functional outcomes and to variations in neuronal structure and

function in humans (Duncan, 2003, 2005; Duncan et al., 2000). The most commonly used

measure of fluid intelligence is Raven’s Progressive Matrices (Christoff et al., 2001;

Conway et al., 2005; Gray et al., 2005; Gray et al., 2003; Prabhakaran et al., 1997;

Wendelken et al., 2008). We use Form A of an abbreviated version of the Raven’s

developed by Gur and colleagues (Bilker et al., 2012).

Additional Individual Difference Measures

Personality and Function: There is consensus that a five factor model captures the major

facets of human personality across cultures (Heine and Buchtel, 2009): a) neuroticism; b)

extroversion/introversion; c) agreeableness; d) openness; and e) conscientiousness

(Goldberg, 1993; McCrae and Costa, 2008). We are administering the 60 item version of the

Costa and McRae Neuroticism/Extroversion/Openness Five Factor Inventory (NEO-FFI)

(McCrae and Costa, 2004), which has shown excellent reliability and validity (McCrae and

Costa, 2004). The NIH toolbox contains self-report measures of a number of important

domains of experience (e.g., stress, social relationships, positive and negative affectivity,

etc.). To obtain additional self-report information on an even broader variety of domains, we

also administer the Achenbach Adult Self-Report (ASR) for Ages 18–59 (Achenbach,

2009). Specifically, we administer the 123 items from Section VIII of this instrument. These

can be used to generate the ASR Syndrome Scales and the ASR DSM-Oriented Scales.
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Psychiatric, Neurological and Substance Use Assessments: As part of the screening and

assessment process, all participants are given a comprehensive assessment of psychiatric and

substance use history over the phone, using the Semi-Structured Assessment for the

Genetics of Alcoholism (SSAGA) (Bucholz et al., 1994). The SSAGA is a well-validated

diagnostic instrument used in numerous previous large scale studies (Bucholz et al., 1994;

Hesselbrock et al., 1999). It assesses a range of diagnostic categories (substance, mood,

anxiety, eating disorders and adult ADHD), as well as antisocial personality disorder, using

both DSM-IV criteria and either RDC or ICD-criteria, and provides information about both

current and lifetime experiences. This instrument also contains the Fagerstrom Test for

Nicotine Dependence (Heatherton et al., 1991; Kozlowski et al., 1994). Participants are

given a brief assessment of parental history of psychiatric and neurological disorders (yes/no

for schizophrenia or psychosis, depression, bipolar, anxiety that needed treatment, drug or

alcohol problems, Alzheimer’s Disease or dementia, Parkinson’s disease, or Tourette’s

syndrome). Participants are also given a breathalyzer and a urine drug screen (cocaine, THC,

opiates, amphetamine, methamphetamine, oxycontin) on each day of testing. These drug

screens were not used as an exclusion, but rather for characterization. In addition, on the last

day of testing, participants fill out a seven day retrospective report of alcohol and tobacco

use.

Menstrual Cycle, Hormones, Sleep, and Cognitive Status: Female participants are asked

questions about their hormonal status and menstrual cycle during the intake interview at

their first in person session. In addition, participants are administered the Pittsburgh Sleep

Questionnaire (Buysse et al., 1989) as a measure of sleep quality and the Mini Mental Status

Exam (Folstein et al., 1975) as a broad measure of cognitive status (participants are

excluded if they score below a 27)(Crum et al., 1993).

Handedness: Handedness is assessed using the Edinburgh Handedness questionnaire

(Oldfield, 1971).

Physical Function: We also assess blood pressure, height and weight, hematocrit levels to

assess the volume percentage of red blood cells in the blood, Thyroid Stimulating Hormone

as a endocrine measure, and Hemoglobin A1c as a measure of glucose levels over time.

tfMRI Paradigms

Overview: We considered a number of different domains when developing the battery for

the tfMRI component of the HCP (see Table 1). We initially considered including

retinotopy, and began to pilot two versions of retinotopic mapping (phase encoding and an

event-related version). It rapidly became clear that we would not be able to obtain a reliable

and informative assessment of retinotopy in the available amount of in-scanner time per

participant, especially considering that we do not expect tremendous individual differences.

Development of an efficient retinotopy paradigm is still under consideration for the

paradigms to be administered on the 7T at the University of Minnesota on a subset of

participants. The first pilot study had participants complete the following tasks across two

baseline sessions, and then return to complete the same tasks again two weeks later (using

different stimuli where possible): working memory, recognition memory, emotional
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processing (both the IAPS and Hariri task), language (sentence judgment), biological

motion, social cognition, dorsal and ventral attention systems (both a blocked and an event-

related version), gambling (both a blocked and an event-related version), and the motor

mapping task. The second pilot study compared a different version of a language task (story

versus math) to the sentence processing task, and also included a relational processing task

designed to activate the anterior prefrontal cortex. Description of the other tasks that were

piloted in Phase I are provided in Supplemental Materials (i.e., dorsal and ventral attention,

sentence processing, biological motion, negative IAPS image processing, event-related

gambling task). Below we describe the tasks that we are using in Phase II. For each task,

participants are provided with instructions outside of the scanner. They are then given a very

brief reminder of the task and a refresher on the button box mappings just before the start of

each task.

Working Memory/Category Specific Representations: We chose to use a version of the

N-back task to assess working memory/cognitive control because: 1) there was data

suggesting that it could be used as a functional localizer: (Drobyshevsky et al., 2006); 2)

there was evidence suggesting that associated brain activations were reliable across subjects

(Drobyshevsky et al., 2006) and time (Caceres et al., 2009); and 3) we could design the task

so as to allow us to assess multiple embedded contrasts (e.g., memory load, stimulus type,

error related activity, conflict related activity). The specifics of the N-back task as it is being

run in Phase II are shown in Table 4. As described in the introduction, to maximize

efficiency, we embedded the category specific representations component within the

working memory task, by presenting blocks of trials that consisted of pictures of faces,

places, tools and body parts. Within each run, the 4 different stimulus types are presented in

separate blocks within the run. Within each run, ½ of the blocks use a 2-back working

memory task (respond ‘target’ whenever the current stimulus is the same as the one two

back) and ½ use a 0-back working memory task (a target cue is presented at the start of each

block, and the person must respond ‘target’ to any presentation of that stimulus during the

block). A 2.5 s cue indicates the task type (and target for 0-back) at the start of the block.

Each of the two runs contains 8 task blocks (10 trials of 2.5 s each, for 25 s) and 4 fixation

blocks (15 s each). On each trial, the stimulus is presented for 2 s, followed by a 500 ms ITI.

Each block contains 10 trials, of which 2 are targets, and 2–3 are non-target lures (e.g.,

repeated items in the wrong n-back position, either 1-back or 3-back). The inclusion of lures

is critical to ensure that participants are using an active memory approach to the task and

allow one to assess conflict related activity as well as error related activity.

We chose faces, places, tools and body parts as the four categories of stimuli because of

evidence that these stimuli reliably engage distinct cortical regions (Downing et al., 2001;

Fox et al., 2009; Peelen and Downing, 2005; Taylor et al., 2007) and because the associated

brain activations are reliable across subjects (Downing et al., 2001; Fox et al., 2009) and

time (Kung et al., 2007; Peelen and Downing, 2005). The stimuli were obtained from a

number of previous studies using face (Pinsk et al., 2009), place (Kanwisher, 2001;

O’Craven and Kanwisher, 2000; Park and Chun, 2009), body parts (Bracci et al., 2010;

Downing et al., 2001; Downing et al., 2006b; Peelen and Downing, 2005; Pinsk et al., 2009;

Barch et al. Page 10

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Saxe et al., 2006) and tool (Downing et al., 2006a; Peelen and Downing, 2005; Wierenga et

al., 2009) stimuli.

Recognition Memory: After participants exit the scanner from the session that includes the

Working Memory tasks, they are given a “Remember, Know, New“ item recognition test for

the faces and places presented during the working memory task, as well as an equal number

of new faces and places similar on visual characteristics (e.g., an equal number of old and

new stimuli came from the same stimuli sets). We did not include body parts or tools as we

did not have a sufficient number of unique stimuli to serve as “new” items. Responses to this

recognition memory test can be used to segregate events to analyze the working memory

trials as a function of whether the item was subsequently recognized (remember or know) or

not (new), which is referred to as a subsequent memory analysis. Each item is presented for

2 s. There is then a 2 s ITI before the next stimulus. There are 48 old and 48 new stimuli (1/2

of each stimulus type). Please see Supplemental Materials for exact instructions. Data from

this subsequent memory analysis will be presented in a future publication.

Incentive Processing: This task was adapted from the one developed by Delgado and Fiez

(Delgado et al., 2000), and was chosen based on prior evidence that the task elicits

activations in the striatum and other reward related regions that are robust and reliable

across subjects (Delgado et al., 2000; Forbes et al., 2009; May et al., 2004; Tricomi et al.,

2004). Participants play a card guessing game where they are asked to guess the number on

a mystery card (represented by a “?”) in order to win or lose money. They are told that

potential card numbers range from 1–9 and to indicate if they think the mystery card number

is more or less than 5 by pressing one of two buttons on the response box. Feedback is the

number on the card (generated by the program as a function of whether the trial was a

reward, loss or neutral trial) and either: 1) a green up arrow with “$1” for reward trials, 2) a

red down arrow next to −$0.50 for loss trials; or 3) the number 5 and a gray double headed

arrow for neutral trials. The “?” is presented for up to 1.5 s (if the participant responds

before 1.5 s, a fixation cross is displayed for the remaining time), following by feedback for

1.0 s. There is a 1.0 s ITI with a “+” presented on the screen. The task is presented in blocks

of 8 trials that are either mostly reward (6 reward trials pseudo randomly interleaved with

either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or mostly loss (6 loss trials

interleaved with either 1 neutral and 1 reward trial, 2 neutral trials, or 2 reward trials). In

each of the two runs, there are 2 mostly reward and 2 mostly loss blocks, interleaved with 4

fixation blocks (15 s each). All participants are provided with money as a result of

completing the task, though it is a standard amount across subjects.

Motor: This task was adapted from the one developed by Buckner and colleagues which

had evidence that it could identify effector specific activations in individual subjects

(Buckner et al., 2011; Yeo et al., 2011). Participants are presented with visual cues that ask

them to tap their left or right fingers, squeeze their left or right toes, or move their tongue to

map motor areas. Each block of a movement type lasts 12 s (10 movements), and is

preceded by a 3 s cue. In each of the two runs, there are 13 blocks, with 2 of tongue

movements, 4 of hand movements (2 right and 2 left), 4 of foot movements (2 right and 2

left) and three 15 s fixation blocks per run.
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Language Processing: The task being used in Phase II was developed by Binder and

colleagues (Binder et al., 2011) and used the E-prime scripts kindly provided by these

investigators, which were then modified for our purposes. The task consists of two runs that

each interleave 4 blocks of a story task and 4 blocks of a math task. As described in detail in

(Binder et al., 2011), the goal of including the math blocks was to provide a comparison task

that was attentionally demanding, similar in auditory and phonological input, and unlikely to

generate activation of anterior temporal lobe regions involved in semantic processing,

though likely to engage numerosity related processing in the parietal cortex. The lengths of

the blocks vary (average of approximately 30 s), but the task was designed so that the math

task blocks match the length of the story task blocks, with some additional math trials at the

end of the task to complete the 3.8 minute run as needed. The story blocks present

participants with brief auditory stories (5–9 sentences) adapted from Aesop’s fables,

followed by a 2-alternative forced-choice question that asks participants about the topic of

the story. The example provided in the original Binder paper (p. 1466) is “For example,

after a story about an eagle that saves a man who had done him a favor, participants were

asked, “That was about revenge or reciprocity?” The math task also presents trials

auditorily and requires subjects to complete addition and subtraction problems. The trials

present subjects with a series of arithmetic operations (e.g., “Fourteen plus twelve”),

followed by “equals” and then two choices (e.g., “twenty-nine or twenty-six”). Participants

push a button to select either the first or the second answer. The math task is adaptive to

maintain a similar level of difficulty across participants. For more details on the task, see

(Binder et al., 2011).

Social Cognition (Theory of Mind): An engaging and validated video task was chosen as a

measure of social cognition, given evidence that it generates robust task related activation in

brain regions associated with social cognition and is reliable across subjects (Castelli et al.,

2002; Castelli et al., 2000; Wheatley et al., 2007; White et al., 2011). Participants are

presented with short video clips (20 s) of objects (squares, circles, triangles) either

interacting in some way, or moving randomly. These videos were developed by either

Castelli and colleagues (Castelli et al., 2000) or Martin and colleagues (Wheatley et al.,

2007). After each video clip, participants chose between 3 possibilities: whether the objects

had a social interaction (an interaction that appears as if the shapes are taking into account

each other’s feelings and thoughts), Not Sure, or No interaction (i.e., there is no obvious

interaction between the shapes and the movement appears random). Each of the two task

runs has 5 video blocks (2 Mental and 3 Random in one run, 3 Mental and 2 Random in the

other run) and 5 fixation blocks (15 s each). Of note, the video clips were shortened to 20 s

(the Castelli et al. clips were originally 40 s) by either splitting the videos in two or

truncating them. We conducted a pilot study in Phase I in which participants made ratings

about the presence or absence of mental interactions in the videos to confirm that the shorter

videos elicited similar responses to the longer videos.

Relational Processing: This task was adapted from the one developed by Christoff and

colleagues (Smith et al., 2007) which was demonstrated to localize activation in anterior

prefrontal cortex in individual subjects. The stimuli are 6 different shapes filled with 1 of 6

different textures. In the relational processing condition, participants are presented with 2
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pairs of objects, with one pair at the top of the screen and the other pair at the bottom of the

screen. They are told that they should first decide what dimension differs across the top pair

of objects (shape or texture) and then they should decide whether the bottom pair of objects

also differ along that same dimension (e.g., if the top pair differs in shape, does the bottom

pair also differ in shape). In the control matching condition, participants are shown two

objects at the top of the screen and one object at the bottom of the screen, and a word in the

middle of the screen (either “shape” or “texture”). They are told to decide whether the

bottom object matches either of the top two objects on that dimension (e.g., if the word is

“shape”, is the bottom object the same shape as either of the top two objects). For the

relational condition, the stimuli are presented for 3500 ms, with a 500 ms ITI, with four

trials per block. In the matching condition, stimuli are presented for 2800 ms, with a 400 ms

ITI, with 5 trials per block. Each type of block (relational or matching) lasts a total of 18 s.

In each of the two runs of this task, there are 3 relational blocks, 3 matching blocks and

three 16 s fixation blocks (see Table 4).

Emotion Processing: This task was adapted from the one developed by Hariri and

colleagues which had shown evidence as a functional localizer (Hariri et al., 2002) with

moderate reliability across time (Manuck et al., 2007a). Participants are presented with

blocks of trials that either ask them to decide which of two faces presented on the bottom of

the screen match the face at the top of the screen, or which of two shapes presented at the

bottom of the screen match the shape at the top of the screen. The faces have either angry or

fearful expressions. Trials are presented in blocks of 6 trials of the same task (face or shape),

with the stimulus presented for 2 s and a 1 s ITI. Each block is preceded by a 3 s task cue

(“shape” or “face”), so that each block is 21 s including the cue. Each of the two runs

includes 3 face blocks and 3 shape blocks. However, there was a bug in the E-prime script

for this task such that the task stopped short of the last three trials of the last task block in

each run. To promote comparability across participants, we decided not to fix the bug (given

that a number of subjects had already been run before it was detected) as we thought it

would have minimal impact on the data. In phase I, we compared this task to one using

negative and neutral IAPS pictures (see Supplemental Materials).

fMRI Data Acquisition—Please see (Ugurbil et al., in press) for overview of TFMRI

acquisition details for Phase II. Briefly, whole-brain EPI acquisitions were acquired with a

32 channel head coil on a modified 3T Siemens Skyra with TR=720 ms, TE=33.1 ms, flip

angle=52 deg, BW=2290 Hz/Px, in-plane FOV=208 × 180 mm, 72 slices, 2.0 mm isotropic

voxels, with a multi-band acceleration factor of 8 (Feinberg et al., 2010; Moeller et al.,

2010). Two runs of each task were acquired, one with a right-to-left and the other with a

left-to-right phase encoding. Apart from run duration, therefore, the task acquisitions were

identical to the resting-state fMRI acquisitions, in order to provide maximal compatibility

between task and resting data.

To measure cardiac and respiratory signals, a pulse oximeter and respiratory bellows were

fitted to participants prior to the fMRI sessions. Those signals, along with the sync pulse

from the scanner, were recorded by the scanner host computer at a sampling rate of 400 Hz.

Physiological recording files are matched with their respective scans using a global unique

Barch et al. Page 13

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



identifier recorded in the DICOM files. The physiological recordings were synchronized

with the onset of the first sync pulse using a custom script. These physiological

measurements will be released starting at Q2. The analyses presented below do not include

regressors for cardiac or respiratory signals, though future tfMRI analyses will compare

GLM analyses that do versus do not account for cardiac and respiratory signals.

fMRI Data Processing—The HCP data analysis pipelines are primarily built using tools

from FSL and FreeSurfer. The HCP “fMRIVolume” pipeline (see (Glasser et al., in press)

this issue) generates “minimally preprocessed” 4D time series that includes gradient

unwarping, motion correction, fieldmap-based EPI distortion correction, brain-boundary-

based registration of EPI to structural T1-weighted scan, non-linear (FNIRT) registration

into MNI152 space, and grand-mean intensity normalization. Two approaches were used for

further processing of the data. One involved volume-based smoothing and subsequent

analyses using standard FSL tools. The other involved smoothing constrained to the cortical

surface and subcortical gray-matter parcels and subsequent analysis using FSL tools adapted

to this ‘grayordinate’ based approach (see (Glasser et al., in press) this issue). The majority

of the data presented in this paper used a volume-based fMRI processing stream, to

maximize comparison to prior studies. However, we also provide examples of the

grayordinate-based approach.

Volume-Based Analysis: For the volume-based analysis, spatial smoothing was applied

using an unconstrained 3D Gaussian kernel of FWHM=4mm. Activity estimates were

computed for the preprocessed functional time series from each run using a general linear

model (GLM) implemented in FSL’s FILM (FMRIB’s Improved Linear Model with

autocorrelation correction (Woolrich et al., 2001). Predictors (described in more detail

below) were convolved with a double gamma “canonical” hemodynamic response function

(Glover, 1999) to generate the main model regressors. To compensate for slice-timing

differences and variability in the HRF delay across regions, temporal derivative terms

derived from each predictor were added to each GLM and were treated as confounds of no

interest. Subsequently, both the 4D time series and the GLM design were temporally filtered

with a Gaussian-weighted linear highpass filter with a (soft) cutoff of 200 s. Finally, the time

series was prewhitened within FILM to correct for autocorrelations in the fMRI data.

Grayordinates-Based Analysis: The HCP has implemented a “grayordinates” based fMRI

processing pipeline that allows for efficient analysis of combined cortical surface and

subcortical volume representations. The grayordinates-based analysis was performed on all

tasks, and two examples are shown in the results below. The grayordinates-based analysis

begins with outputs of the HCP “fMRISurface” pipeline [see (Glasser et al., in press) this

issue] in which the data from the cortical gray matter ribbon are projected onto the surface

and then onto registered surface meshes with a standard number of vertices. Subcortical data

were also projected to a set of subcortical gray matter parcel voxels, and when combined

with the surface data formed the standard grayordinates space (see (Glasser et al., in press)

this issue). The grayordinates-based run-level analysis was carried out identically to the

volume-based analysis described above aside from spatial smoothing steps, as only they are

dependent on spatial neighborhood information. Smoothing of the left and right hemisphere
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time series and autocorrelation estimates (from FILM) were done on the surface using a

geodesic Gaussian algorithm. Subcortical gray matter time series were smoothed within

defined gray matter parcels. Because the surface and subcortical gray matter data in

grayordinates space were already smoothed with 2mm FWHM by the HCP fMRISurface

pipeline, additional smoothing was done to bring the total smoothing to 4mm FWHM (in 2D

on the cortical surface and in 3D elsewhere) to match the volume-based analysis. The

amount of additional smoothing was defined by the equation sqrt(4mm^2 - 2mm^2).

Surface-based autocorrelation estimate smoothing was incorporated into FSL’s FILM at a

sigma of 5mm. Left hemisphere surface, right hemisphere surface, and subcortical volume

data from the grayordinates space were split into three NIFTI-1 matrices and processed

separately for all steps. Surface outputs were converted to GIFTI at the conclusion of run-

level analysis.

GLM Model Design: For both analysis streams, eight predictors were included in the model

for Working Memory/Category Specific Representations – one for each type of stimulus in

each of the N-back conditions (i.e., 2-Back Body, 0-Back Body, 2-Back Face, 0-Back Face,

etc.). Each predictor covered the period from the onset of the cue to the offset of the final

trial (27.5 s). Linear contrasts for these predictors were computed to estimate effects of

interest: 2-back (vs. fixation), 0-back, 2-back vs. 0-back, each stimulus type versus baseline

(e.g., Body vs. fixation, collapsing across memory load), and each stimulus type versus all

others. Two predictors were included in the model for Incentive Processing – mostly reward

and mostly loss blocks, each covering the duration of 8 trials (28 s). For this task, as with all

other tasks, linear contrasts of the parameter estimates were computed to compare each

condition to baseline and to each other. Five predictors were included in the Motor model –

right hand, left hand, right foot, left foot, and tongue. Each predictor covered the duration of

10 movements trials (12 s). The 3 s cue period prior to each motor block was modeled

separately to account for visual activation related to the cue word presented on the screen at

the beginning of each block. Linear contrasts were computed to estimate activation for each

movement type versus baseline and versus all other movement types. Two predictors were

included in the Language Processing model – Math and Story. The Story predictor covered

the variable duration of a short story, question, and response period (~30 s). The Math

predictor covered the duration of a set of math questions designed to roughly match the

duration of the story blocks. Two predictors were included in the Social Cognition model –

Social and Random motion. Predictors were based on the category of the video clip rather

than the rating of the individual. Each predictor covered the duration of a single video clip

(20 s). Two predictors were included in the Relational Processing model – Relational

processing and a control Matching condition. Each predictor covered the duration of 18 s

composed of four trials for the Relational condition and five trials for the Matching

condition. Two predictors were included in the Emotion Processing model – Emotional

Faces and a Shape control condition. Each predictor covered a 21 s duration composed of a

cue and six trials.

Participant-level and Group-level analyses: Fixed-effects analyses were conducted using

FEAT to estimate the average effects across runs within-participants, and then mixed-effects

analyses treating subjects as random effects were conducted using FLAME (FMRIB’s Local
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Analysis of Mixed Effects) to estimate the average effects of interest for the group. Volume-

based group-level analyses were carried out using voxelwise comparisons in MNI space and

visualized in FSLView. The grayordinates-based participant-level and group-level analyses

were done identically to the volume-based analysis except that cross-run and cross-subject

statistical comparisons occurred standard grayordinates space (Glasser et al., in press) rather

than volume space. As in the individual analysis, NIFTI-1 matrices were processed

separately for left and right surface and subcortical volume data, and surface outputs were

converted to GIFTI at the conclusion of analysis. Participant-level and group-level z-statistic

maps were combined from left and right hemisphere cortical and subcortical gray matter into

the recently introduced CIFTI data format (http://www.nitrc.org/projects/cifti/; for

visualization using the Connectome Workbench platform (see (Marcus et al., in press)this

issue).. For both analyses, group maps are displayed with a lower threshold of z=±2.32

(p<0.01, uncorrected) and an upper threshold of z=+/− 5.00 (Bonferroni-corrected p<0.066).

We present the maps at this range to allow readers to see for themselves what type of

activation would be present at a threshold one might use for a focused a priori ROI (p<0.01

uncorrected) or an exploratory whole brain family-wise error corrected level. All statistics

are computed voxelwise (not, for example, using cluster-based thresholding), in order to

maximize simplicity of interpretation of the results.

Activation Count Maps: Activation count maps (ACMs) were created to demonstrate, for a

particular contrast of interest, the proportion of participants that showed activation (or

deactivation) at a z-threshold of 1.96 (uncorrected, two-tailed p<0.05). Specifically, for each

contrast of interest, a binary mask for each participant was created from voxels with z-values

greater than z=1.96. Subsequently, the average of the binary masks was computed across

participants for each voxel, resulting in the proportion of participants with a z-value greater

than 1.96 at that voxel for that particular contrast. This relatively liberal threshold was

chosen because it has been demonstrated that functional localizer tasks with small amounts

of data are more spatially reliable at liberal statistical thresholds (Kawabata Duncan and

Devlin, 2011). In addition, a task count map was computed in order to demonstrate the

number of tasks in which there was meaningful activation (or deactivation) for at least one

contrast of interest. For each of the tasks, two maps were created such that voxels had a

value of one if any contrast in that task had an ACM value greater than or equal to 70% or

50% of participants respectively. Subsequently, the sum of those maps was computed across

tasks, such that the resulting “task count map” reflected the number of tasks in which a

voxel showed a z-value greater than 1.96 for at least 70% or 50% of the participants in at

least one contrast. In essence, the task count map demonstrates overall spatial coverage of

the tasks included in the HCP tfMRI battery.

Quality Assurance Metrics

The HCP developed Standard Operating Procedures that are guiding our acquisition of all

aspects of HCP data, including procedures for ensuring standardization in the acquisition of

all measures across research assistants and across participants. Please see (Marcus et al., in

press)for a detailed description of the quality assurance metrics being assessed for the fMRI

data. Briefly, we measure both absolute and relative movement, temporal standard deviation,

and smoothness. In addition, we computed SNR maps to illustrate areas of signal loss.
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Volume and grayordinate-based maps of temporal SNR (tSNR) were created for each run by

dividing the mean signal over time of a given voxel or grayordinate by the standard

deviation over time of that same voxel or grayordinate, using the data that was smoothed

with a 4 mm FWHM filter. The estimate of the standard deviation was obtained from the

square root of the “sigmasquareds” returned by FEAT, which is an estimate of the residual

variance after whitening and model fitting. The maps were then averaged across runs and

subjects for a given task.

Results

Behavioral Data

Toolbox Measures—For the majority of the NIH Toolbox measures, the HCP database

will report the age-adjusted scaled scores. These scores are based on normative data

collected in Phase III of the Toolbox development. The exceptions to this are the Pain

Interference, Words in Noise, and the 4-meter Walk Gait Speed measures, for which

unadjusted scores are reported, because changes in these measures were made post-norming,

preventing the use of the norming data. Figure 1 shows the distribution of scores for the

performance based measures and Table 5 presents the means, medians, range and standard

deviations of the self-report measures. This information is provided to illustrate that the

sample of subjects to date provides a wide range of scores across all of the measures, which

bodes well for their use as individual difference measures.

Non-Toolbox Measures—Figure 2 provides the distribution of scores for the

performance based non-Toolbox measures, as well as the internalizing and externalizing

dimension scores for the Achenbach Adult Self-Report (as examples). As with the Toolbox

measures, we have a good range of scores across all measures.

tfMRI Measures—Figure S1 provides the distribution of accuracy scores for the tfMRI

tasks that allow for accuracy assessment. Accuracy is very high in the Hariri Emotion task

and the Language task (by design). We also see performance levels in the N-back task

consistent with expectations, but also illustrating important variance across participants.

This is also true for the recognition data acquired outside of the scanner. We see good

accuracy for the control condition of the relational processing task, and a useful range of

performance for the relational condition.

Imaging Data

Quality Assessment Metrics—Figure S2 displays the distribution of values across our

primary quality assessment metrics for the tfMRI data, including all runs for all tasks. Our

quality assessment metrics indicate high quality data for the vast majority of runs in these 20

subjects. In fact, the quality of the data provided by these 20 subjects was sufficiently high

that we did not exclude any of the runs of those subjects from the analyses presented below.

However, of note, we did repeat some runs for some participants when technical problems

interfered with scan acquisition at the time of scanning to try to ensure complete data on as

many subjects as possible.

Barch et al. Page 17

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Working Memory/Category Specific Representations—Figure 3 shows group level

statistical maps for the comparison of 2-back versus baseline and 2-back versus 0-back, as

well as maps illustrating the percentage of participants showing activation at Z > 1.96 (what

we refer to as activation count maps (ACMs), see methods for details). As this figure

illustrates, the N-back task activates a broad swath of regions thought to be involved in a

cognitive control network, including bilateral dorsal and ventral prefrontal cortex, dorsal

parietal cortex and dorsal anterior cingulate. Many of these regions are robustly activated

within individual participants, even in the contrast of 2-back to 0-back. Further, we also see

deactivation in the default mode network, including medial prefrontal cortex, posterior

cingulate, and the occipital-parietal junction. In Phase I, we had compared the N-back task

to both an event-related and a blocked version of the Posner attention task (see

Supplemental Materials for details). The N-back task showed more robust activation of

cognitive control and dorsal attention regions than did the modified Posner task, both in the

group maps and in the ACMs (Figure S3). This was true for both versions of the modified

Posner, with the event-related version showing overall less robust activation than the

blocked version in both the group maps and the ACMs. Figure 4 shows results for the same

2-back vs. 0-back task contrast as in the lower panels of Fig. 3, but after a grayordinates-

based analysis (see Methods). Results are displayed on lateral and medial views of the

inflated left and right hemisphere surfaces

Category Specific Representations—The analyses of the N-back data as a function of

stimulus type rather than memory load provide a different pattern of brain activation. Figure

5 presents both group and ACM maps for the comparison of each stimulus type against

baseline, and each stimulus type against the average of all other stimulus types. The later

contrast is likely more informative about activation specifically associated with a stimulus

type. As can be seen in Figure 5, the comparison of faces to all other stimulus types

identifies bilateral activation in the fusiform face area, the comparison of places to all other

stimulus types identifies activation in bilateral parahippocampal place area, and the

comparison of body parts to all other stimulus types identifies bilateral activation in

extrastriate body areas at the occipital-temporal borders. These activations are clearly

identifiable in both the group maps and the ACMs, suggesting that they are robust across

subjects. The comparison of places to the other stimulus types in the group maps also

identifies activation in primary visual cortex, but this may be related to the larger spatial

extent of the place images versus the other image types. The comparison of tools to the other

stimulus types did not identify consistent activations selectively associated with visual

processing of tools, as we might have expected activations localized to parietal regions.

Incentive Processing—Figure 6 illustrates the data from the gambling task designed to

assess reward processing and decision making. As can be seen, many of the expected brain

regions are present in the group map of the mostly reward blocks versus baseline, including

bilateral striatum and bilateral insula. Fewer regions are present in the group map comparing

mostly reward blocks to mostly punishment blocks, though there is some differential

activation in striatum and visual cortex. Bilateral insula shows robust and reliable activation

across individual subjects in the ACM maps for the reward versus baseline comparison,

though only a few voxels are in the striatum in this map. If one looks at a lower threshold,
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approximately 40% of the subjects do show more extensive activation in the caudate and the

putamen. This considerable individual variability in striatal reward response in this guessing

task has been found in other studies (Hariri et al., 2006). However, there are no regions that

show activation in at least 50 % of participants in the reward versus punishment comparison.

In Phase I, we had compared this blocked designed version of the gambling task to a more

typical event-related version (see Supplemental Materials for details). As shown in Figure

S4, the blocked and event-related versions showed fairly similar group activation in the

reward versus baseline condition, but the blocked version showed greater deactivation.

Further, the blocked version showed more consistent activation and deactivation across

participants (i.e., ACM maps). In the reward versus punishment condition, both showed

activation in the striatum and the medial frontal cortex, though neither showed strong

individual subject level activation (ACM maps).

Motor—The activation for the motor mapping task was so strong that we had to use a

higher threshold for displaying the group maps, though not the ACMs, to illustrate the

differential spatial locations of the activations. The foot versus hand versus tongue

activations fall exactly where one would expect them to fall, with the foot superior and on

the midline, the hand activations ventral to the foot activations, and the tongue activation

ventral to the hand activations (Figure 7). We also see clear spatial differentiation of the

activations in the cerebellum, with the expected ipsilateral representations for left and right

hand/foot motion (as compared to the contralateral representations in motor cortex), and

bilateral representation of the tongue.

Language Processing—Figure 8 shows the results from both the volume-based analysis

displayed on volume slices (top panels) and the grayordinate-based analysis displayed on

inflated surfaces (bottom panels). This task elicits robust activation (in both the group maps

and the ACMS) in ventral lateral prefrontal cortex and in both superior and inferior temporal

cortex, including the anterior temporal poles bilaterally. As to be expected, activation is

somewhat stronger on the left than the right. In Phase I, we had compared this task to a

sentence processing task (see Supplemental Materials for details). As shown in Figure S5,

the story processing task developed by Binder and colleagues showed much more robust and

extensive activation in superior and anterior temporal cortex than the sentence processing

task. This was true both when looking at the group activation maps and the ACMs.

Social Cognition (Theory of Mind)—The group maps showed activation in a number of

regions typically associated with social cognition, including temporal parietal junction and

superior temporal cortex regions (Figure 9). For the temporal parietal and superior temporal

regions, this was true for both the comparison of the social videos to baseline and the social

videos to the random videos. These same regions are seen in the ACMs, demonstrating

robust activation in individual subjects. Of note, we also see activation in visual regions

typically associated with the processing of both biological and non-biological motion, which

led to our not including the separate biological motion task originally piloted in Phase I (see

Supplemental Materials for details and Figure S6).
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Relational Processing—This task was added in the second stage of Phase I pilot testing

because we found that none of the initially piloted tasks provided robust activation in

anterior prefrontal cortex. This task elicits consistent activation in bilateral anterior

prefrontal cortex in the relational versus baseline comparison, both in the group maps and in

the ACMs (Figure 10). There is less robust activation in the relational versus match

comparison, suggesting that the match condition also elicits significant activation in anterior

prefrontal cortex.

Emotion Processing—There is robust bilateral activation of the amygdala in the emotion

processing task, extending into the hippocampus, as well as bilateral activation in medial

and lateral orbital frontal cortex (Figure 11). There is extensive activation of visual regions,

including the fusiform face area, which is not surprising given the use of fearful face stimuli.

There is also some activation of ventral temporal cortex in the group maps. The ACMs also

show bilateral activation of the amygdala and visual cortex including the fusiform, but less

consistent activation in orbital frontal or inferior temporal regions in individual subjects. In

Phase I, we had compared this task to an IAPS negative versus neutral imaging processing

task (see Supplemental Materials for details). The Hariri task elicited more consistent

activation in bilateral amygdala regions, which was true both when looking at the group

activation maps and the ACMs (Figure S7).

Aggregate Brain Coverage

Figure 12 shows task count maps for aggregate activations across all contrasts in all tasks, to

provide a sense of the overall brain coverage achieved by this set of tasks. These maps show

voxels that exhibit activation within an individual subject at z > 1.96 for two percentages of

participants in a contrast in any task: 50% and 70%. Voxels with no coloring are those that

do not show individual subject level activation in that percentage of participants in any

contrast for any task. As can be seen, we have excellent coverage of the brain in terms of

regions that show activation in at least 50% of participants in one or more tasks. The

primary exception to this is ventral temporal cortex in the area of known susceptibility-

related signal dropout. We still have reasonable coverage for regions showing activation in

at least 70% of subjects in one or more tasks, though this coverage is less extensive. A

similar picture emerges when examining the task count maps that result from the

grayordinates-based processing stream (see Figure 13).

Signal To Noise Ratio (SNR) Maps

As described above, for some tasks we did not see robust activation in some expected

regions. Thus, we examined the SNR maps to determine whether low SNR is those regions

might be contributing to the absence of activation. The average tSNR maps for each task

were very similar in their overall spatial structure, thus Figure S8 shows the average map for

just the Incentive Processing task in the same slices as the map of aggregate brain coverage

from the volume-based analysis, and Figure S9 shows the tSNR map for Incentive

Processing in grayordinate space. As expected, tSNR is highest in the cortical periphery (due

to the use of a 32-channel coil) with regions of low tSNR in medial orbitofrontal cortex and

inferior temporal cortex due to susceptibility-induced signal dropout in those regions. In

addition, tSNR is lower in subcortical regions such as the striatum and the thalamus. The

Barch et al. Page 20

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



lower tSNR in these regions could be contributing to the less robust individual level subject

activation in these regions in the working memory and incentive processing tasks.

Discussion

The goal of this paper was to outline the logic and rationale behind the development of the

behavioral, individual differences and task-fMRI batteries and to provide preliminary data

on the patterns of activation associated with each of the fMRI tasks, at both a group and

individual level. As illustrated by the distribution plots provided for both the Toolbox and

non-Toolbox behavioral and self-report measures, we are seeing a good distribution of

scores across the vast majority of these measures. This suggest that these measures will be

very useful for individual difference analyses that will allow investigators to examine the

relationships between variability in performance across a wide array of domains (cognition,

emotion, motor, sensory, personality, subthreshold clinical, etc.) and individual differences

in structural and functional brain connectivity, as well as in task related functional brain

activation.

As noted in the introduction, our goal in the creation of the tfMRI battery was to assess a

broad range of functions and processes in a reasonable amount of time so as to elicit brain

activation in as many different brain regions and neural systems as possible. Importantly,

our focus in designing these tasks was to maximize efficiency and the ability to robustly

identify activations at the level of individual subjects. To achieve these goals, the design of

the tasks and contrasts was by necessity less fine grained and controlled than one would

want if the goal of the battery was to isolate and characterize the specific cognitive or

affective processes being supported by different brain regions. As such, we provided data for

contrasts that were both more global (e.g., 2-back versus baseline, reward versus baseline)

and more focused on isolating specific cognitive processes (e.g., 2-back versus 0-back,

reward versus punishment). From our perspective, robust activation in either of these types

of contrasts is useful for our purposes of identifying nodes and identifying individual

differences in either the spatial location of activation or the magnitude of activation.

Although the interpretation of activations in the global contrast may be less clear than the

interpretation of activations in the more focused contrast, to the extent that they still provide

information about the location and magnitude of activation in brain regions that can be

related to structural or functional connectivity, such data is still highly useful to the goal of

the HCP. Consistent with this view, the map of aggregate brain activity across any contrast

(global or focused) is quite promising, suggesting that our battery of tasks is successful in

containing one or more contrasts that identify consistent brain activity in 70% or more of

subjects in the same contrast.

Although consistent activation in the majority of the global contrasts will fulfill our purpose

in including tfMRI in the HCP protocol, some contrasts (primarily the more focused ones)

did not show consistent individual subject level activation. For example, we do not see

striatal activation in at least 50% of individual subjects in the comparison of reward versus

baseline for the gambling task, we do not see orbital frontal activation in at least 50% of

individual subjects in the emotion processing task, we do not see activation in parietal

regions in the tools compared to other stimulus types contrast, and we see little individual
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subject level activation in any brain region in reward versus punishment for gambling or in

relational versus match for the relational processing task. These results in part reflect lower

tSNR in striatal, thalamic, orbital frontal and anterior temporal regions as compared to other

areas of cortex. As such, these contrasts may not be as useful for examining individual

differences in the location of activations based on significance within each subject.

However, the data from these contrasts may still be useful in individual level analyses, as we

may see reliable variance in the magnitude of activation or the spatial location of peak

voxels across subjects in specific ROIs that are defined by something other than individual

level activation significance testing (e.g., group level, connectivity, etc.); such cross-subject

variance in activation level (or location) could well still show interesting correlations with

non-imaging covariates. Further, all of our testing was done voxel-wise, and it is possible

that we will achieve greater sensitivity at the individual subject level using prior information

provided by a priori ROIs provided by the parcellation analyses generated using either the

resting state or diffusion data, or other approaches that would allow more focused tests. In

addition, it is possible that individual difference analyses will more clearly identify

activation in subcortical regions during tasks such as the incentive processing task, given

evidence that individuals high in certain traits or characteristics (e.g., impulsivity, substance

use) are more likely to show striatal activation to rewards (Bjork et al., 2008). We also did

not see robust medial PFC activation in the social cognition task, which would have been

expected based on prior studies. In this case, tSNR was not particularly low in the more

dorsal part of medial PFC, though it was lower in subgenual regions. Thus, SNR may not be

the sole explanation for the lack of activation in this region in the currently analyzed dataset

(n=20). Alternative analyses that might reveal activation in medial PFC during the social

cognition include individual difference approaches, or analyses that code trials as a function

of the participant’s evaluation of the film clip.

Reliability

The discussion above raises the question of the reliability of the brain activation associated

with the different behavioral measures and the brain activation associated with the tfMRI

paradigms. The NIH Toolbox measures were chosen in part based on evidence of test-retest

reliability in early phase testing, and our selection of non-Toolbox measures was also guided

in part by prior evidence of good test-retest reliability. Further, where possible, we selected

tfMRI paradigms for piloting based on existing evidence for test-retest reliability, though

relatively little data on this property existed for at least some of the domains and measures.

In Phase I, we had participants in the first imaging study return two weeks later and

examined test-retest reliability, both using traditional ICC measures in group identified

ROIs, and using an eta2 metric (Cohen et al., 2008) to examine the similarity of patterns of

activation within subject across time. The ICC values ranged from poor to excellent

depending on the task, ROI and contrast, and did not necessarily show a clear pattern that

favored one type of task (e.g., blocked versus event-related) or task (e.g., N-back versus

Posner) over another. Further, we rapidly realized that the major advances and changes in

the pulse sequences and imaging hardware that are being used for Phase II data collection

would limit the applicability of any reliability estimates from Phase I as regards the

reliability of data being collected in Phase II. Thus, we are collecting a sample of 40

participants who are returning to complete the entire battery approximately 2–4 months after
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their initial assessment, to provide reliability estimates for all measures to be produced as

part of the HCP. These 40 participants will consist of 20 pairs of MZ twins, allowing us to

compare across twins within a pair at the same testing point as well as to compare the same

twin assessed at two different time points. This data will provide reliability estimates that

can be used to modulate interpretations of both individual difference relationships and

genetic influences.

Grayordinates-Based tfMRI Analyses

We illustrated the majority of the results using a volume-based processing stream in order to

maximize comparison to prior studies, the majority of which used volume-based processing.

However, we also illustrate results from the surface based analyses for tfMRI data that has

been implemented by the HCP, and which will eventually be executable within FSL. The

principle advantage of surface-based analysis of any kind is in its improvements in spatial

localization, both within and across subjects (Fischl et al., 2008; Fischl et al., 1999a; Fischl

et al., 1999b; Frost and Goebel, 2012; Van Essen et al., 2012). Such improvements in spatial

localization can be assessed by comparing the spatial extent and boundaries of activations to

independent modalities, such as myelin maps (Glasser et al., 2012). Because we planned to

make use of surface-based analysis techniques, we used a high-resolution fMRI acquisition

(2mm isotropic), which allows for more specific mapping of fMRI signal from the cortical

gray matter ribbon onto the surface (see (Glasser et al., in press) this issue). Volume-based

analyses may not benefit as much from increases in acquisition resolution, owing to the

inherent blurring effects of unconstrained volumetric smoothing. Surface-based analyses

also allow direct visualization of activation across the entire cortical sheet without the

inaccuracies introduced by mapping volume-averaged data to an average surface (Glasser

and Van Essen, 2011; Van Essen et al., 2012). There may also be modest increases in

statistical power in surface-based analyses (Anticevic et al., 2008; Tucholka et al., 2012). A

future goal of the HCP is to carry out a direct comparison of statistical power and intra-

subject alignment for volume-based versus surface-based analyses applied to HCP datasets.

Additional advantages are likely to accrue in conjunction with improved surface-based

methods for multimodal intersubject alignment based on myelin maps and tfMRI activation

maps (Robinson et al., 2013).

Denoising of tfMRI Data

Our description of the processing stream for the tfMRI data presented in the current paper

did not include any additional denoising steps, such as the inclusion of regressors indexing

the degree of movement on each frame (Johnstone et al., 2006), physiological noise

modeling (Brooks et al., 2008; Chang and Glover, 2009; Glover et al., 2000), or motion

scrubbing (Power et al., 2012; Siegel et al., under review). We compared analyses including

each of these additional denoising steps to analyses without any additional denoising in

these 20 participants, and did not see any evidence of improvement in terms of either

individual level Z-statistics or group level Z-statistics. We think it highly likely that this lack

of improvement with additional denoising steps is related to the high quality of the data from

these 20 participants (including low movement). Therefore we plan to reexamine the

potential benefits of each of these denoising approaches, as well as an ICA-based approach

to denoising, in a larger set of HCP participants that may contain participants with higher
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levels of movement. Should these analyses indicate that one or more of these additional

denoising steps improves the quality of the data, we will modify the HCP tfMRI processing

pipeline accordingly.

Conclusion

In summary, we describe here the behavioral, and tfMRI data being collected as part of the

primary Phase II HCP protocol. We described the logic and rationale for our choices of tasks

and measures for both the behavioral and the imaging components of the study. Preliminary

analyses of the first 77 participants to be included in the first quarterly data release indicate a

good range of scores on the vast majority of the behavioral measures, boding well for their

use in individual difference analyses. We also presented data from 20 subjects (unrelated to

each other) to be included in the first quarterly data release. Less-processed data for the

other 57 participants will also be released at this time. The data on the 20 participants

presented in this paper indicate that we are seeing excellent brain coverage as a whole for

our battery of tasks, with the vast majority of tasks eliciting activation in the expected

regions at both a group level and in a large percentage of individual subjects. Our next step

is to complete the reliability sub-study of Phase II and to present reliability metrics for both

the behavioral and the imaging data to guide future interpretation and analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Describes logic for the behavioral battery for the Human Connectome Project

(HCP)

• Describes logic and development of the task fMRI (tfMRI) battery for the HCP

• Provides data on brain activation associated with each tfMRI paradigm in the

HCP
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Figure 1. Toolbox Measures
Distribution of Scores for NIH Toolbox Measures. Boxplots showing the data from the 77 participants that constitute the first

quarterly release of data for the Human Connectome Project. The ends of the box represent the 25th and 75th quantiles. The

vertical line within the box represents the median value, and the diamond within the box illustrates the mean and the upper and

lower 95% confidence intervals around the mean. The lines extending from the box are called whiskers and represented 1.5 X

the interquartile range (the difference between he first and the third quartiles) in either direction. The red bracket next the box

illustrates the densest 50% of the observations (called the shortest half).
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Figure 2. Non-Toolbox Measures
Distribution of Scores for Non-Toolbox Measures. See Figure 1 caption.
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Figure 3. Working Memory/Cognitive Control (N-back Task)
Group and Activation Count Maps for the Working Memory Task.
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Figure 4. Working Memory/Cognitive Control (N-back Task); Grayordinates-Based Analysis
Group and Activation Count Maps for the Working Memory Task from the Grayordinates-Based Analysis.
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Figure 5. Category Specific Stimulus Representations (Embedded in N-back Task)
Group and Activation Count Maps for the Category Specific Representation Contrasts.
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Figure 6. Incentive Processing (Gambling Task)
Group and Activation Count Maps for the Incentive Processing Task.
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Figure 7. Motor Mapping Task
Group and Activation Count Maps for the Motor Mapping Task.
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Figure 8. Language Processing (Story Task)
Group and Activation Count Maps for the Language Processing Task. The upper two panels show the results from the volume-

based processing stream and the bottom two panels show the results from the grayordinates-based processing stream.
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Figure 9. Social Cognition (Theory of Mind Task)
Group and Activation Count Maps for the Social Cognition Task.

Barch et al. Page 42

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 10. Relational Processing (Dimensional Change Detection Task)
Group and Activation Count Maps for the Relational Processing Task.
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Figure 11. Emotional Processing (“Hariri Task”)
Group and Activation Count Maps for the Emotional Processing Task.
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Figure 12. Aggregate Brain Coverage from Volume-Based Analysis
Task Count Maps from Volume-Based Analysis. These figures illustrate the number of tasks, for each voxel, that show

activation at Z>1.96 in at least 70% and 50% of participants at the individual subject analysis level.
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Figure 13. Aggregate Brain Coverage form Grayordinates-Based Analysis
Figure 13. Task Count Maps from Grayordinates-Based Analysis. These figures illustrate the number of tasks, for each voxel,

that show activation at Z>1.96 in at least 70% and 50% of participants at the individual subject analysis level.
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Table 1

Candidate Task Domains for Task-FMRI in the Human Connectome Project

Domain(s) Task Regions of Interest

Visual, Somatosensory Motor
● Localizer: (Drobyshevsky et al., 2006; Gountouna et
al., 2009; Hirsch et al., 2000); Reliable Across subjects
(Drobyshevsky et al., 2006; Hirsch et al., 2000) and time
(Warnking et al., 2002)

Retinotopic Mapping
Finger Responses

Primary Motor; Premotor; Striatum;
Retinotopic Visual Areas

Category-Specific Representations
● Localizer: (Downing et al., 2001; Fox et al., 2009;
Peelen and Downing, 2005; Taylor et al., 2007); Reliable
across subjects (Downing et al., 2001; Fox et al., 2009)
and time (Kung et al., 2007; Peelen and Downing, 2005)

Alternating blocks of 0-back and 2-back
working memory; faces, non-living man-
made objects, animals, body parts,
houses, or words.

Fusiform; Occipital Face Areas;
Superior Temporal Sulcus; Lateral
Occipital; Parahippocampal Gyrus;
Visual Word Form Area

Working Memory; Cognitive Control
● Localizer: (Drobyshevsky et al., 2006); Reliable
across subjects (Drobyshevsky et al., 2006) and time
(Caceres et al., 2009)

N-back Task (2-back versus 0-back)
embedded in Category Specific
Representation Task

Dorsolateral + Anterior Prefrontal;
Inferior Frontal; Precentral Gyrus;
Anterior Cingulate; Dorsal Parietal

Dorsal and Ventral Attention Systems
● Reliable across subjects and robust activation in fMRI
(Doricchi et al., 2010; Engelmann et al., 2009)

Variant of Posner Task (compare
blocked and event-related versions)

Frontal Eye Fields; Supplementary
Eye Fields; Precuneus; Intraparietal
Sulcus: Anterior, Posterior Cingulate

Language Processing
● Reliable across subjects (Binder et al., 2011) and
robust activation in both fMRI and ERP (Ditman et al.,
2007; Kuperberg et al., 2008)

1) Auditory sentence presentation with
detection of semantic, syntactic and
pragmatic violations; versus 2) auditory
story presentation with comprehension
questions versus math problems

Inferior Frontal; Superior Temporal;
Anterior Cingulate

Emotion Processing
● Localizer: (Drobyshevsky et al., 2006; Phan et al.,
2004); Reliable across subjects (Drobyshevsky et al.,
2006; Phan et al., 2004) and time (Manuck et al., 2007a,
b), robust activation in fMRI (Hariri et al., 2002)

1) Valence Judgments (negative and
neutral pictures from IAPS) versus
2) Hariri Hammer Task

Amygdala; Hippocampus; Insula;
Medial Prefrontal

Memory
● Localizer: (Miller et al., 2009; Miller et al., 2002);
Reliable across subjects (Miller et al., 2009; Miller et al.,
2002) and time (Miller et al., 2009; Miller et al., 2002)

Remember, Know, New Recognition
Judgments on Category-Specific task
stimuli

Parietal; Hippocampus; Entorhinal
Cortex

Reward & Decision Making
● Reliable across subjects and robust activation in fMRI
(Delgado et al., 2000; Forbes et al., 2009; May et al.,
2004; Tricomi et al., 2004)

Gambling decision making task
(compare blocked and event-related
versions)

Striatum; Ventral Medial Prefrontal;
Orbitofrontal

Social Cognition
● Reliable across subjects and robust activation in fMRI
(Castelli et al., 2002; Castelli et al., 2000; White et al.,
2011)

Frith-Happe animations of social and
random interactions

Medial Prefrontal Cortex; Temporal
Parietal Junction; Inferior and
Superior Temporal Sulcus

Biological Motion
● Localizer: (Peuskens et al., 2005)

Point light displays of biological motion
versus random motion versus static dot
displays

MT+; Visual Cortex

Motor Strip Mapping
● Localizer:(Bizzi et al., 2008; Morioka et al., 1995);

Right versus left toe movements or
finger movements; tongue movements

Motor and Somatosensory Cortex

Higher Order Relational Processing
● Localizer:(Smith et al., 2007)

Alternating blocks of judgments about
relations among features versus feature
matching

Anterior Prefrontal Cortex
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Table 2

NIH Tool Box Measures Included in the HCP

Domain Subdomain (Measure Name)

Cognition Episodic Memory (Picture Sequence Memory)

Executive Function/Cognitive Flexibility (Dimensional Change Card Sort)

Executive Function/Inhibition (Flanker Task)

Language/Vocabulary Comprehension (Picture Vocabulary)

Processing Speed (Pattern Completion Processing Speed)

Working Memory (List Sorting)

Language/Reading Decoding (Oral Reading Recognition)

Emotion* Negative Affect (Sadness, Fear, Anger)

Psychological Well-being (Positive Affect, Life Satisfaction, Meaning and Purpose)

Social Relationships (Social Support, Companionship, Social Distress, Positive Social Development)

Stress and Self Efficacy (Perceived Stress, Self-Efficacy)

Motor Dexterity (9-hole Pegboard)

Endurance (2 minute walk test)

Locomotion (4-meter walk test)

Strength (Grip Strength Dynamometry)

Sensory Audition (Words in Noise)

Olfaction (Odor Identification Test)

Taste (Taste Intensity Test)

Pain (Pain Intensity and Interference Surveys)

*
All emotion measures and the pain measures are self-report.
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Table 3

Additional Behavioral and Individual Difference Measures Including in the HCP

Domain Subdomain (Measure Name)

Visual Processing Visual Acuity (Electronic Visual Acuity System)

Color Vision (Farnsworth Test)

Contrast Sensitivity (Mars Contrast Sensitivity)

Personality Five Factor Model (NEO-FFI)

Cognition Self-regulation/Impulsivity (Delay Discounting)

Sustained Attention (Short Penn Continuous Performance Test)

Verbal Episodic Memory (Penn Word Memory Test)

Spatial Orientation (Variable Short Penn Line Orientation Test)

Fluid Intelligence (Penn Progressive Matrices)

Emotion Emotion Recognition (Penn Emotion Recognition Test)

Psychiatric, Substance Abuse, and Life
Function

Life Function (Achenbach Adult Self-Report)

Psychiatric Clinical Symptoms (Semi-Structured Assessment for the Genetics of Alcoholism)

Nicotine Dependence (Fagerstrom Test for Nicotine Dependence)

Current Substance Use (breathalyzer, Urine Drug Screen, Self-Report)

Physical Function Hematocrit Levels

Menstrual Cycle and Hormonal Status

Thyroid Function (Thyroid Stimulating Hormone Levels)

Glucose Function (Hemoglobin A1c)

Other Cognitive Status (Mini Mental Status Exam)

Sleep (Pittsburgh Sleep Questionnaire)
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