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Abstract

In many neuroscience and clinical studies, accurate measurement of hippocampus is very

important to reveal the inter-subject anatomical differences or the subtle intra-subject longitudinal

changes due to aging or dementia. Although many automatic segmentation methods have been

developed, their performances are still challenged by the poor image contrast of hippocampus in

the MR images acquired especially from 1.5 or 3.0 Tesla (T) scanners. With the recent advance of

imaging technology, 7.0 T scanner provides much higher image contrast and resolution for

hippocampus study. However, the previous methods developed for segmentation of hippocampus

from 1.5 T or 3.0 T images do not work for the 7.0 T images, due to different levels of imaging

contrast and texture information. In this paper, we present a learning-based algorithm for

automatic segmentation of hippocampi from 7.0 T images, by taking advantages of the state-of-

the-art multi-atlas framework and also the auto-context model (ACM). Specifically, ACM is

performed in each atlas domain to iteratively construct sequences of location-adaptive classifiers

by integrating both image appearance and local context features. Due to the plenty texture

information in 7.0 T images, more advanced texture features are also extracted and incorporated

into the ACM during the training stage. Then, under the multi-atlas segmentation framework,

multiple sequences of ACM-based classifiers are trained for all atlases to incorporate the

anatomical variability. In the application stage, for a new image, its hippocampus segmentation

can be achieved by fusing the labeling results from all atlases, each of which is obtained by

applying the atlas-specific ACM-based classifiers. Experimental results on twenty 7.0 T images

with the voxel size of 0.35 × 0.35 × 0.35 mm3 show very promising hippocampus segmentations

(in terms of Dice overlap ratio 89.1 ± 0.020), indicating high applicability for the future clinical

and neuroscience studies.
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Introduction

Automatic segmentation of brain image is a critical step for quantifying the changes of

anatomical structures that are highly related to brain diseases. Hippocampus is known as an

important structure associated with various brain diseases such as Alzheimer’s disease,

schizophrenia, and dementia. Numerous works have been proposed in the literature for

automatic hippocampus segmentation (Chupin et al., 2009; Coupe et al., 2011; Khan et al.,

2008; Lötjönen et al.; van der Lijn et al., 2008; Zhou and Rajapakse, 2005) by using either

shape information (Joshi et al., 2002; Pizer et al., 2003; Shen et al., 2002) or image

appearance (Fischl et al., 2002; Hu et al., 2011).

The recent automatic hippocampus segmentation methods generally fall into two categories.

The first category includes the atlas-based segmentation methods (Collins et al., 1995;

Iosifescu et al., 1997) which deploy deformable image registration as a key step to establish

the spatial correspondences between each pre-labeled atlas and the new subject (under

segmentation). Then, the labels in the atlas image can be propagated to the subject image for

hippocampus labeling. Apparently, the segmentation performance highly depends on the

accuracy of image registration, which still needs to be improved. To address the high inter-

subject variations in the atlas-based segmentation, multi-atlas based methods

(Artaechevarria et al., 2009; Heckemann et al., 2006; Lötjönen et al., 2011; Rohlfing and

Maurer, 2004; Rohlfing et al., 2004; Sdika, 2010; Twining et al., 2005) have been

investigated recently. Since multiple atlases incorporate the inter-subject variability, more

reliable segmentation results can be obtained through label fusion from the multiple atlases.

To further improve the segmentation performance, the techniques for optimal selection of

atlases (Aljabar et al., 2009; Avants et al., 2010; Wu et al., 2007) and sophisticated label

fusion (Langerak et al., 2010; Warfield et al., 2004) have been widely investigated in the

literature.

The second category of hippocampus segmentation includes the learning-based

segmentation methods (Morra et al., 2008a, 2008b, 2010; Powell et al., 2008; Wang et al.,

2011). Specifically, the hippocampus segmentation problem is defined as the classification

of each voxel in the subject image into the hippocampus or background by training a

classifier to learn the correlation between point-wise image features and the associated class

label. Support vector machine (SVM) (Vapnik, 1998), Adaboost (Freund and Schapire,

1997) and artificial neural networks (Magnotta et al., 1999) have been used widely for this

purpose. The image features can vary from low-level features (such as image intensities,

positions in the image, and gradients) to high-level features (such as Haar-like features,

texture, and context information). For example, context features have been incorporated to

the auto-context model (ACM) in Tu and Bai (2010) by combining the image appearance

with the iteratively updated context information in a recursive manner, where the context
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information is calculated from a probability map produced by the previously trained

classifier. Then, Adaboost is performed to learn the most distinctive features to construct a

set of classifiers from a large number of the low-level image appearance features and the

high-level context features.

Despite the existence of intensive works for automatic hippocampus segmentation, the

accuracy of segmentation is still limited by 1) the tiny size of the hippocampus (≈35 × 15 ×

7 mm3), 2) low image contrast, and 3) complexity of surrounding structures (e.g., amygdala,

cornu ammonis and dentate gyrus). It is worth noting that most of the existing segmentation

methods have been optimized only for 1.5 or 3.0 Tesla (T) MRIs (often with voxel size of 1

× 1 × 1 mm3), which might not work well for 7.0 T images. The 7.0 T MR scanner (Cho et

al., 2010) enables achieving the high signal-to-noise ratio (SNR) as well as the dramatically

increased contrast and resolution compared to 3.0 T images. As demonstrated in Cho et al.

(2008), 7.0 T image can clearly reveal the fine in vivo brain structures, with equivalent

resolution to that obtained from the sectional slices by in vitro histological imaging. Thus,

7.0 T imaging technique can trigger the innovative development in hippocampus analysis for

clinical studies due to its high capability of discovering the μm-level morphological patterns

of human brain. A typical example of 7.0 T image (with the image resolution of 0.35 × 0.35

× 0.35 mm3) is shown in Fig. 1(b), along with a similar slice obtained from 1.5 T scanner

(with the resolution of 1 × 1 × 1 mm3) as displayed in Fig. 1(a) for comparison.

Unfortunately, it is not straightforward to apply the existing hippocampus segmentation

algorithms, developed for 1.5 T or 3.0 T images, to 7.0 T images. The main reasons include

1) more severe intensity inhomogeneity in the 7.0 T images compared to 1.5 T or 3.0 T

images; 2) high signal-to-noise ratio (SNR) which brings forth plenty of anatomical details

at the expense of troublesome image noise; and 3) incomplete brain volume (i.e., only a

segment of the brain is scanned) due to practical issues such as the trade-off between

acquisition time and SNR. Accordingly, no automatic hippocampus segmentation methods

have been developed for 7.0 T images, except some manual or semi-automatic methods

(Cho et al., 2008, 2010; Yushkevich et al., 2009). Although automatic segmentation method

for hippocampal subfields (e.g., cornu ammonis fields 1–3, dentate gyrus, and subiculum)

for 4.0 T MR image has been developed in Yushkevich et al. (2010), it can only deal with

the subfields and additionally requires the manually labeled hippocampus.

In this paper, we propose to develop a fully automatic hippocampus segmentation method

for 7.0 T MR images. Specifically, considering the difficulty in accurately aligning 7.0 T

images due to considerable intensity inhomogeneity and noise, we propose employing the

auto-context model (ACM), which requires only the linear registration among atlases and

new subject, to learn the context information around each voxel to distinguish hippocampus

and non-hippocampus voxels in the new subject. To take full advantage of the rich texture

information in 7.0 T images, we further extend the ACM by integrating additional texture

features as detailed below. In the training stage, a sequence of ACM-based classifiers is

trained in each atlas space by borrowing the training samples from not only the underlying

atlas but also all other linearly-aligned atlases. In the application stage, to segment the

hippocampus in a new subject, we first map the trained classifiers on all atlases to the new

subject by linearly registering each atlas to the new subject. Then, we can obtain a set of
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label maps, with each map representing the hippocampus classification result produced by

the classifiers trained for each particular atlas. The final segmentation result is obtained by

fusing all labeling results by all atlases. It is worth noting that our method trains classifiers

for the left and right hippocampi separately, in order to avoid the dilemma that their

intensity ranges are often quite different in the 7.0 T images.

Our learning-based hippocampus segmentation method has been extensively evaluated not

only on twenty 7.0 T MR images from normal controls, but also on forty 1.5 T MR images

which include 20 normal controls and 20 Alzheimer’s disease (AD) patients. Our proposed

method can achieve significant segmentation improvement (p < 0.01) in terms of Dice

overlap ratio (such as 6% for 1.5 T images, and 8% for 7.0 T images), compared to the

method using only the conventional ACM.

Methods

The goal of our learning-based segmentation algorithm is to accurately label each point x ∈

Ω in a new subject into either positive (i.e., hippocampus) or negative (i.e., non-

hippocampus) voxels. Fig. 2 shows the overview of our proposed algorithm that consists of

training (Fig. 2(a)) and application (Fig. 2(b)) stages.

In the training stage, M intensity images I = {Ii(x)|x ∈ Ω,i = 1,…, M} and their

corresponding manually labeled hippocampal maps L = {Li(x)|x ∈ Ω,i = 1,…,M} are used as

atlases A = {Ai = (Ii,Li)|i = 1,…, M} for training the ACM-based classifiers. Specifically, for

each atlas Ai, we first linearly register all other intensity images Ij (j = 1,…, M, j ≠ i) in the

training set, as well as their label maps Lj, toward the intensity image Ii of the current atlas

Ai. Then, the classifiers for hippocampus segmentation in the space of Ii will be trained

based on not only the current atlas Ai = (Ii, Li), but also on other (M-1) linearly-registered

atlases Aj = (Ij, Lj), j = 1,…, M, j ≠ i. For simplicity, we use subscript i to denote for the

instances (intensity image and label map) in the original atlas domain, while subscript j for

the instances from other atlases after their linear transformations to the reference space (such

as the atlas Ai in the training stage, and the subject image S in the applicationstage). During

the training, both label map Li and the linearlytransformed label maps Lj will be used as the

ground truth, and the ACM method will be used to iteratively construct the sequential

classifiers from a large number of the local appearance features, texture features, and context

features, as described in the Learn the classifiers by auto-context model (ACM) section.

Note that we will finally obtain M sequences of cascaded classifiers, with each sequence

associated with each atlas Ai(i = 1),…, M. To reduce the computation time, we only train

ACM-based classifiers within a bounding box of possible hippocampal area, learned from

all images in the training dataset.

In the application (testing) stage, all atlases are first linearly aligned onto the new subject

image. Then, the image appearance, texture, and context features will be extracted to

iteratively label each point in the new subject image by the particular sequence of cascaded

classifiers that are trained for each atlas. Since each atlas contributes to label the new subject

image, a label fusion procedure is further performed to integrate multiple hippocampus
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segmentations from all atlases, as detailed in the Multi-atlas based hippocampus

segmentation section.

Learn the classifiers by auto-context model (ACM)

Before constructing the classifiers for each atlas Ai, all Ijs need to be aligned with Ii, which

can be achieved by affine registration of manually-segmented hippocampi in Li and Lj. In

the training stage, ACM is performed in the space of each atlas Ai to train a specific set of

classifiers, by considering Li as ground truth, and both Ii and all other linearly-registered

intensity images Ij as training samples. Note that only affine registration is required for our

method. As mentioned earlier, the spatial context feature on classification (or confidence)

map, which implicitly takes the shape priors into consideration, has been incorporated into

the ACM. Therefore, the registration accuracy in our method is not the main issue for the

classification performance, compared to the multi-atlases-based segmentation methods that

rely on the accuracy of deformable image registration.

Conventional auto-context model

As detailed in Morra et al. (2008a, 2008b), suppose that there are totally N points in Ii, and

thus  denotes the vector of all spatial coordinates in the intensity

image I, where  represents a spatial position in Ii. Each Xi comes with a

ground-truth label vector , where  is the class label

for the associated position . Label ‘−1’ denotes non-hippocampus voxel, and label ‘+1’

denotes hippocampus label. The training set at the iteration t is defined as

, where the first part

 is obtained from the atlas Ai under consideration and the second part is

obtained from all other atlases Aj after affine registration onto Ai.

 is the classification map

obtained at the (t - 1)-th iteration (t = 1,…,T), where each element

 is the likelihood of the point  being a hippocampus voxel.

Two kinds of features can be extracted for training the classifiers: 1) local image appearance

features, e.g., intensity, location, neighborhoods, and Haar-like features (Fig. 3(a)),

computed from each local patch centered at point , and 2) context information at the t-th

iteration captured from the classification map  with the patterns shown by white

boxes in Fig. 3(c). It is worth noting that the context features vary at different iterations

since the context features at the t-th iteration are recursively extracted from the classification

probability map  of the (t – 1)-th iteration, which is produced by a set of classifiers

trained in the (t – 1)-th iteration. Since the initial classification map P0(Xi) is unknown, we

initialize it as the union of the linearly-aligned hippocampus label maps of all atlases.
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Improved multi-atlas ACM

To extract the discriminative features in 7.0 T images, we adopt three types of features, as

shown in Fig. 3, for our learning-based segmentation algorithm. It is worth noting that other

types of features can also be incorporated into our segmentation framework.

Image appearance features—The appearance features are employed to capture the local

information around each voxel in the image. Similar to Morra et al. (2008a, 2008b), image

appearance features include intensity, spatial location, and neighborhood features (such as

intensity mean, variance, gradient and curvature in a small neighborhood), and Haar features

at different scales. Haar features (Viola and Jones, 2004), which are widely used in object

recognition, can be computed at different scales of interest with high speed by using integral

images or volumes. The Haar feature considers adjacent rectangular regions at a specific

location in a detection window, sums up the voxel intensities in these regions, and calculates

the difference between them. In this paper, we extend 2D Haar features to multi-scale 3D

Haar features (shown in Fig. 3(a)) to facilitate our classification.

Texture features—Much richer texture information in 7.0 T images is worth being

extracted and further utilized as another type of discriminative features for classification.

Thus, the gray level co-occurrence matrix (GLCM) (Haralick et al., 1973) is calculated for

the image patch around each point  under consideration. Overall 14 statistics can be

computed, including angular second moment, contrast, correlation, variance, inverse

difference moment, sum average, sum variance, sum entropy, entropy, difference variance,

difference entropy, two information measures of correlation, and maximal correlation

coefficient. In our method, we adopt the first 13 features as the texture features, and the last

statistic, maximal correlation coefficient, is excluded due to its computational instability

(Yanhua et al., 2006). The advantage of incorporating texture features into ACM model is

demonstrated in Fig. 4. It is clear that the hippocampus classification map by ACM with the

use of texture features (Fig. 4(b)) is much closer to the ground truth (Fig. 4(a)) than that by

ACM without using texture features (Fig. 4(c)).

Context features—The context features are extracted from the classification probability

map obtained at the previous iteration, in order to capture global anatomical information

around each voxel in the image. In general, the context features are used to describe the

spatial configuration of particular point w.r.t. its neighboring points. In contrast to the local

appearance and texture features, the context features are extracted from a large region

surrounding the current location, rather than its small neighborhood, as shown in Fig. 3.

Specifically, for each point , a number of rays in equal-degree intervals are disseminated

outward from the center point, and the context locations on these rays are sparsely sampled

(white boxes in Fig. 3(b)). For each sampled location, the classification probability on the

center point and the average probability within a 3 × 3 × 3 neighborhood are used as context

features. As shown in Fig. 5, the hippocampus region in the sequential classification maps

becomes more and more prominent and the boundary between the hippocampus and

background becomes sharper and sharper, as the ACM progresses.
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Training of ACM—Given the underlying atlas Ai and all other aligned atlases Aj, the initial

classification map can be computed by the union of the aligned hippocampus label maps of

all atlases (i.e., ) as mentioned above. Then, ACM is used to iteratively

find the optimal classifiers by repeating the following steps for T iterations:

a. Update the contexture features in the training set Θt (as defined above) by using the

newly-obtained classification maps Pt − 1(Xi) and Pt − 1(Xj) (j = 1,…,M,j ≠ i);

b. Train the classifier by Adaboost using image appearance features, texture features,

and the latest context features. The details for Adaboost-based training can be

found in Freund and Schapire (1997).

c. Use the trained classifier to assign the label to each point in Ii and all Ijs, thus

obtaining Pt(X) and  for the next iteration t + 1.

For each atlas Ii under consideration, the output of ACM is a sequence of trained classifiers,

i.e., T cascaded classifiers, where each of them is associated with particular iteration. The

same training procedure will be applied to all other atlases. Thus, in the end of training, we

will obtain M sequences of trained classifiers, with each sequence sitting in its own atlas

space and having T cascaded classifiers, as shown in Fig. 2(a). In the application stage, by

registering each atlas onto the test subject image, we can apply its respective sequence of

trained classifiers to determine whether the underlying point is the hippocampus or not, as

shown in Fig. 5. As we can see from Fig. 5, the classification map is gradually updated as

ACM processes, which will finally lead to more accurate segmentation of hippocampus.

Due to the severe intensity inhomogeneity of the left and right hippocampi in the 7.0 T MR

images, we train the location-adaptive classifiers, instead of building a global classifier for

the whole brain. That is, the individual sets of classifiers are generated for the left and right

hippocampi separately. Moreover, to deal with large size of 7.0 T image and save the

computational time, both training and testing procedures are performed in a multi-resolution

fashion. That is, the final classification map at low resolution will be used as the

initialization for the next high resolution.

Multi-atlas based hippocampus segmentation

In the application stage, hippocampus segmentation from a test image S is completed by

three steps as described in Fig. 2(b). In the first step, all the atlases will be linearly registered

onto the test image, in order to map the classifiers learned in the training stage onto the test

image. Then, the local image appearance features, texture features, and context features will

be computed for each point of test image. As initialization, the union of warped labels of all

atlases is used as the initial classification map. In the second step, the labeling of the test

image is conducted by performing each sequence of cascaded classifiers of each atlas

independently upon the test image. Note that the procedure of hippocampus labeling follows

exactly the training procedure of ACM, where the context features in each iteration will be

recalculated based on the probability map obtained in the previous iteration. Thus, M

classification probability maps will be obtained in the end of classification. In the third step,

all these classification maps are integrated into the final labeling result. Although
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classification maps can be simply binarized and then fused together for producing the final

segmentation result, this simple operation can significantly affect the final segmentation

accuracy as pointed out in Warfield et al. (2004). To this end, we apply the following

advanced label fusion strategy to produce segmentation result from a set of probability

maps.

Label fusion

For label fusion from a set of probability maps, the simplest method is majority voting

(Heckemann et al., 2006), which assumes that each atlas contributes equally to the image

segmentation. Here, we go one step further to apply the local weighted voting strategy

(Khan et al., 2011) to average the classification probabilities across all atlases, where the

weight for each atlas is computed by image patch similarity w.r.t. the test image. Given the

weighted average probability map, with the degree on each point indicating the likelihood of

being hippocampus, we further apply the level sets approach (Chan and Vese, 2001) on this

probability map to outline the boundary of hippocampus and obtain the final segmentation.

Summary

In summary, our segmentation framework consists of training and testing (segmentation)

stages as summarized below.

Training stage—

1. For given M training images/atlases, in each atlas Ai’s space, all other intensity

images Ij (j = 1,…, M, j ≠ i) as well as their corresponding label maps Lj are

linearly registered onto the atlas Ai’s space.

2. For each image resolution, repeat the following steps to train the ACM classifiers:

a. In the lowest resolution, the classification map is initialized by the union

of aligned hippocampus maps of all atlases;

b. t = 1;

c. The training set Θt is obtained in each atlas space, which consists of

context features and also the image appearance, 3D-Haar, and texture

features, calculated from all aligned images/atlases. Note that the context

features are computed from the classification map of the previous

iteration, Pt − 1;

d. In each atlas space, a classifier at the t-th iteration is trained by Adaboost

algorithm using the feature set Θt. Also, with this trained classifier, the

new classification map Pt is obtained for the next iteration;

e. t ← t + 1; f. If t < T, go to Step 2.c; otherwise, go to Step 3.

3. If not reaching the finest resolution, go to Step 2.b and the latest classification map

is used as the initial classification map for the next high image resolution.

Otherwise, stop.
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Testing stage—

1. For a given new subject image, the classifier sequences generated in all atlases will

be transformed onto the subject image by linear registration.

2. Then, the image appearance, texture, and context features are computed at each

point of the subject image.

3. The subject image is classified independently by the cascaded classifiers of each

atlas in a multi-resolution way.

4. The final probability maps obtained by all atlases are adaptively fused to build a

fused probability map, according to the local image similarity between the subject

image and each aligned atlas.

5. The final label for the subject image is determined by applying a level sets

algorithm to obtain the boundary of hippocampus from the locally-fused

probability map.

Experimental results

In the following experiments, we evaluate the performance of our learning-based

hippocampus segmentation method using twenty 7.0 T MR images. Leave-one-out cross

validation is used for evaluating the generalization of our method. Specifically, at each

leave-one-out case, one image is used as a test image, and all other images are used as

training images (i.e., multiple atlases). In both training stage and testing stage, affine

registration is used to bring the images to the same space, i.e., using the FLIRT algorithm in

FSL library (Jenkinson et al., 2012). The datasets and preprocessing steps will be detailed in

the following section. Then we will investigate the contribution of each component, i.e.,

multi-atlas framework and the image features used in our method, through both qualitative

and quantitative evaluations. Moreover, due to the limited existing studies on automatic

hippocampus segmentation of 7.0 T images, we also apply our method to the 1.5 T images

for comparison.

Datasets and preprocessing

7.0 T MR images from 20 normal subjects acquired by the method in Cho et al. (2010) were

used for evaluating our proposed algorithm. Specifically, these subjects consist of 6 males

and 14 females with the age of 28.92 ± 16.51. For comparison, the same number of 1.5 T

MR images was, respectively, selected from normal subjects and AD subjects in the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (Mueller et al., 2005). For

the 7.0 T scan (Magnetom, Siemens), an optimized multichannel radiofrequency (RF) coil

for 7.0 T image acquisition and a 3D fast low-angle shot (Spoiled FLASH) sequence were

utilized, with repetition time (TR) = 50 ms, echo time (TE) = 25 ms, flip angle (FA) = 10°,

pixel band width (BW) = 30 Hz/pixel, field of view (FOV) = 200 mm, matrix size = 512 ×

576 × 60, 3/4 partial Fourier, and number of average (NEX) = 1. The image resolution of the

acquired images is isotropic, e.g., 0.35 × 0.35 × 0.35 mm3. For all 1.5 T MR scans, spoiled

gradient recalled echo/fast low angle shot (SPGR/FLASH) with 30° and 5° flip-angle and

the magnetization prepared rapid gradient echo (MP-RAGE) were used with a multi-echo 3-

D volume sequence and an axial dual-echo, fast spin-echo sequence. The hippocampi were
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manually segmented by a neurologist based on the conventional protocol (Jack et al., 1995;

Pantel et al., 2000).

All images were pre-processed by the following steps: 1) inhomogeneity correction using

N3 (Sled et al., 1998), 2) intensity normalization for making image contrast and luminance

consistent across all subjects (Nyúl and Udupa, 1999), and 3) affine alignment. In the end of

this processing procedure, all images were cropped to reduce computational burden, and

further divided into the left and right parts to construct the location-adaptive classifiers.

Quantitative evaluation of hippocampus segmentation

For quantitative evaluation of our segmentation method, as well as other methods, four

widely used metrics, i.e., precision (P), recall (R), relative overlap (RO), and similarity

index (SI), are employed to measure the volumetric overlap of automatic segmentation with

respect to the ground truth (i.e., manual labels). Moreover, we also measure the surface

distance based on Hausdorff distance (HD). Let V(A) denote the volume of the ground-truth

segmentation, V(B) the volume of automatic segmentation, and d(a,b) the Euclidean

distance between two points a and b. Then, all above metrics can be mathematically defined

as follows:

(1)

where H1 = maxa ∈ A(minb ∈ B(d(a,b))) and H2 = maxb ∈ B(mina ∈ A (d(b,a))).

The accuracy of hippocampus segmentation by our method on 7.0 T images

We performed a leave-one-out test on 20 images to evaluate the segmentation performance

of our method by comparing with other methods. For each leave-one-out case, as mentioned

above, we use one image for testing, and the remaining 19 images for training the classifiers.

Since our method aims to improve segmentation accuracy in two ways, i.e., incorporating

texture features into the conventional ACM method and taking the advantage of multi-atlas

framework, it is worthwhile to evaluate the contributions from these two different ways

(improved ACM and multi-atlas framework), respectively. Accordingly, we will evaluate

and compare four segmentation methods: (1) conventional ACM (baseline method); (2)

improved ACM (to evaluate the contribution of texture features); (3) conventional ACM +

multi-atlas framework (to evaluate the contribution of multiple atlases); and (4) our

complete method that incorporates the improvements in both (2) and (3). It is worth noting

that the multi-atlas framework utilizes all 19 atlases to train the respective classifiers in the

training stage and also segment the subject image in the application stage.

Table 1 shows the average for each of 5 evaluation metrics in the 20 leave-one-out cases by

the four methods. Obviously, our complete method consistently outperforms all other three

methods in all evaluation metrics. Specifically, compared to the conventional ACM, our

method gains the improvements of 6%, 5%, 7% and 8% for the evaluation metrics P, R, RO,

and SI, respectively. On the other hand, we find that each component in our method has its

own contribution in improving the segmentation accuracy. Specifically, compared to the

conventional ACM (the baseline method), the improved ACM (method 2) and the
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conventional ACM + multi-atlas framework (method 3) can achieve 2–4% and 3–5%

improvements, respectively. These results indicate that the multi-atlas framework can have

more impact in improving segmentation accuracy than the improved ACM, which leads us

to examine the segmentation performance of our method w.r.t. the number of atlases used,

as described next. We here further included the 5 evaluation metrics achieved by the multi-

atlases framework without ACM (the second row in Table 1), which show much worse

performance than all other four methods using ACM. This is mainly caused by the difficulty

in accurate alignment of 7.0 T images, thus demonstrating the importance of incorporating

ACM into the multi-atlases framework especially for 7.0 T cases.

For further evaluation, we compute the mean and standard deviation of hippocampus

volumes for the 20 leave-one-out cases by comparing our segmentation results with the

manual ground truths in Table 2. The results also show that there is no significant volume

difference between segmented left and right hippocampi (p > 0.3).

Effect of the number of atlases used

Here we investigate the effect of the number of atlases used in segmentation of hippocampus

in 7.0 T images. The evolution of segmentation accuracy (e.g., SI metric) as the number of

atlases used is shown in Fig. 6, which shows that the SI metric keeps increasing and then

becomes stable after using 15 or more atlases.

Effect of using the adaptive-weighted label fusion for the probability maps

In the multi-atlases framework, the probability maps calculated from all atlases need to be

fused together for generating the final single probability map for the new subject. In our

method, we propose utilizing an adaptive-weighted fusion method. That is, the final

probability map for the new subject is the weighted average of all probability maps from all

atlases, with the weights computed based on the patch similarity between each aligned atlas

and the new subject image. To show its advantage over the simple averaging, we show the

segmentation accuracy metrics by the simple averaging and our proposed adaptive-weighted

averaging in Table 3, respectively.

Effect of using level sets method for final hippocampus segmentation

After combining probability maps from all atlases into a single probability map, our method

further use a level sets based approach to extract hippocampal boundary and obtain the final

segmentation, in order to make the segmented hippocampus have the smooth boundary. To

show the advantage of using this level sets based approach over the simple thresholding

based method, we list their respective segmentation accuracy in Table 4.

Effect of texture features and multi-atlases framework on 1.5 T images

To show the effectiveness of our proposed method in 1.5 T images, we applied it to 1.5 T

images for comparison. Especially, we selected 20 normal controls (NC) and 20 AD

patients, respectively. Tables 5 and 6 show the mean and standard deviation for each of 5

evaluation metrics in 20 leave-one-out cases of 1.5 T images by the four methods

(conventional ACM, improved ACM, ACM + multi-atlases, and our complete method) for

NC and AD groups, respectively. The results indicate that our method still outperforms all
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other three methods regardless of NC or AD (with even higher improvement for AD cases).

Specifically, for the normal subjects (Table 5), compared to the conventional ACM, our

method gains the improvements of 4%, 6%, 5% and 5% on average for the 4 overlap

metrics, P, R, RO, and SI, respectively. On the other hand, compared to the conventional

ACM, other two methods (using the improved ACM with advanced texture features or using

the conventional ACM in the multi-atlases framework) improve 0–1% and 2–3% for the 4

overlap metrics. Different from the influences of texture features and multi-atlases

framework in 7.0 T image segmentation, the improvement by incorporating texture features

appears much less than that by the multi-atlases framework. This also indicates the

importance of employing texture features in dealing with rich information in the 7.0 T

images.

Qualitative evaluation

For visual comparison, we also show in Fig. 7 the segmentation results of a typical 7.0 T

image by four methods (Figs. 7(b)-(e)), along with its manual segmentation (Fig. 7(a)). For

fair comparison, we use the same parameters for the ACM used in all the methods, e.g., the

same feature sets and the same number of iterations. It can be observed that the hippocampi

segmented by our complete method (Fig. 7(e)) are more similar to the ground-truth than any

other methods, e.g., the conventional ACM (Fig. 7(b)), improved ACM (Fig. 7(c)), and the

conventional ACM in the multi-atlases based framework (Fig. 7(d)).

Similarly, we compare in Fig. 8 the segmentation results on a typical 1.5 T image by four

different methods (Figs. 8(b)-(e)), along with manual segmentation (Fig. 8(a)). Again, it can

be observed that the hippocampi segmented by our method (Fig. 8(e)) are more similar to

the ground-truth than any other methods, i.e., the conventional ACM (Fig. 8(b)), improved

ACM (Fig. 8(c)), and the conventional ACM in the multi-atlases based framework (Fig.

8(d)). Moreover, consistent to the quantitative result reported above, the improvement on the

segmentation result by the multi-atlases appears to be larger than that by the incorporation of

additional texture features.

Discussion and conclusion

Although various methods have been proposed for hippocampus segmentation in the MR

images, they were mostly developed for the 1.5 T or 3.0 T images, which contain much less

anatomical structures than the 7.0 T images. Therefore, it is difficult to directly compare our

method developed for the 7.0 T images with other existing methods developed for 1.5 T or

3.0 T images. Thus, in Table 7, we compare the performance of our proposed method on 1.5

T images with the representative methods in different categories, e.g., classification-based

method (Powell et al., 2008), auto-context model based method (Morra et al., 2008a,

2008b), and multi-atlases based method (van der Lijn et al., 2008). We also compare with a

new classification-based method that has the highest segmentation accuracy (Wang et al.,

2011). Due to the use of different evaluation metrics in different methods, we take a

common metric, e.g., similarity index (SI), for comparison. As we can see from Table 7, our

method can achieve higher or comparable segmentation results, compared to all methods
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under comparison. It is worth noting that our method achieves higher segmentation accuracy

in 7.0 T images (Table 1) than 1.5 T images (Tables 5 and 6).

As a first attempt to explore the hippocampus segmentation on 7.0 T MR images, we found

that the texture features provide greater contribution in improving the segmentation accuracy

in 7.0 T cases than 1.5 T, which might be useful for the existing segmentation methods if

they are planned to apply to 7.0 T images. Due to the lack of availability of 1.5 T and 7.0 T

datasets from the same protocol, T1-weighted 1.5 T MR and T2-weighted 7.0 T MR images

were used for comparison in our experiment. However, it is worth noting that the features

used for segmenting hippocampus in our proposed framework are general enough to apply

to either T1- or T2-weighted MR images. The comparison can be slightly different by

applying to the same modality images but without significant difference, since none of the

modality-specific image features are introduced in our method.

In conclusion, we have presented a learning-based method for accurate segmentation of

hippocampus from the 7.0 T MR images. Specifically, the multi-atlases-based segmentation

framework and the improved auto-context model (with advanced texture features) are

employed for building multiple sequences of classifiers and further applied for hippocampus

segmentation in the new test image. The experimental results show that our model can

achieve significant performance improvement, compared to the baseline auto-context model.

In our future work, we will extend our proposed framework for segmentation of

hippocampal sub-structures in the 7.0 T images (Cho et al., 2010). In Yushkevich et al.

(2010), although it can achieve reasonable semi-automatic segmentations for hippocampal

subfields in the 4.0 T MR images, it requires pre-defined hippocampus region. We believe

our learning-based segmentation method will enable the fully automatic segmentation for

the subfields in 7.0 T images. Moreover, in the future, we will apply our method to 7.0 T

images from AD patients, which are currently under data collection.
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Fig. 1.
Large difference of imaging appearance between 1.5 T (a) and 7.0 T (b) MR images. For

better visual comparison, the 1.5 T image has been enlarged w.r.t. the image resolution of

the 7.0 T image.
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Fig. 2.
Schematic illustration of our proposed hippocampus segmentation framework, which

includes a training stage (a) and an application stage (b). In the training stage (a), M

classifier sequences are trained by performing ACM for each atlas. For clarity, we use

different colors (i.e., orange, blue and green) to denote the training procedure on different

atlases. In the application stage (b), we apply the classifiers (first column in (b)) built on

each atlas space to produce the probability map of each point being the hippocampus (third

column in (b)), according to the appearance, texture, and context features (second column in

Kim et al. Page 17

Neuroimage. Author manuscript; available in PMC 2014 June 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(b)) extracted from the test image. Finally, we apply the label fusion to obtain the

segmentation of the hippocampus, as shown in the last column in (b).
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Fig. 3.
Demonstration of three types of features used in our method, which include (a) Haar-like

features, (b) texture features calculated by GLCM, and (c) context features.
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Fig. 4.
The effectiveness of incorporating texture features for voxel classification. Compared to the

ground truth (a), the hippocampus classification map by incorporation of texture features (c)

shows higher similarity than that by no incorporation of texture features (b).
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Fig. 5.
The hippocampus classification map at each iteration of the ACM algorithm.
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Fig. 6.
Comparison of segmentation accuracy w.r.t. the number of atlases used (3 to 19), using the

similarity index (SI).
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Fig. 7.
Comparison of segmented hippocampus regions on a 7.0 T image by (b) the method using

the conventional auto-context model, (c) the method using the improved ACM, (d) the

method using the conventional ACM in the multi-atlases framework, and (e) our complete

method. Compared to the ground truth (a) obtained with manual labeling, our complete

method shows the best segmentation performance (especially for the area depicted by red

arrows).
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Fig. 8.
Comparison of segmented hippocampus regions on 1.5 T images by (b) the method using

the conventional auto-context model, (c) the method using the improved ACM, (d) the

method using the conventional ACM in the multi-atlases framework, and (e) our complete

method. Compared to the ground truth (a) obtained with manual labeling, our complete

method shows the best segmentation performance (especially for the area depicted by red

arrows).
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Table 1

Quantitative comparisons using 4 overlap metrics (precision (P), recall (R), relative overlap (RO), and

similarity index (SI)) and Hausdorff distance (HD) for the 20 leave-one-out (LOO) cases on 7.0 T images.

Here, our complete method is compared with other four methods, i.e., no ACM, conventional ACM, improved

ACM, and the conventional ACM in the multi-atlases framework.

P R RO SI HD

Multi-atlases without ACM 0.74 ± 0.061 0.73 ± 0.054 0.66 ± 0.059 0.73 ± 0.051 0.59 ± 0.049

Conventional ACM 0.81 ± 0.045 0.82 ± 0.042 0.71 ± 0.048 0.81 ± 0.041 0.48 ± 0.036

Improved ACM 0.83 ± 0.042 0.84 ± 0.043 0.74 ± 0.039 0.85 ± 0.034 0.43 ± 0.035

Conventional ACM + multi-atlases 0.84 ± 0.040 0.85 ± 0.039 0.75 ± 0.042 0.86 ± 0.035 0.41 ± 0.032

Our method 0.88 ± 0.024 0.87 ± 0.038 0.78 ± 0.031 0.89 ± 0.020 0.37 ± 0.025

Neuroimage. Author manuscript; available in PMC 2014 June 26.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kim et al. Page 26

Table 2

Comparison of mean volumes of hippocampi (HC) segmented by the proposed method and manual rater (used

as ground truth) (unit: mm3).

Ground truth Our method

Left HC Right HC Left HC Right HC

Volume (mean ± std) 3368 ± 293 3436 ± 347 3327 ± 288 3391 ± 340
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Table 3

Comparison of segmentation accuracy between the simple averaging and our adaptive-weighted averaging in

determining the final probability map.

P R RO SI HD

Simple averaging 0.87 ± 0.031 0.85 ± 0.037 0.76 ± 0.036 0.88 ± 0.026 0.40 ± 0.030

Adaptive-weighted averaging 0.88 ± 0.024 0.87 ± 0.038 0.78 ± 0.031 0.89 ± 0.020 0.37 ± 0.025
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Table 4

Comparison of segmentation accuracy between two binarization strategies, thresholding based method and the

level sets based approach.

P R RO SI HD

Thresholding based method 0.88 ± 0.035 0.86 ± 0.041 0.77 ± 0.039 0.88 ± 0.029 0.39 ± 0.036

Level sets based approach 0.88 ± 0.024 0.87 ± 0.038 0.78 ± 0.031 0.89 ± 0.020 0.37 ± 0.025
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Table 5

Quantitative comparisons for the 20 leave-one-out (LOO) cases on 1.5 T images of normal controls by four

automatic segmentation methods.

P R RO SI HD

Conventional ACM 0.81 ± 0.044 0.80 ± 0.050 0.70 ± 0.045 0.82 ± 0.048 4.2 ± 0.043

Improved ACM 0.82 ± 0.036 0.81 ± 0.042 0.71 ± 0.034 0.82 ± 0.035 4.0 ± 0.029

Conventional ACM + multi-atlases 0.84 ± 0.033 0.84 ± 0.037 0.73 ± 0.036 0.85 ± 0.032 3.7 ± 0.031

Our method 0.85 ± 0.025 0.86 ± 0.027 0.75 ± 0.031 0.87 ± 0.026 3.4 ± 0.024
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Table 6

Quantitative comparisons for the 20 leave-one-out (LOO) cases on 1.5 T images of AD patients by four

automatic segmentation methods.

P R RO SI HD

Conventional ACM 0.79 ± 0.049 0.79 ± 0.053 0.69 ± 0.047 0.80 ± 0.051 4.8 ± 0.048

Improved ACM 0.81 ± 0.044 0.80 ± 0.039 0.70 ± 0.043 0.81 ± 0.042 4.4 ± 0.037

Conventional ACM + multi-atlases 0.82 ± 0.040 0.81 ± 0.038 0.71 ± 0.041 0.82 ± 0.039 4.1 ± 0.035

Our method 0.84 ± 0.034 0.84 ± 0.029 0.74 ± 0.038 0.85 ± 0.032 3.8 ± 0.033
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Table 7

Comparison of hippocampus segmentation on 1.5 T images from normal controls with other representative

segmentation methods reported in the literature.

Method Method description SI

Powell ’08 Classification based 0.84

Morra ’08 Auto-context model based 0.82

van der Lijn ’08 Multiple atlases based 0.85

Wang ’11 Classification based 0.87

Our method Improved ACM + multiple atlases based 0.87
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