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Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is capable of noninvasively detecting
metabolic changes that occur in the brain tissue in vivo. Its clinical utility has been limited so far,
however, by analytic methods that focus on independently evaluated metabolites and require prior
knowledge about which metabolites to examine. Here, we applied advanced computational
methodologies from the field of metabolomics, specifically partial least squares discriminant
analysis and orthogonal partial least squares, to in vivo 1H-MRS from frontal lobe white matter of
27 patients with relapsing–remitting multiple sclerosis (RRMS) and 14 healthy controls. We chose
RRMS, a chronic demyelinating disorder of the central nervous system, because its complex
pathology and variable disease course make the need for reliable biomarkers of disease
progression more pressing. We show that in vivo MRS data, when analyzed by multivariate
statistical methods, can provide reliable, distinct profiles of MRS-detectable metabolites in
different patient populations. Specifically, we find that brain tissue in RRMS patients deviates
significantly in its metabolic profile from that of healthy controls, even though it appears normal
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by standard MRI techniques. We also identify, using statistical means, the metabolic signatures of
certain clinical features common in RRMS, such as disability score, cognitive impairments, and
response to stress. This approach to human in vivo MRS data should promote understanding of the
specific metabolic changes accompanying disease pathogenesis, and could provide biomarkers of
disease progression that would be useful in clinical trials.

Keywords
Magnetic resonance spectroscopy (MRS); Metabolomics; Relapsing–remitting multiple sclerosis;
Multivariate statistics

Introduction
The challenge of finding biomarkers for multiple sclerosis

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder affecting the central
nervous system; it is one of the most frequent causes of disability in young adults (Kurtzke
and Wallin, 2000). Most patients suffer a relapsing–remitting (RR) disease course that over
time transitions into insidious progression. The pathogenic mechanisms that underlie the
relapsing phase and lead to the transition from RR to secondary progression remain poorly
understood (Frohman et al., 2006); clinically, the unpredictability and variability in
symptoms complicate disease management and render prognosis particularly elusive.

Knowledge of metabolic changes, which are a reflection of the underlying biochemistry,
could provide biomarkers that would greatly improve the prospects of managing MS, and
provide insight into the disease process itself. Ideally, MS biomarkers would be acquired
non-invasively and would reflect disease-related pathogenic processes. Such biomarkers
could foster early diagnosis and perhaps distinguish between those patients who present with
clinically isolated syndrome, but never develop MS, from those who will develop a RR
disease. Biomarkers, or specific patterns of biomarkers, would also make it possible to
quantify patient response to treatments, improving the quality and specificity of clinical
trials.

The strengths and limitations of conventional MRI and MRS
The ability of conventional magnetic resonance imaging (MRI) to identify demyelinating
inflammatory plaques within the white matter offers a fairly noninvasive way to track
disease progression by monitoring lesion burden, though there is often only a loose
correlation between changes revealed by conventional MRI and clinical status (Bakshi et al.,
2008). MRI can improve diagnosis of MS by distinguishing it from disorders with a similar
clinical presentation, but here again it is not foolproof: T2 lesions occur in other
neurological disorders and have been documented in asymptomatic aging brains (Bakshi et
al., 2008; Vernooij et al., 2008), while some patients with clinically definite MS display no
MRI abnormalities (Fazekas et al., 1999).

Neuroimaging methods such as magnetic resonance spectroscopy (MRS) can reveal
metabolic changes in white matter that appears healthy by conventional MRI (De Stefano
and Filippi, 2007), and therefore might provide a more precise means of diagnosing and
following the disease course. However, MRS has its own limitations: MRS studies typically
evaluate independent changes in only a small handful of major metabolites (Poullet et al.,
2008; Sajja et al., 2009) such as N-acetyl groups (mainly N-acetyl aspartate (NAA)),
choline-containing compounds (Cho), creatine and phosphocreatine (Cr + PCr), and myo-
inositol (mI). While changes in these specific metabolites have been reported at various
stages of MS (Arnold et al., 1994; Chard et al., 2002; Narayana, 2005), such targeted
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analyses have failed to develop an MS-specific metabolic signature. More importantly, these
targeted analyses rely on prior knowledge about the metabolite's presence to calculate and
compare group means–however, they overlook a vast amount of potentially valuable
information that might be contained in smaller but abundant metabolites such as lipids,
lactate, aspartate (Asp), glutamine (Gln), and glutamate (Glu), which are difficult to quantify
using current methods.

Metabolomic techniques can circumvent these limitations
To circumvent these limitations, we turned to techniques developed in the emerging field of
metabolomics. Metabolomics uses a non-targeted approach to obtain an accurate
representation of the metabolome, the collection of small molecules that reflect the
processes which take place in living biological systems (Griffin, 2003; Lindon and
Nicholson, 2008; Smolinska et al., 2012). In contrast to the traditional approach of
interrogating a specific subset of small molecules based on a predetermined hypothesis,
similar to testing for high cholesterol as an indicator of heart disease, the aim of
metabolomics is to acquire a functional biochemical profile that encompasses all detectable
small metabolites (specifically identified or not) and trace changes in the profile over the
course of development or disease to generate new hypotheses. Whether the goal is to assess
the metabolic effect of diet, a response to drug therapy or differences in populations, the
question is simple: what has changed?

Metabolomic analysis can be performed on any biological matrix–blood, tears, urine,
cerebrospinal fluid or biopsied tissue in vitro, or living tissue in vivo–using mass
spectrometry or nuclear magnetic resonance (NMR) spectroscopy (Hassan-Smith et al.,
2012; Lindon and Nicholson, 2008). The resulting high-density datasets are analyzed with
multivariate statistical modeling to identify metabolites that correlate with functional
changes in a given system (Griffin, 2003). Metabolomic-type analysis can overcome the
sorts of signal distortions that can occur with MRS, providing previously unavailable
information about living tissue, in vivo. Unlike other quantification tools, metabolomic
analysis of the full resolution spectra has the advantage of not requiring a priori knowledge
such as the line shapes of the metabolite resonances. Therefore, the resonances that can be
identified are not limited to the user's input criteria, and changes in small resonances can be
extracted.

Untargeted metabolic profiling has been proven feasible for a variety of human diseases
(Griffin, 2003). One of the most significant applications has been the use of NMR-based
metabolomics on sera for rapid, accurate, and noninvasive assessment of coronary artery
disease (Brindle et al., 2002). Other applications include the detection of oral squamous cell
carcinoma using plasma (Zhou et al., 2009), epithelial ovarian cancer with sera (Odunsi et
al., 2005), the characterization of inflammatory bowel disease using urine samples
(Williams et al., 2009), and distinguishing multiple sclerosis patients from controls using
cerebrospinal fluid samples (Hassan-Smith et al., 2012; Rajalahti et al., 2010). In vivo, a lot
of work and much success have been in the area of distinguishing brain tumor type and
grade using metabolic profiling in combination with other MR measures (Galanaud et al.,
2006; Preul et al., 1996).

In our study, we extend multivariate statistical analyses to in vivo MRS spectra obtained
from individuals with RRMS and healthy controls. We identify a metabolomic model of
RRMS that distinguishes between spectra from three tissue types in vivo: the white matter of
the frontal lobe in healthy controls (CTWM); the frontal lobe in RRMS patients, which
appears normal by conventional MRI (normal-appearing white matter, NAWM); and the
periventricular non-enhancing lesions in RRMS (NELES). We validate this metabolomic
model by predicting a set of spectra not used in the model-building procedure and achieve
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excellent assignment of tissue type. We also show, for the first time, that the untargeted
metabolomic techniques applied to in vivo MRS data can identify metabolic perturbations
that correlate with clinical features common in RRMS.

Subjects and methods
Subject selection

The study was designed to focus solely on RRMS subjects whose clinical information is
summarized in Supplementary Table 1. We recruited 27 individuals (22 females, age 38.6 ±
10.1 years; age range: 23–62 years) who met diagnostic criteria for RRMS (Polman et al.,
2011) through the outpatient offices of the Multiple Sclerosis Comprehensive Care Center in
Stony Brook, NY. RRMS subjects had to be clinically stable, which we defined as at least
two months since the last relapse, ambulatory with at most bilateral assistance, and able to
tolerate neuroimaging. Participants could be on or off disease-modifying therapy, but their
medications had to have been stable for at least two months prior to evaluation, and
participants were imaged no sooner than four weeks after their last steroid dose. Subjects
with an Extended Disability Status Scale (EDSS) (Kurtzke, 1983) greater than 6.5 were
excluded from the study.

The control group consisted of 14 subjects (13 females; age 31.1 ± 9.1 years; range: 21 to 51
years) recruited from a community sample of healthy volunteers who had no history of
neurological disorders. All participants gave written consent to participate in the study,
which was approved by the Institutional Review Boards of Stony Brook and Princeton
Universities.

Subject evaluations
Neuropsychological measures were included on a subgroup of participants who consented
for cognitive testing (Table 1). Neuropsy-chological measures included: the Rey Auditory
Verbal Learning Test (RAVLT), a list learning task that assesses verbal learning and
memory (Nici, 2000); the Symbol Digit Modality Test (SDMT), a measure of working
memory and cognitive processing speed (Parmenter et al., 2007); and the Paced Auditory
Serial Addition Test (PASAT)–3 s, a timed measure of working memory (Gronwell, 1977).
Some patients had time restraints and could not complete all the tests, and in some cases
these measures could not be completed in entirety. Subsequent to the cognitive testing, two
psychological questionnaires were added: the Holmes & Rahe Social Readjustment Rating
Scale (SRRS) which measures stressful life events (Hobson et al., 1998; Holmes and Rahe,
1967); and the Fatigue Severity Scale (FSS) which assesses the impact of fatigue on daily
functioning (Krupp et al., 1989).

Magnetic resonance imaging and spectroscopy data acquisition
MRI and MRS were conducted on a 3 T Phillips Achieva MR Scanner (Philips Medical
Systems) with an 8-channel SENSE, receive-only head coil. In MS subjects, spectra from
normal appearing white matter (NAWM) and non-enhancing lesions (NELES) were
obtained contralaterally and exclusively in frontal lobe. NELES with a diameter of 7 mm or
larger were selected for MRS, to minimize partial volume effects. In control subjects,
spectra were collected in control white matter (CTWM) from the periventricular white
matter in the frontal lobe, to prevent confounds in the modeling from any region-dependent
metabolic differences. Whole brain segmentation was calculated in SPM8 (Wellcome
Department of Cognitive Neurology, London, UK), yielding measures of whole brain gray,
white and CSF fractions, i.e. total volume/intracranial volume, for each subject.
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Volume of interest (VOI)
There is a delicate balance between voxel size and placement for in vivo 1H-MRS studies,
because the brain is heterogeneous; a large voxel may contain multiple tissue types while
decreasing the voxel size limits the signal-to-noise ratio (SNR). A 14 × 14 × 14 mm voxel
(2.744 cm3) was chosen for all regions and subjects, based primarily on the size of a typical
MS lesion, allowing maximum signal to be captured from the lesion volume, with minimal
signal from the surrounding tissue. Care was also taken to avoid CSF within the VOI; the
high water content of CSF has been shown to impair data acquisition. Because not all
subjects had lesions in the frontal lobe or lesion-free NAWM in the frontal lobe, the analysis
was carried out on 23 NAWM spectra and 19 NELES spectra from the 27 MS subjects, and
14 CTWM spectra from control subjects.

MRI/MRS data acquisition parameters
1H-MRS were collected using short echo time (TE/TR = 32/2000 ms), single voxel point-
resolved spectroscopy (PRESS) in the frontal lobe NAWM and NELES, if present, in
RRMS subjects (Fig. 1) and the frontal lobe of control subjects. Other sequence parameters
were: 2 kHz acquisition bandwidth, 1024 points, 128 NEX, and CHESS water suppression
(Frahm et al., 1989). To confirm that the lesions selected were non-enhancing, 3-
dimensional T1-weighted gradient echo images were taken 10 min following a single-dose
gadolinium contrast injection. Gadolinium was given after the MRS was done.

Magnetic resonance spectroscopy data analysis
Single voxel 1H-MRS spectra were processed using 3DiCSI software v.1.9.9 (Hatch MR
Research Center, Columbia University), involving the following steps: zero filling to 2048
points, apodization with a 5 Hz Gaussian filter, and Fourier Transform. The first and zero
order phase corrections were manually applied to correct any phase errors. The spectra were
exported as ASCII files into MATLAB (The Mathworks, Natick, MA) where the curve-
fitting toolbox was used to apply linear baseline correction. Also in MATLAB, the spectra
were normalized to creatine at 3.0 ppm, the region from 4.0 to 6.0 ppm was excluded from
the data, and the spectra were compiled into a matrix for subsequent statistical analysis using
SIMCA-P (version 11.55, Umetric, San Jose, CA).

Metabolites were also quantified using LCModel (Provencher, 1993). The LCModel is a
fully automated MRS quantification technique that uses information from a basis set of
metabolite spectra in order to estimate the quantity of metabolite in a given tissue, from the
MR spectrum. LCModel fits the reference spectra of the basis set of metabolites to the real
data, to provide absolute and relative quantitation of individual metabolites such as NAA,
Cr, Cho etc., present in the dataset.

Normalization
The absolute creatine + phosphocreatine (Cr + PCr) concentration from the LCModel and
unsuppressed water signal were considered as normalization factors. Since the Cr + PCr
levels were more consistent across CTWM, NAWM, and NELES than the water signal and
did not vary with age, we used it as the normalization factor for the metabolomic analysis
(see Supplementary Fig. 3 and Normalization of MRS data). An additional benefit of
normalizing to Cr + PCr is that it allows direct comparison to many previous studies which
have reported their results as ratios to Cr, although the increase in Cr in NAWM found in
our study needs to be taken into account when interpreting the results.
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Statistical analysis
All assessments are expressed as mean ± standard deviation. A Student's t test (unpaired,
two-tailed) was applied for the comparisons of clinical assessments (RAVLT, SDMT,
PASAT, FSS, and SRRS) between control and RRMS subjects.

Multivariate statistical analysis was carried out with SIMCA-P. For this analysis, the
spectral points, excluding the residual water region and creatine peaks, are considered the X
variables. The class information of the spectra (CTWM, NAWM, or NELES) or clinical
scores are the Y variables. For more details on the metabolomic statistical methods, see the
Supplemental materials. Since the multivariate methods are based on variance, i.e., they seek
out the greatest variance of the data, the X variables are centered and scaled to reduce the
bias it places on large variables (Craig et al., 2006). As with most analytical data, a large
peak will exhibit a greater absolute variance than a small peak. To minimize this effect, the
standard in metabolomics is to apply unit-variance or Pareto scaling. We chose Pareto
scaling, which computes the base weight as 1/sqrt(sdj), where sdj is the standard deviation of
the variable j computed around the mean, as the most suitable for minimizing the effects of
the baseline and overall noise in the data.

Metabolic profiling of three tissue types (NAWM, CTWM, and NELES) was carried out
using partial least squares discriminant analysis (PLS-DA). PLS-DA is a supervised
chemometric tool that models the variation in the n by m data matrix X into two multiple
components, where n is the number of observations and m the number of variables (in our
case each spectral point is a variable), in response to an n by k dummy Y matrix containing
class membership information (Barker and Rayens, 2003). The k variables are zeros and
ones, where a value of one indicates class membership. This analysis results in a score plot
that summarizes each spectrum as a single point as it relates to the other spectra in the
dataset. The loading plot summarizes the contribution of each variable (spectral point) to the
placement of the samples in the score plot.

Correlations of the metabolic features with clinical scores were modeled using orthogonal
partial least squares (O-PLS). O-PLS is a chemometric tool that models the variation in data
matrix X into 2 components, one linearly related to variation of the clinical variable (the first
component) and one that is orthogonal and associated with uncorrelated variation (the
orthogonal component) (Trygg and Wold, 2002). This extension of PLS greatly increases
the interpretability of the model since the metabolic variables associated with the variation
in the clinical features are condensed along one component.

To build and validate the PLS-DA model for class discrimination and prediction, the data
was randomly divided into a training set (80% of the data–11 CTWM, 18 NAWM, 15
NELES) and a test set (20% of the data–3 CTWM, 5 NAWM, 4 NELES). The test set was
excluded from model construction, and the model was used to predict class membership of
the data in the test set.

During both O-PLS and PLS-DA model construction, an iterative method of cross-
validation was used where 1/7th of the samples were randomly excluded and used for
predictions by applying the loading coefficients of the model to the excluded spectra. This
was repeated until each spectrum was predicted once. This results in a predicted y value for
each sample (i.e. class membership in the case of PLS-DA, clinical score in the case of O-
PLS) that can be compared to the actual y value to assess the model's predictability.

In addition to the metabolomic analysis, multiple ANOVA was used to determine if
significant differences exist between groups for LCModel quantified metabolites. Tukey
honest significant difference tests were used to determine which contrasts were significantly
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different while controlling for multiple comparisons. Pearson's correlation was used to
determine relationships between age and MR measures.

Results
Subject evaluation

Clinically, the RRMS subjects were characterized according to their EDSS, which ranged
from 0 to 4.0 (mean of 2.3 ± 1.2), and disease duration, which ranged from 0.25 to 40 years
(mean of 8 ± 9 years; median 5 years) (Supplementary Table 1). Further, they had
neuropsychological (see Subject evaluations and Metabolic signatures distinguish white
matter of MS patients from healthy controls, and Table 1) and radiological assessments.
Radiological parameters included lesion load, which ranged from 3.6 to 47.8 cm3 (mean
17.3 cm3, standard deviation 11.0 cm3) (Supplementary Table 1). Gray matter fraction
significantly varied with age (Pearson's correlation r = −0.63, p < 0.001), while white matter
fraction did not (p = 0.167). After correcting for age, there was a significant difference
between gray matter fraction in MS (44.69% ± 2.04%) and controls (46.14% ± 2.02%, p =
0.04), as well as a difference in white matter fraction (controls 32.97% ± 2.25%, MS
subjects 31.20% ± 2.51%, p = 0.03).

Effect of age on MRS data
We have analyzed frontal NAWM 1H-MRS data in subjects with established RRMS. The
participants varied in age (p = 0.02), and thus we considered the influence of age on the
metabolite content. Interestingly, while several studies clearly indicate metabolite
differences in most regions of the brain (Inglese and Ge, 2004; Kadota et al., 2001; Leary et
al., 2000; Schuff et al., 2001), the metabolites assessed in the frontal white matter have been
shown to not be affected significantly by age (Chang et al., 1996, 2009; Fukuzako et al.,
1997). Regardless, to evaluate if the metabolic patterns in our data had an age affect, we
performed principal component analysis (PCA) which showed no trends of age in the data
(Supplementary Fig. 1). Additionally, we attempted to build a PLS model with age as the Y
matrix, and could not compute a validated model (data not shown). This indicates that our
MRS data does not have an age dependence. To ascertain that our multivariate statistical
analyses do not mask the effect of age on individual metabolites, we analyzed the effect of
age on key individual metabolites estimated by LCModel (Supplementary Fig. 2). As
shown, scatterplots indicate that there is no significant effect of age on NAA, Cho, mI, and
macromolecule/lipid compounds. Overall, these data established that further analysis of
metabolomic signatures in RRMS in all our subjects is not confounded by age.

Normalization of MRS data
We considered both the water signal from an unsuppressed spectrum and Cr + PCr as
normalization factors (Supplementary Fig. 3). The water signal was found to significantly
differ between all three groups (CTWM: 1.71 ± 0.21, NAWM: 1.91 ± 0.24, NELES: 2.06 ±
0.31; p-value CTWM vs. NAWM, 0.014; CTWM vs. NELES, 0.001; NAWM vs. NELES,
0.098), in addition to having a strong relationship with age (p = 0.009). The absolute
concentration of Cr + PCr was significantly decreased in CTWM in comparison to NAWM,
but not between CTWM and NELES or NAWM and NELES (CTWM: 4.68 ± 0.59; NAWM
5.12 ± 0.41; 4.95 ± 0.36; p-values CTWM vs. NAWM, 0.025; CTWM vs. NELES, 0.148;
NAWM vs. NELES, 0.167). We therefore chose to use Cr + PCr as normalization factor
since it was consistent across tissue types for our data and did not vary significantly with
age.
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Metabolic signatures distinguish white matter of MS patients from healthy controls
To characterize the metabolic differences between CTWM from healthy controls, and
NAWM and NELES from MS patients, we performed PLS-DA. The PLS-DA score plot
shows clustering amongst the spectra from each tissue type (Fig. 2A). The first component
discriminates NELES from CTWM, while the second component discriminates NAWM
from CTWM and NELES. The regions that are most influential in producing this
discrimination are indicated by the regression coefficients derived from the PLS-DA model
(Fig. 2B). A positive value along the x-axis of Fig. 2B indicates a relatively higher
metabolite concentration in CTWM compared to RRMS tissue (either NAWM or NELES).
A positive value along the y-axis indicates a relatively higher metabolite concentration in
NAWM compared to either CTWM or NELES. On the 2-dimensional loading plot, each
point represents a single point along the chemical shift scale of the MRS spectrum and is
color-coded according to assigned metabolites to aid in interpretation (Fig. 2C). In general,
the greatest spectral differences resulted from NAA (2.02 ppm) in CTWM; lipids (1.3 − 1.75
ppm) in NAWM, mI (3.58 ppm) in NELES; and Cho (3.22 ppm) in both RRMS tissues (i.e.,
NAWM and NELES). Additional metabolites which may have influenced the model include
Glu (2.45 ppm) in NAWM, as well as aspartate (Asp, 2.79 ppm) and γ-aminobutyric acid
(GABA, 1.89 ppm) in NELES.

Validation
The PLS-DA model successfully discriminated class membership based on spectral features.
Using a class membership threshold of 0.5, the internal cross-validation shows that the
model classified 38 of the 44 training spectra correctly, a rate of 86% (Table 2). Of the six
spectra incorrectly classified, one CTWM was misclassified as NAWM, one NAWM was
misclassified as a NELES, and two CTWM and two NAWM were not classified into any
membership class based on the 0.5 criteria. There was no obvious reason for these
misclassification based on the individual's clinical descriptors such as age, gender, or disease
characteristics.

External validation was used to exclude the possibility that PLS-DA modeling describes
only the data it was built on and fails to describe or predict new data (See Supplementary
materials for more detail). Compared to the internal validation, which correctly classified
86% of the spectra, the external validation successfully predicted 9 out of 12 spectra, or 75%
of the data, as summarized in Table 3. However, on the score plot with the predicted scores
overlaid in Fig. 3, only two spectra seem misclassified. Thus, the modeling is probably not
taking into account a slight overlap between the classes when making the predictions of
class membership. In either case, these results show great promise for future applications of
metabolomics to in vivo assessment of neurological disorders.

Comparison to LCModel analysis
To complement the results of the PLS-DA model which used the digital resolution spectral
points as the input parameters, we quantified the metabolites using LCModel, which uses a
priori established reference library for a selected group of metabolites (Supplementary Table
2). If there was a trend between groups defined as α < 0.10, we performed a post hoc
analysis to determine which metabolites differed between groups. Our results indicate a
significant decrease in NAA + NAAG/Cr + PCr between both NAWM and NELES
compared to CTWM. In addition, there was a significant increase in mI/Cr + PCr compared
to NAWM, and a trend of increase in CTWM. Glu/Cr + PCr also displayed a trend of being
decreased in NELES compared to CTWM and NAWM, although this did not reach
significance after taking into account multiple testing. Asp/Cr + PCr displayed a significant
increase in NAWM compared to CTWM and NELES, and GABA/Cr + PCr had a small but

Vingara et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



insignificant increase in NELES. The macromolecules and lipids fitted with the LCModel
did not show any significant differences between groups.

The LCModel results agree with the PLS-DA analysis, as can be seen by the contributing
metabolites identified by the loading plot (Fig. 2B). In the loading plot, an increase in
metabolite signal is signified by the metabolite being in the same area as the tissue type
cluster in the score plot and a decrease is signified by the metabolite being in the opposite
area. For example, mI appears in the lower left hand corner on the loading plot, due to the
fact that it is increased in NELES compared to NAWM, and it has a slight but insignificant
increase compared to CTWM. While the major metabolites identified by LCModel analysis
agreed with the data obtained by metabolomic model, the lipids did not. This is most likely
due to the less well-defined nature of their signals. In our analysis, the lineshape of these
signals is not predefined, where in the LCModel they are. Our analysis showed that
macromolecule peaks at 1.3 ppm and 1.7 ppm were increased in NAWM compared to
CTWM and NELES. The ANOVA for the LCModel correlates (MM14 + Lip13a + Lip13b
+ MM12 and MM17) did not reach significance with the threshold of α = 0.05. This could
be due to the difficulty to fit these complex broad areas to the metabolites in the basis set
reliably.

Clinical features common in RRMS correlate with specific metabolic signatures
To further characterize the disease process of RRMS and determine whether there is a
metabolic pattern specific to certain clinical aspects of MS, we performed orthogonal partial
least squares (O-PLS) with standard clinical measures of global neurological impairment,
cognitive dysfunction, fatigue, and stress (see Subjects and methods). Such untargeted
statistical correlations have never been established and analyzed before. The RRMS group
had significantly worse scores than the control group on every test except the Social
Readjustment Rating Scale (SRRS), which measures response to stressful life events (Table
1).

We built independent O-PLS models for each clinical assessment to determine if a metabolic
signature correlated with these measures. Using internal cross-validation, we found three
tests that correlated with certain spectral characteristics: the EDSS which measures global
neurological impairment, the RAVLT measure of verbal learning, and the SRRS (Fig. 4) of
perceived stress. Each O-PLS model is summarized according to a score plot colored by the
clinical measure, an average MRS spectrum with the loading coefficient for the first
component projected by color, and an observed versus predicted plot from the internal cross
validation (Fig. 4; see Subjects and methods).

NAA levels correlate inversely with global neurological impairment
The EDSS scores for the RRMS subjects (n = 27) ranged from 0 to 4, with a mean of 2.3 ±
1.2. The O-PLS model estimating EDSS score from NAWM spectra shows a decrease in
many of the MRS-detected metabolites and an increase in lipids around 1.3 ppm, which
correlates with increased EDSS (Fig. 4A), as indicated by the loading coefficients from the
first component of the model. A positive coefficient value along the first component
indicates a metabolite that increases with worsening neurological impairment, whereas a
negative value indicates a metabolite that decreases with worsening neurological
impairment. The main contributing metabolite is NAA (2.02 ppm), which correlates
negatively with the EDSS score. The internal cross-validation, summarized by the observed
versus predicted plot, has a R2 of 0.858, with a root mean squared error (RMSE) of 0.466.
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Decreases in NAA and Cho correlate with loss of verbal memory
Overall, the RRMS participants demonstrated significant verbal memory dysfunction
compared to the control group (two-sample, two-sided t-test, p-value = 0.0065), with a mean
RAVLT score of 46.85 ± 10.6 (control group average score: 59.0 ± 9.4). The O-PLS model
for RAVLT was therefore built on NAWM spectra alone (n = 20), and is summarized in Fig.
4B with a score plot colored by RAVLT score, where normal memory function is defined as
a RAVLT score over 50. From the internal cross validation, the R2 for the observed versus
predicted plot is 0.909 with a RMSE of 3.55. The regression coefficients indicate that
decreases in NAA (2.02 ppm) and Cho (3.20 ppm) are the main metabolic changes
correlated with verbal memory decline.

Greater stress correlates with lower levels of lipids in both RRMS and controls
Interestingly, the controls did not differ significantly from the RRMS subjects in SRRS
scores (two-sample, two-sided t-test, p-value = 0.19). Therefore, the O-PLS model for SRRS
included CTWM and NAWM spectra (n = 21) (Fig. 4C). The score plot is colored by SRRS,
with a low value indicating low stress and a high value indicating high stress. The R2 for the
observed versus predicted plot is 0.991 and RMSE of 1.07. The loading projection shows
that there is an increase in the lipids around 1.3 ppm and NAA (2.02 ppm), and a decrease in
lipids resonating at 0.90 ppm and ml(3.58 ppm), which correlates with higher stress and a
larger SRRS score.

Discussion
We set out to determine whether an untargeted metabolomic approach to human brain
spectral data could distinguish between healthy and disease states, specifically in multiple
sclerosis. We found that a multivariate statistical approach can be used to detect correlative
changes of several metabolites within brain tissue, as demonstrated on CTWM, NAWM, and
NELES, resulting in distinct complex metabolic signatures. We also identified metabolomic
signatures that correlate with specific disease characteristics of RRMS, suggesting that this
type of analysis might deepen our understanding of specific metabolic changes underlying
MS pathogenesis.

We applied multivariate analysis, widely used in a variety of experimental settings
(Dehmeshki et al., 2001; Weygandt et al., 2011) and in metabolomic profiling of
biospecimen, but not in human brain spectroscopy, to capture all the metabolic fluctuations
important for class discrimination in one analysis. This approach covers the whole spectra
without prior selection of the metabolites and can identify differential behavior of small
resonances that are difficult to quantify. While both the conventional LCModel analysis and
PLS-DA approach lead to similar conclusions about the metabolic differences between
tissue types, the PLS-DA analysis has the advantage of not testing multiple hypotheses, and
therefore can be used to direct conventional analysis without producing errors due to
multiple testing. Conventional quantification techniques have found significant differences
between individual metabolites in CTWM, NAWM, and NELES (De Stefano and Filippi,
2007), but these differences have been neither disease-specific nor discriminatory. We
propose that further studies identifying more complex metabolite signatures could yield
useful disease-specific profiles of numerous neurological disorders.

Our complex metabolic signatures of NAWM, NELES, and CTWM were independent of
age and are consistent with previous reports of independently measured metabolic
disturbances, demonstrating the validity of our approach. The decrease of NAA we found in
both NAWM and NELES has been reported (De Stefano et al., 2001; Filippi et al., 1999;
Kutzelnigg et al., 2005; Ruiz-Pena et al., 2004) and is often interpreted as a sign of
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neurological/axonal dysfunction (De Stefano et al., 2001). The increases in mI and Cho we
found to be primarily associated with NELES are also supported by previous studies:
increases in mI mark glial cell proliferation in MS (Poullet et al., 2008) and an increase of
Cho indicates membrane disturbances and possibly myelin breakdown (Govindaraju et al.,
2000). The increase in lipids we observed in NAWM has been reported previously and
interpreted to indicate demyelination and remyelination (Sajja et al., 2009). The combined
increase coefficients, where metabolites colored red are increasing and those colored blue
are decreasing with increased stress. The observed vs. predicted plot (right) has an R2 of
0.991 and RMSE of 1.07, indicating a predictive model. in lipids and Cho has been shown in
longitudinal studies to indicate acute and severe inflammation, leading to lesion
development (Narayana, 2005).

We also identified abundant small metabolites, primarily Glu, GABA, and Asp, which differ
in the metabolic signatures of NAWM, CTWM, and NELES (Fig. 2). These metabolites are
difficult to measure because of the small signal intensities that appear in a crowded region of
the MR spectrum. Using a special MRS acquisition technique, Glu has been shown to be
elevated in NAWM (Srinivasan et al., 2005), which supports our findings. The changes in
GABA and Asp are an interesting discovery that merits further investigation.

We then sought to determine whether clinical characteristics of RRMS, such as global
neurological impairment, cognitive dysfunction, pathological fatigue, and stressful
experiences correlate with metabolic signatures of NAWM. We used O-PLS to identify
metabolic profiles indicative of neurological impairment, verbal memory, and stress.
Consistent with previous studies, we identified a negative correlation between NAA and
global neurological impairment (as measured by EDSS) (De Stefano et al., 1998, 2001;
Mainero et al., 2001; Ruiz-Pena et al., 2004). We also found that global neurological
impairment negatively correlates with levels of Cho, mI, and Gln/Glu. It should be noted
that the decrease in the majority of MRS-visible metabolites could indicate a change in Cr +
PCr, to which the spectra were normalized. While Cr + PCr is usually considered a stable
metabolite and accepted as a normalization method, alterations in Cr + PCr have been
reported in numerous neurological disorders and needs to be taken into account when
interpreting results (Caramanos et al., 2005). Nevertheless, a high resolution NMR
spectroscopy study of post-mortem MS brains showed that Cr + PCr is unchanged in
normal-appearing brain tissue of MS subjects, although the Cr + PCr concentration may be
altered in the lesion tissue (Davies et al., 1995). Comparison of the absolute concentrations
of Cr + PCr to the unsuppressed water signal across three tissue types indicated that Cr +
PCr was more consistent in our study. Since the focus of this study was primarily on the
changes and characterization of NAWM in MS, normalizing to Cr + PCr was a reasonable
choice.

There have been no studies specifically addressing the relationship between metabolic
fluctuations and cognitive function as measured by the RAVLT in MS, but a decrease in
NAA has been associated with MS-related declines in cognition measured by other means
(e.g., a cognitive dysfunction factor and a modified Brief Repeatable Battery of Neuro-
psychological Tests) (Christodoulou et al., 2003; Mathiesen et al., 2006). We found that
decreases in NAA, Cho and Gln/Glu, along with possible increases in scyllo-inositol,
correlated with declining verbal memory. These metabolites could be important indicators of
cognitive decline in RRMS.

Finally, the relationship between stress and MS disease activity is poorly understood (Mohr
et al., 2000) and it is unknown whether there is a biochemical basis behind it. Our results
suggest that there could be a general metabolic relationship between stressful life events and
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the frontal lobe white matter. In both controls and RRMS participants, increases in stress
correlated with a reduction in lipid content.

Unlike the clear metabolomic correlations with neurological impairment, verbal memory,
and stress response, there were no distinct metabolomic signatures associated with fatigue,
cognitive processing speed, or working memory (Supplementary Fig. 5). There are three
conceivable explanations: these features of MS do not have an observable metabolomic
signature, our sample size was too small to detect such metabolic signatures, or metabolic
changes that do correlate with these measures do not occur in the frontal lobe. Nevertheless,
certain features of RRMS are clearly reflected in a distinct metabolome composition of the
NAWM. Such findings could be important for practitioners, as they could indicate comorbid
states in RRMS.

Conclusions
We have shown that untargeted metabolomic statistical analysis can be used for
comprehensive noninvasive tissue profiling of diseased and healthy human brains in vivo.
While distinguishing between CTWM, NAWM, and NELES demonstrates the utility of the
technique, metabolic profiling of specific clinical aspects of disease demonstrates its
potential power. In a single analysis we captured metabolic alterations that have been
reported in several independent analyses. Since the metabolomic approach does not use a
priori information about the metabolites in the sample, more features can be extracted from
the MRS datasets if they are correlated to an aspect of disease. These techniques should be
extended to a larger dataset to model disease subtype, progression, or treatment monitoring,
where they may become a valuable tool not only for creating more patient-specific
assessments but also for providing insight into the underlying MS pathology.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

MRS magnetic resonance spectroscopy
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RRMS relapsing–remitting multiple sclerosis

CTWM control white matter, i.e., MRS of white matter from healthy controls

NAWM normal-appearing white matter, i.e., MRS from the frontal lobe in RRMS
patients

NELES periventricular non-enhancing lesions in RRMS patients
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Fig. 1.
MRI and MR spectroscopy (MRS) of relapsing–remitting multiple sclerosis (RRMS) subject
showing (A) normal appearing white matter and (B) non-enhancing lesion. The
representative T1 weighted MRIs (upper) demonstrate the voxel placement for MRS
indicated by the red square. (C) Representative MR spectra, indicating major metabolites:
mI–myo-inositol; Cho–choline containing compound; Cr–creatine; NAA–N-acetyl as-
partate, and lipids. Control white matter spectra were acquired from similar locations.
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Fig. 2.
Comprehensive metabolomic model using PLS-DA distinguishes between control white
matter (CTWM), normal appearing white matter (NAWM), and non-enhancing lesions
(NELES) based on their metabolic profiles. (A) On the PLS-DA score plot, each single
spectrum is converted to a data point that represents the relative contribution of metabolites
from MRS of CTWM (black circle), NAWM (blue triangle), and NELES (red diamond)
from the frontal lobe. A 2-dimensional loading plot (top panel) (B) colored by spectral
features (bottom panel) (C) demonstrates the contribution each point along the spectrum
makes to the component analysis in A. This aids in interpretation when there are a lot of
variables, as in the case of full resolution MRS datasets. While the NAA peak did not show
up in the 1-dimensional loading projection, it can be clearly seen to be the most pronounced
in the CTWM. The creatine peaks (3.0 and 3.9 ppm) were left out of analysis since the
spectra were normalized to creatine. Key: glx: glutamine + glutamate; mI: myo-inositol;
Cho: choline; Asp: aspartate; NAA: N-acetyl aspartate; gln: glutamine; glu: glutamate;
NAAG: N-acetyl aspartyl glutamate; GABA: γ-aminobutyric acid. *A: 1.65−1.75 ppm,
macromolecules; *B 1.3−1.65 ppm, lipids, alanine, and lactate; *C 1.15−1.3 ppm,
macromolecules, possibly lactate; *D 0.8−1.1 ppm, lipids. Metabolite assignments are based
on reported chemical shifts in the in vivo MRS literature (Govindaraju et al., 2000).
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Fig. 3.
Validation of the PLS-DA model. Using the model described in Fig. 2 (training set), a
second set of data (test set) was used to test the validity of the model (training set–filled
symbols; test set–open symbols). The close clustering of the test set to the training set
demonstrates the validity of the model described in Fig. 2 for separating out tissue types
based on their metabolic properties.

Vingara et al. Page 18

Neuroimage. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The correlation of clinical features in RRMS and metabolic profiles. A separate O-PLS
model was developed for each of the following characteristics commonly seen in RRMS:
global neurological impairment measured by EDSS; verbal memory measured by RAVLT;
and stress measured by SRRS. (A) The first component of the score plot (left) demonstrates
how the metabolic profiles for each NAWM spectrum, represented by a single point, vary
with neurological impairment (EDSS, where 0 is no impairment and 4 is moderate
impairment). The orthogonal component represents the variability in the dataset unrelated to
neurological impairment. The spectrum (center) is color-coded by the regression coefficients
driving the O-PLS model, thus summarizing the metabolites varying with neurological
impairment. For example, NAA is colored blue, indicating that as NAA decreases EDSS
increases. The observed versus predicted plot (right) from the internal cross validation
indicates a good model with an R2 of 0.858 and RMSE of 0.466. (B) The first component of
the scores plot (left) demonstrates how the metabolic profiles of NAWM vary with verbal
memory measured by RAVLT, where a lower score indicates declining verbal memory. The
spectrum (center) is color-coded by the O-PLS model coefficients, where red indicates
metabolites increasing with increasing verbal memory (or, conversely, decreasing with
memory decline), and blue metabolites are decreased with increasing memory performance.
The observed vs. predicted plot (right) has an R2 of 0.909 with a RMSE of 3.55, indicating a
predictive model. (C) The first component of the score plot (left) demonstrates how the
metabolic profiles of CTWM and NAWM vary with stress measured by SRRS, where a
higher score indicates a greater amount of stressful life events. The spectrum (center) is
color-coded by the O-PLS model coefficients, where metabolites colored red are
increasingand those colored blue are decreasing with increased stress. The observed vs.
predicted plot (right) has an R2 of 0.991 and RMSE of 1.07, indicating a predictive model.

Vingara et al. Page 19

Neuroimage. Author manuscript; available in PMC 2014 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Vingara et al. Page 20

Table 1

Clinical and cognitive findings in RRMS and control groups.

Control group RRMS group p-Value

Age (years) 31.1 (9.1) 38.6 (10.1) 0.02

(n = 14) (n = 27)

Disease duration (years) N/A 8.1 (8.8) (n = 27) N/A

EDSS N/A 2.3 (1.2) N/A

Global neurological impairment (n = 27)

RAVLT 59.0 (9.4) 46.9 (10.6) <0.001

Verbal memory (n = 10) (n = 20)

SDMT 65.2 (9.9) 51.2 (12.5) <0.001

Cognitive processing speed (n = 10) (n = 22)

PASAT 50.1 (6.4) 39.6 (10.2) <0.001

Working memory (n = 10) (n = 21)

FSS 2.2 (0.9) 4.2 (1.2) <0.001

Fatigue (n = 7) (n = 14)

SRRS 11.6 (10.7) 19.4 (10.9) ns

Stress (n = 7) (n = 14)

The RRMS and control groups mean values differed significantly across all the cognitive measures but only on one of the self-report measures, the
FSS. ns: not significant, all values are reported as mean (SD).
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Table 2

Internal cross validation of the PLS-DA model.

CTWM NAWM NELES

(n = 11) (n = 18) (n = 15)

Correct predictions 8 15 15

Incorrect predictions 1 1 0

No prediction 2 2 0

Classification from the leave one out procedure. A score of 0.5 or higher indicated class membership. CTWM, control white matter; NAWM,
normal appearing white matter; NELES, non-enhancing lesion. 86% of the spectra were correctly classified.
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Table 3

PLS-DA model performance on the test set.

CTWM NAWM NELES

(n = 3) (n = 5) (n = 4)

Correct predictions 1 4 4

Incorrect predictions 1 (NAWM) 1 (CTWM) 0

No prediction 1 0 0

Classification from the test set. A score of 0.5 or higher indicated class membership. Class 1 is control white matter, Class CTWM, control white
matter; NAWM, normal appearing white matter; NELES, non-enhancing lesion. 9 out of 12 of the spectra were correctly classified.
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