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Abstract

We illustrate a general principal of electrical potential measurements from the surface of the 

cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and 

motor systems. A naïve decomposition technique of electrocorticographic power spectral 

measurements reveals that broadband spectral changes reliably track task engagement. These 

broadband changes are shown to be a generic correlate of local cortical function across a variety of 

brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with 

simple models of the dendritic integration of asynchronous local population firing. Because 

broadband spectral changes covary with diverse perceptual and behavioral states on the timescale 

of 20–50ms, they provide a powerful and widely applicable experimental tool.
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Introduction

When examining the extracellular voltage power spectrum of occipital or rolandic cortex, 

the shift from rest to task is strongly associated with an increase in power at high 
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frequencies (greater than ~50Hz), and often accompanied by a decrease in power at low 

frequencies (less than ~30Hz) (Aoki et al., 1999; Crone et al., 2001; Crone et al., 1998a; 

Crone et al., 1998b; Miller et al., 2007). When we first investigated these signals, our 

interpretation was that there would be different high-frequency oscillations specific to each 

cortical region and function. However, in each case that we examined the high-frequency 

spectral changes lacked a definitive upper bound, and appeared to extend to the highest 

frequencies resolvable with our sampling rate and noise floor.

This presented a pair of questions. First, might the high-frequency spectral changes reflect a 

broadband change in the power spectrum? Second, might this broadband change track 

asynchronous processes in the underlying neuronal dynamics? In this paper, we review and 

reanalyze data supporting the claim that that broadband shifts are indeed a generic marker of 

circuit activation in the neocortex (Manning et al., 2009; Miller, 2010; Miller et al., 2009b; 

Miller et al., 2009c; Ray and Maunsell, 2011; Whittingstall and Logothetis, 2009). 

Moreover, we discuss how broadband spectral change can be obscured by rhythmic 

phenomena at lower (e.g. α, β) frequencies, and we illustrate how the changes in high 

frequencies are different in kind from changes in the canonical lower-frequency rhythms.

Before describing the details of the broadband power shifts, it is important to distinguish 

rhythmic and non-rhythmic neural processes and their manifestations in the field potential. 

Rhythmic processes (such as the occipital α and peri-central motor β rhythms) exhibit band-

limited spectral peaks, reflective of a characteristic oscillatory time-scale (Bates, 1951; 

Crone et al., 1998b; Jasper and Penfield, 1949; Jasper, 1941; Jasper and Andrews, 1938; 

Miller et al., 1940; Miller et al., 2007; Penfield, 1954; Pfurtscheller, 1999). Non-rhythmic 

processes do not have an oscillatory timescale and do not produce isolated peaks in the 

power spectrum. Nonetheless, a non-rhythmic process may exhibit a distinctive spectral 

profile, and changes in its amplitude will produce changes in the spectrum of the electrical 

field (Bullock et al., 2003).

We have proposed (Miller et al., 2009b) that the broadband “1/f” background, ubiquitous in 

neocortical field spectra, reflects a non-rhythmic underlying process with an intuitive 

connection to neuronal population activity. In particular, the approximately power-law 

profile of the broadband component can be understood as the signature of the summation of 

asynchronously arriving synaptic inputs in the dendrites of pyramidal neurons (Bedard et al., 

2006; Miller et al., 2009b). The dendritic summation model predicts a particular form of 

power-law in the spectrum above 80 Hz, and this prediction matches the empirical spectral 

profile to >500 Hz (once one corrects for gain-modulation in amplifier hardware).

Regardless of the details of the biophysics that produce the broadband 1/f component, it is 

clear that (i) the underlying process is not rhythmic and (ii) the process is strongly associated 

with the activation of local circuits. Behavior-locked increases in the broadband component 

have been demonstrated in peri-Rolandic cortex (during finger tapping) and in the occipital 

lobe (during visual search) via intracranial recordings from the surface of the human 

neocortex (Miller et al., 2010; Miller et al., 2009c). More generally, task-locked power 

increases in the “high gamma” band of the power spectrum (~80–200 Hz) are widely 

observed in mammalian cortical electrophysiology (Canolty et al., 2007; Crone et al., 2001; 
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Crone et al., 1998a; Edwards et al., 2010; Foster et al., 2012; Gunduz et al., 2011; Hermes et 

al., 2012; Jacobs and Kahana, 2009; Mesgarani and Chang, 2012; Miller et al., 2007; Pei et 

al., 2011; Sederberg et al., 2003; Swann et al., 2009; Vidal et al., 2010). In many cases, these 

wide-band power shifts are probably reflective of an underlying broadband shift, especially 

when there is no band-limited peak observed above 80 Hz.

Direct support for the broadband model was provided by simultaneous measurements of unit 

activity and field potentials. Based on 2030 identified units across numerous human 

neocortical sites, Manning et al (Manning et al., 2009) demonstrated a positive relationship 

between the average firing rate of the units and the amplitude of the broadband component. 

Recent work in macaque visual cortex found a robust relationship between broadband high-

frequency power increases and single unit activity, and was also able to separate the (non-

rhythmic) high-frequency broadband effect from those attributable to (rhythmic) visual 

gamma (Ray and Maunsell, 2011).

Because rhythmic (band-limited) and non-rhythmic (broadband) components of the power 

spectrum have distinct frequency profiles and exhibit distinct task-related changes, they can 

be decoupled from one another (Miller et al., 2009c) (Figure 1). Once decoupling is 

performed, the spectrum of the electrical field can be expressed as a composite of rhythmic 

and non-rhythmic components (Figures 1–5). A broadband shift can then be understood as a 

change in the amplitude of a non-rhythmic, stochastic, process, which reflects the dendritic 

integration of asynchronous inputs.

In this review, we begin by demonstrating that broadband shifts are a ubiquitous marker of 

local cortical activity, we present data from five different settings: face and house detection 

(inferotemporal cortex, Figure 2), visual search (peri-Calcarine cortex, Figure 3), speech 

production (peri-Sylvian and peri-Rolandic cortex, Figure 4), and finger tapping (peri-

Rolandic cortex, Figure 5). In each setting, spatially focal shifts in broadband power are 

observed in a task-selective manner. We then illustrate how broadband power shifts may 

appear to be band-limited in certain contexts due to contamination by amplifier noise at high 

frequencies and masking due to the general anticorrelation of alpha and beta rhythm power 

at low frequencies (Figure 6).

Methods

Human subjects

Five patients participated in the study, one patient each is reflected in Figures 1–5. All were 

patients at Harborview Hospital in Seattle, WA, USA, with sub-dural electrocorticographic 

(ECoG) grids placed for extended clinical monitoring and localization of seizure foci, in the 

course of the treatment for medically-refractory epilepsy. All patients participated in a 

purely voluntary manner, after providing informed written consent, under a protocol 

approved by the Institutional Review Board of the University of Washington.

Electrocorticographic recording

The platinum electrode arrays (Ad-Tech, Racine, WI) were configured as combinations of 

“grid” (4×8, 8×8) and strip arrays. The electrode pads had 4 mm diameter (2.3 mm 
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exposed), 1 cm inter-electrode distance, and were embedded in silastic. These arrays were 

surgically placed on the sub-dural brain surface during the treatment for epilepsy. ECoG 

signals were split into two identical sets. One set was fed into the clinical EEG system 

(XLTEK, Oakville, Ontario, Canada) and the other set was recorded with Synamps2 

(Neuroscan, El Paso, TX) biosignal amplifiers at 1kHz with an instrumental bandpass-filter 

from 0.3 Hz to 200 Hz. ECoG signals were acquired from the experimental amplifiers using 

the general-purpose BCI2000 software (Schalk et al., 2004), which was also used for visual 

stimulus presentation. Audio was recorded using a Logitech USB desktop microphone at 11 

kHz, and synchronized with a trigger in the BCI2000 program (Figure 4). Finger position 

was recorded using a sensor dataglove (5DT, Irvine, CA, Figure 5).

Cortical rendering and electrode localization

The relationship between electrode position and gyral anatomy was determined by first 

rendering the cortical surface from a pre-operative MRI, using either the freesurfer (Dale et 

al., 1999) or spm5 (Ashburner and Friston, 2005; Friston et al., 1995) environment. Then, 

electrode positions were calculated with respect to this pre-operative MRI from post-

operative computed tomography (CT) using the CTMR package of Hermes, et. al., 2010 

(Hermes et al., 2010), demonstrated to accurately localize the electrode positions within an 

error of ~4mm (the same as the size of the electrodes).

Spectral Analysis and Decomposition (Figure 1)

After rejection of artifactual or epileptiform electrodes, scalp-referenced ECoG potentials 

were re-referenced with respect to the common average reference across all remaining 

electrodes. From each electrode, samples of power spectral density (PSD; P(f, τq)) were 

calculated from 1 second epochs centered at the midpoint of each “events” (different for 

each task), τq, where a Hann taper was applied, the Fourier transform was implemented, and 

the resulting quantity was multiplied by it’s complex conjugate. These samples of power 

spectral density were then decomposed using a principal-component type approach to obtain 

“principal spectral components” (PSCs), as illustrated in Figure 1 and described in the 

associated caption. Reconstruction of the PSDs from a subset of all of the PSCs 

differentiates underlying motifs, and the 2nd–4th PSCs were first removed, and then 

examined in isolation in Figures 1–5.

Continuous time-frequency approximations (dynamic spectra) were calculated using a 

wavelet approach, and projected onto the 1st PSC. After smoothing (by filtering with a 

Gaussian window of width σ=50ms), z-scoring, and exponentiating, a “broadband time 

series”, B(t), is obtained. There is a power law in the cortical PSD of the form P(f, t) ~ A(t) 

f−χ, which is revealed by broadband fluctuations in the PSD across all frequencies (separate 

from the classic θ, α, β, and γ rhythmic motifs) (Miller et al., 2009b; Miller et al., 2009c), 

and appears to directly correlate with local neuronal population firing rate (Manning et al., 

2009; Miller, 2010). We have proposed that B(t) approximates multiplicative scaling in the 

timecourse of the power-law coefficient, A(t), and may be directly correlated with 

multiplicative factor in the average neuronal firing rate of neuronal populations. This 

manuscript demonstrates that B(t) is highly correlated to task-specific dynamics at very short 

timescales, and is a general property across many brain areas.
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Tasks

Face-house picture task (Figures 1 and 2)—Pictures of simple, luminance and 

contrast matched, grayscale faces and houses (10cm by 10cm at 1m distance) were 

displayed in random order for 400ms each, with 400ms inter-stimulus interval between. 

Patients were asked to report a simple target (a single upside-down house). “Events,” τq, 

were denoted at midpoint of picture presentation or each blank screen in between stimuli. 

Figure 2 results also quantified in (Miller et al., 2009a)

Visual search task (Figure 3)—The patient surveyed an array of colored squares (free to 

saccade at whim, without a fixation cross), on each trial stating the color of a box that was in 

a particular direction adjacent to a starred box. “Events,” τq, were denoted at midpoint of 

box array presentation or blank screen in between. For a full description, see (Miller et al., 

2010).

Verb generation task (Figure 4)—Patients stated verbs that were connected to written 

nouns on a screen. “Events,” τq, were denoted at times of speech onset or silent periods in 

between. For a full description of the task, see (Miller et al., 2011). The data have been 

analyzed differently in this manuscript from the original.

Finger movement task (Figure 5)—Patients performed self-paced movements of 

individual fingers in response to simple visual cues. “Events,” τq, were denoted at times of 

peak finger displacements or points of rest. For a full description, see (Miller et al., 2012) 

and (Miller et al., 2009c).

Results and Discussion

Decoupling the cortical power spectrum to reveal broadband spectral changes

The decoupling approach illustrated in Figure 1 is used to identify which spectral 

components covary as the PSD changes over time. The covarying frequency components are 

referred to as motifs. The strength of the linear spectral decomposition is that it makes few 

assumptions regarding the underlying structure of the motifs, except that they are 

orthogonal. The most robust phenomenon in the PSD, seen in every motif decomposition 

and across five different tasks, is a broadband increase that is roughly even in magnitude 

across frequencies when plotted in log space (Figures 1–5). In addition, there are task-

related changes in the amplitude of low frequency rhythms (usually but not always 

decreases), with a center frequency that varies across cortical locations.

Because the logarithm is taken prior to linear decomposition, this decoupling process 

assumes by construction that underlying processes are convolved in time, and therefore their 

individual power spectra are multiplied together at each frequency bin (this emerges from 

the convolution theorem). Recent results demonstrate that broadband spectral change is 

partially entrained on underlying rhythm phase, suggesting that this assumption is valid 

(Miller et al., 2012; Miller et al., 2010).

Because the low frequency rhythms do not completely decohere during tasks, there is 

typically residual amplitude in the peaked portions of the PSD during task engagement. The 
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naïve mechanism used in this manuscript does not assume the form for the underlying 

spectral motifs, and the underlying rhythms are frequently present in the background shape 

of the “broadband” decoupled.

We include an illustration and description of the decoupling technique so that the reader 

may gain an intuitive understanding for how a broadband motif in spectral changes emerges 

naively. This method is important from a conceptual viewpoint because it illustrates that a 

‘band-independent’ motif across many frequencies is specific for the dynamics of 

functionally diverse neuronal populations in different brain areas and across different tasks. 

From a practical viewpoint, filtering for a “high frequency band” (HFB) may capture a 

majority of the variance in broadband spectral change. Although the extracted broadband 

was demonstrated to vary with behavior more closely than with HFB changes ((Miller et al., 

2009c), Supplemental material), the decoupling process is more analytically burdensome. 

For practical purposes, isolating HFB changes is a reasonable and appropriate 

approximation of the broadband change. For example, HFB power in the 76–100 Hz range 

approximated the broadband component of intracranial peri-Rolandic recordings ((Miller et 

al., 2009c), Supplemental Figure 15). However, we emphasize the specific HFB frequency 

range will vary depending on sites and recording systems, and should always be selected 

after inspecting the power spectrum for peaked rhythms and signal-to-noise characteristics. 

In conclusion, when interpreting HFB changes, it is essential to make the distinction 

between asynchronous broadband change (reflecting a population-averaged stochastic 

process) and synchronized rhythmic change (reflecting some kind of coherent property of 

cortical microcircuitry).

Linking behavior to asynchronous broadband activity across tasks and brain regions

As shown in Figures 1–5, broadband spectral change reflects selective activation of local 

cortical circuits across many tasks and brain areas. In Figures 1 and 2 we see that, broadband 

responses within the fusiform and parahippocampal gyri track the presentation of visual 

stimuli (such as faces and houses) on a single stimulus basis with high temporal fidelity. 

Furthermore, the category-specific nature of these inferotemporal loci is sufficiently robust 

that the stimulus category can be classified on individual trials by simple inspection of the 

response trace. Of the 300 presentations of face and house pictures for the patient in Figure 

2, all 300 correctly identified from the spontaneous stream of data (with 22 false positives, 

(Miller et al., 2009a)). The correct face or house label could be identified with 95% 

accuracy, with 23ms precision (23ms standard deviation).

In peri-calcarine cortex (Figure 3) the broadband time series reveals an activated dynamical 

state during visual search, but not while resting or staring at a blank screen. Within each cue 

period, there are broadband fluctuations that presumably reflect individual saccades 

associated with gaze shifts required for the individual elements of task performance – 

finding the target box, making a saccade to the arrow, returning to the target, and then 

identifying the appropriate color.

Broadband changes also reveal the fine temporal dynamics of speech and language in frontal 

and temporal areas (Figure 4). An intracranial recording from Broca’s area shows broadband 

activity that immediately precedes speech during verb generation. Conversely, recording 
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from a superior temporal gyral auditory site shows broadband increase following the onset 

of speech production. Examining the temporal cross-correlations of broadband spectral 

change and the speech envelope, we see that inferior frontal gyrus (IFG) activity precedes 

speech by 30ms, while superior temporal gyral (STG) activity follows speech by 180ms. 

Cross-correlation between activity from the IFG and STG sites shows that IFG leads STG 

activity by 280ms. The fact that 30+180<280 demonstrates that simplified cross-correlations 

cannot take into account complex temporal dynamics, and serve only as a first pass for 

interaction times between cortical areas and behavioral parameters. The cortical activity 

during speech at each of these cortical sites is sustained for multiple seconds (panel 4E), this 

70ms discrepancy is likely explained by more complex within-trial dynamics. The falloff of 

the autocorrelation functions in Figure 4H suggest meaningful broadband signal change 

happens at well under 100ms.

Finally, as seen in the hand region of dorsal pre-central cortex, adjacent sites are highly 

specific for the movements of individual fingers, with minimal overlap, and robustly capture 

the dynamics of each individual finger flexion (Figure 5, from a larger study, detailed in 

(Miller et al., 2012)). Close examination of the timing between motor cortex activity and 

movement onset of approximately 85ms (± 39ms SD) (Miller et al., 2009c).

These data demonstrate, across five behavioral tasks and multiple cortical regions, that 

broadband power spectral change can be used to track local cortical activity, with 

meaningful resolution, at approximately the 20–50ms timescale. This suggests that 

broadband power changes in the ECoG potential are a generic marker of activation within 

populations of cortical neurons. Future studies will be required to demonstrate that 

broadband shifts are directly related to changes in population firing rate throughout the 

cerebral cortex. However, in light of the conserved geometry of superficial pyramidal 

neurons, this relationship is likely to extend well beyond the occipital (Ray and Maunsell, 

2011), temporal (Manning et al., 2009), and somatomotor (Mollazadeh et al., 2009) areas 

where it has been directly confirmed.

The significance of the power law form of the broadband spectral change

As demonstrated previously, the ECoG cortical power spectral density has a power law form 

at high frequency, fitting tightly to P(f) ~ 1/fχ, with χ=4 (Miller et al., 2009b). If low 

frequency oscillations are avoided, either by selecting cortical sites where they are absent, or 

removing them using a principle component approach, a two-Lorentzian form is revealed. A 

single Lorentzian form indicates the presence of stochastic activity with a particular 

biophysical timescale (Miller et al., 2009b); a double Lorentzian indicates the presence of 

two biophysical timescales within the circuit that generates the cortical surface potential. 

With behavior, there is a proportional increase at each frequency, e.g. P(f, t) ~ A(t) P(f). This 

is important, because these two-Lorentzian forms can emerge generically from noise-like 

processes that have two simple correlation times (Sigeti and Horsthemke, 1987). 

Transmitted action potentials between neurons are approximately Poisson-distributed in 

time, and appear as a pure noise-like, Lorentzian, process when averaged over many neurons 

(Dayan and Abbott, 2001). Laminar recordings, measured alongside the surface potential, 

suggest that the current source densities (CSD) in different cortical lamina are due to 
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synaptic currents and ensuing current dipoles in the dendritic tree (Mitzdorf, 1985). In 

contrast, propagating action potentials in axons and axon terminals do not contribute 

strongly to the CSD at spatial scales of ~50–300 μm, the scale where CSD varies, setting up 

the dipole currents which the LFPs (and by extension ECoG potentials) measure. The 

overall magnitude, A(t), of the measured power spectrum results from the averaging of many 

input action potentials to the population of neurons in the vicinity of a recording electrode. 

The shape of the power spectrum results from the combination of two simple known 

neuronal processes (each with a characteristic correlation time and resulting Lorentzian 

form), such as: temporal integration in dendrites or soma, exponentially decaying membrane 

currents, low-pass RC filtering by tissue, or local network connectivity which, when 

modeled, will produce precisely this form. The integer exponent of 2 in each 1/f2 term 

indicates an underlying stochastic process, suggesting that the ECoG signal does not resolve 

self-organized critical processes (which would be associated with non-integer exponents).

A simple single-neuron model for the generation of the cortical potential may provide 

insight into the two-Lorentzian form (Bedard et al., 2006; Miller, 2010; Miller et al., 2009b). 

Two biophysical processes determine the spectral form: one process is the exponentially 

decaying post-synaptic current of fast-synapses (decay timescale 2.3ms (Sabatini and 

Regehr, 1996)), and the other process is the temporal integration and leakage of 

polysynaptic input in the dendritic tree (leakage timescale 100ms (Koch et al., 1996)). This 

is only one of many models that are consistent with the measured form, but it is 

parsimonious and empirically grounded. Our model suggests that broadband spectral shifts 

generically reflect changes in the input firing rate to a local neuronal population. It may be 

that inputs to more superficial lamina dominate, or that pyramidal neurons have a larger 

contribution than interneurons, or that, in some contexts, specific frequency ranges dominate 

because of peculiarities of local circuitry (Buzsaki and Draguhn, 2004; Cunningham et al., 

2003; Rotstein et al., 2005; Sohal et al., 2009; Steriade, 2006; Tiesinga et al., 2008). 

Additionally, inter-spike temporal correlations will be important at smaller spatial scales. 

However, the internal correlations between neuronal events are likely to be lost by averaging 

over large spatial areas, and the spectral changes that we measure using subdural macro-

electrodes generically inform us about the overall number of events taking place in the 

neuronal population.

This hypothesis was tested explicitly by comparing spiking rate to both band-limited and 

broadband power spectral changes in human microelectrode recordings (Manning et al., 

2009). The best predictor of firing rate was the broadband feature of the PSD. This relation 

was robust, significant, and reproduced across a large number of individuals and brain sites. 

Several years later, this was reproduced in non-human primates, with similar results (Ray 

and Maunsell, 2011), and in a setting where the broadband component was concretely 

distinguished from the occipital gamma rhythm.

When extracted, this broadband spectral change then reflects mean firing rate, spatially 

averaged over the neuronal population beneath. If the size of the electrode is made smaller, 

then fewer neurons are being averaged over. The resolution of cortical representation is 

directly tied to the electrode size and density of spacing. By intrinsically averaging over 
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many stochastic synaptic inputs, broadband spectral change reveals a robust correlate of 

local cortical activity on the single trial basis, with high temporal fidelity.

Examples of genuinely rhythmic high-frequency activity

We have emphasized the ubiquity and significance of broadband power shifts, and have 

suggested that (apparently) band-limited spectral changes in the high-gamma range may in 

many cases actually reflect a broadband shift. However, there are also functionally critical 

processes, such as hippocampal sharp wave ripples (Buzsaki et al., 1983; Okeefe and Nadel, 

1979; Ylinen et al., 1995) that have genuinely high-frequency oscillatory signatures. Other 

examples include the gamma rhythm in the occipital lobe, which can be observed at 

frequencies as high as 90 Hz (Figure 1H) (Ray and Maunsell, 2011; Womelsdorf et al., 

2006) and which appear to be related to the intrinsic timescales of interneuronal activity 

(Traub et al., 2001).

Rhythmic and non-rhythmic processes in the high-frequency range may co-occur, if, for 

example, synchronization of one subpopulation co-occurs with asynchronous firing in 

another subpopulation of neurons. Therefore the development of tools for separating 

synchronous and asynchronous processes is crucial. A separation method based on power 

spectral covariance was illustrated in Figure 1, and other tools based on signal coarse-

graining (Yamamoto and Hughson, 1993) have also been employed. It is crucial to test the 

performance of these methods in cases where the asynchronous broadband component 

deviates from its expected form (e.g. if it does not precisely follow a power law).

The implication of broadband power shifts will also vary as a function of the spatial 

geometry of the electrode. When recording with penetrating electrodes, sharp edges in the 

field potential (due, e.g., to individual action potentials) may introduce wide-band energy 

into the spectrum. Depending on their spectral profile, these edge-induced bursts may be 

difficult to distinguish from the asynchronous broadband shifts that reflect population 

activity (Scheffer-Teixeira et al., 2013). However, when recording with surface electrodes as 

in the examples shown here (Figures 1–5), the possibility of spike contamination is 

dramatically reduced, as the signal is aggregated across hundreds of thousands of neurons, 

and is dominated by currents in proximal apical dendrites (Mitzdorf, 1985).

It has been shown in a variety of behavioral settings that the amplitude of this broadband 

spectral change is modulated by the phase of low-frequency rhythms — a specific instance 

of “phase amplitude coupling” (PAC) (Miller et al., 2012; Miller et al., 2010). As such, this 

modulation likely re ects a macroscopic index of well-known spike- eld interaction (Buzsaki 

and Draguhn, 2004; Mollazadeh et al., 2009; Okun et al., 2009; Traub et al., 2001), and 

provides evidence that averaged spiking activity in widespread cortical circuits, reflected by 

this broadband, can be entrained with the phase of underlying rhythms.

How broadband changes have gained attention

More than 40 years ago, Brindley and Craggs observed that the power in the 80–250 Hz 

frequency range of the electric potential time series from motor cortex was dynamically and 

somatotopically increased in adjacent motor areas during movement (Brindley and Craggs, 

1972). This finding lay obscure and dormant for more than 25 years, until Nathan Crone and 
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colleagues independently rediscovered that the high-frequency (~75–100 Hz) portion of the 

human ECoG potential was highly specific for the dynamics of different motor functions 

(Crone et al., 1998a). Although both groups proposed that this high-frequency power was a 

correlate of specific cortical activity, the nature and relationship to underlying physiology 

was unknown. Crone’s group has more clearly postulated that very local populations of 

neurons were selectively synchronized with one another at multiple fast timescales, in a 

spatially-overlapping tableau of microdomains, with the spatial scale of coherence falling 

off with increasing frequency, producing a 1/f shape in the PSD (Crone et al., 2011).

However, the lack of a clear upper bound in the difference between active and inactive 

spectra in motor cortex led to the hypothesis (Miller et al., 2007), and later demonstration 

(Miller et al., 2009b; Miller et al., 2009c) that some behavior-related changes in the cortical 

spectrum do not correspond to synchronized populations of neurons, but are rather 

asynchronous and broadband in nature. As illustrated in Figure 6, these broadband spectral 

changes are often mistaken for band-limited changes. The broadband is obscured at lower 

frequencies by intersection with classic area-specific oscillations such as the α and β 

rhythms in visual and motor cortices (J0 in Figure 6 (Miller et al., 2008)). At high 

frequencies, the power in the cortically generated electrical potential falls off rapidly as P ~ 

1/f4. Because all amplifiers have an intrinsic noise floor, the brain signal becomes lost in the 

instrument noise at an upper bound (JN in Figure 8 (Miller et al., 2009b)). When researchers 

observing only the 1/f correlate of local brain activity between J0 and JN, they may 

mistakenly refer to it as a band-limited “high-gamma power”.

Focusing on changes in particular frequency bands is practical and computationally 

expedient, but we suggest caution in interpreting spectral changes (especially those above 60 

Hz) as changes in cortical oscillations. The oscillatory interpretation is most plausible when 

the high-frequency spectral shift is large and tightly band-limited, conditions which are 

rarely met in extra-cortical recordings. We propose that the first interpretation of a high-

frequency change in the spectrum should be in terms of broadband spectral shifts. These 

broadband shifts, which can be characterized using the methods described above, are the 

signature of changes in asynchronous firing rate within local population, and they are 

therefore both expected and observed (Figures 1–5) in wide-ranging experimental settings. 

An advantage of this approach is that once a broadband shift is isolated, concurrent changes 

in the θ, α, β, and γ rhythms can be more readily and precisely observed.

Conclusion

Having surveyed a variety of experimental settings, we reiterate the claim that the popular 

“high-gamma” range of the cortical electrical potential is widely misunderstood. In most 

cases, changes in spectral power in this band do not reflect changes in synchronous, 

rhythmic, action potentials in underlying cortex. We propose that, especially for recordings 

outside the cortex, spectral changes in this band most often reflect changes in asynchronous 

activity, which has a power-law spectral signature. This power-law process, observable via 

broadband spectral changes during behavior, likely correlates with the mean neuronal 

population activity. The data indicate that this broadband spectral signature is robustly 
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linked to function across cortical areas and behaviors, thereby generically tracking the 

activation of cortical populations with high temporal fidelity.

Acknowledgments

Funding: This work was supported by the generous contribution of National Aeronautics and Space Administration 
Graduate Student Research Program (KJM) and NIH R01-NS065186 (KJM, JGO). The funders had no role in study 
design, data collection and analysis, decision to publish, or preparation of the manuscript. Submitted to special 
issue: “New Horizons for Neural Oscillations”, Editor Michael Kahana

References

Aoki F, Fetz EE, Shupe L, Lettich E, Ojemann GA. Increased gamma-range activity in human 
sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol. 1999; 110:524–
537. [PubMed: 10363776] 

Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005; 26:839–851. [PubMed: 15955494] 

Bates JA. Electrical activity of the cortex accompanying movement. J Physiol. 1951; 113:240–257. 
[PubMed: 14832772] 

Bedard C, Kroeger H, Destexhe A. Does the 1/f frequency scaling of brain signals reflect self-
organized critical states? Physical review letters. 2006; 97:118102. [PubMed: 17025932] 

Brindley GS, Craggs MD. The electrical activity in the motor cortex that accompanies voluntary 
movement. Proceedings of the Physiological Society. 1972:28P.

Bullock TH, McClune MC, Enright JT. Are the electroencephalograms mainly rhythmic? Assessment 
of periodicity in wide-band time series. Neuroscience. 2003; 121:233–252. [PubMed: 12946714] 

Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004; 304:1926–1929. 
[PubMed: 15218136] 

Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain 
Res. 1983; 287:139–171. [PubMed: 6357356] 

Canolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, Kirsch HE, Barbaro NM, 
Knight RT. Spatiotemporal dynamics of word processing in the human brain. Front Neurosci. 2007; 
1:185–196. [PubMed: 18982128] 

Crone NE, Hao L, Hart J Jr, Boatman D, Lesser RP, Irizarry R, Gordon B. Electrocorticographic 
gamma activity during word production in spoken and sign language. Neurology. 2001; 57:2045. 
[PubMed: 11739824] 

Crone NE, Korzeniewska A, Franaszczuk PJ. Cortical gamma responses: searching high and low. Int J 
Psychophysiol. 2011; 79:9–15. [PubMed: 21081143] 

Crone NE, Miglioretti DL, Gordon B, Lesser RP. Functional mapping of human sensorimotor cortex 
with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. 
Brain. 1998a; 121 (Pt 12):2301–2315. [PubMed: 9874481] 

Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP. Functional 
mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and 
beta event-related desynchronization. Brain. 1998b; 121 (Pt 12):2271–2299. [PubMed: 9874480] 

Cunningham MO, Davies CH, Buhl EH, Kopell N, Whittington MA. Gamma oscillations induced by 
kainate receptor activation in the entorhinal cortex in vitro. J Neurosci. 2003; 23:9761–9769. 
[PubMed: 14586003] 

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface 
reconstruction. Neuroimage. 1999; 9:179–194. [PubMed: 9931268] 

Dayan, P.; Abbott, LF. Theoretical neuroscience: computational and mathematical modeling of neural 
systems. Massachusetts Institute of Technology Press; Cambridge, Mass: 2001. 

Edwards E, Nagarajan SS, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, Knight RT. Spatiotemporal 
imaging of cortical activation during verb generation and picture naming. Neuroimage. 2010; 
50:291–301. [PubMed: 20026224] 

Miller et al. Page 11

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Foster BL, Dastjerdi M, Parvizi J. Neural populations in human posteromedial cortex display opposing 
responses during memory and numerical processing. Proc Natl Acad Sci U S A. 2012; 109:15514–
15519. [PubMed: 22949666] 

Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ. Statistical parametric 
maps in functional imaging: a general linear approach. Human brain mapping. 1995; 2:189–210.

Gunduz A, Brunner P, Daitch A, Leuthardt EC, Ritaccio AL, Pesaran B, Schalk G. Neural correlates 
of visual-spatial attention in electrocorticographic signals in humans. Front Hum Neurosci. 2011; 
5:89. [PubMed: 22046153] 

Hermes D, Miller KJ, Noordmans HJ, Vansteensel MJ, Ramsey NF. Automated electrocorticographic 
electrode localization on individually rendered brain surfaces. Journal of neuroscience methods. 
2010; 185:293–298. [PubMed: 19836416] 

Hermes D, Miller KJ, Vansteensel MJ, Aarnoutse EJ, Leijten FS, Ramsey NF. Neurophysiologic 
correlates of fMRI in human motor cortex. Hum Brain Mapp. 2012; 33:1689–1699. [PubMed: 
21692146] 

Jacobs J, Kahana MJ. Neural representations of individual stimuli in humans revealed by gamma-band 
electrocorticographic activity. J Neurosci. 2009; 29:10203–10214. [PubMed: 19692595] 

Jasper H, Penfield W. Electrocorticograms in man: effect of voluntary movement upon the electrical 
activity of the precentral gyrus. European Archives of Psychiatry and Clinical Neuroscience. 1949; 
183:163–174.

Jasper HH. Electrical activity of the brain. Annual Review of Physiology. 1941; 3:377–398.

Jasper HH, Andrews HL. Brain potentials and voluntary muscle activity in man. Journal of 
Neurophysiology. 1938; 1:87.

Koch C, Rapp M, Segev I. A brief history of time (constants). Cereb Cortex. 1996; 6:93–101. 
[PubMed: 8670642] 

Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are 
correlated with single-neuron spiking in humans. Journal of Neuroscience. 2009; 29:13613. 
[PubMed: 19864573] 

Mesgarani N, Chang EF. Selective cortical representation of attended speaker in multi-talker speech 
perception. Nature. 2012; 485:233–236. [PubMed: 22522927] 

Miller FR, Stavraky GW, Woonton GA. Effects of eserine, acetylcholine and atropine on the 
electrocorticogram. Journal of Neurophysiology. 1940; 3:131.

Miller KJ. Broadband spectral change: evidence for a macroscale correlate of population firing rate? J 
Neurosci. 2010; 30:6477–6479. [PubMed: 20463210] 

Miller KJ, Abel TJ, Hebb AO, Ojemann JG. Rapid online language mapping with 
electrocorticography. Journal of Neurosurgery: Pediatrics. 2011; 7

Miller KJ, Hermes D, Honey CJ, Hebb AO, Ramsey NF, Knight RT, Ojemann JG, Fetz EE. Human 
motor cortical activity is selectively phase-entrained on underlying rhythms. PLoS Comput Biol. 
2012; 8:e1002655. [PubMed: 22969416] 

Miller KJ, Hermes D, Honey CJ, Sharma M, Rao RP, den Nijs M, Fetz EE, Sejnowski TJ, Hebb AO, 
Ojemann JG, Makeig S, Leuthardt EC. Dynamic modulation of local population activity by 
rhythm phase in human occipital cortex during a visual search task. Front Hum Neurosci. 2010; 
4:197. [PubMed: 21119778] 

Miller KJ, Hermes D, Schalk G, Ramsey NF, Jagadeesh B, den Nijs M, Ojemann JG, Rao RP. 
Detection of spontaneous class-specific visual stimuli with high temporal accuracy in human 
electrocorticography. IEEE Eng Med Biol Soc. 2009a; 2009:6465–6468.

Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller JW, Ojemann JG. 
Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007; 
27:2424–2432. [PubMed: 17329441] 

Miller KJ, Shenoy P, den Nijs M, Sorensen LB, Rao RN, Ojemann JG. Beyond the gamma band: the 
role of high-frequency features in movement classification. IEEE transactions on biomedical 
engineering. 2008; 55:1634. [PubMed: 18440909] 

Miller KJ, Sorensen LB, Ojemann JG, den Nijs M. Power-law scaling in the brain surface electric 
potential. PLoS Comput Biol. 2009b; 5:e1000609. [PubMed: 20019800] 

Miller et al. Page 12

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Miller KJ, Zanos S, Fetz EE, den Nijs M, Ojemann JG. Decoupling the Cortical Power Spectrum 
Reveals Real-Time Representation of Individual Finger Movements in Humans. Journal of 
Neuroscience. 2009c; 29:3132. [PubMed: 19279250] 

Mitzdorf U. Current Source-Density Method and Application in Cat Cerebral-Cortex - Investigation of 
Evoked-Potentials and Eeg Phenomena. Physiological Reviews. 1985; 65:37–100. [PubMed: 
3880898] 

Mollazadeh, M.; Aggarwal, V.; Thakor, NV.; Law, AJ.; Davidson, A.; Schieber, MH. Coherency 
between Spike and LFP Activity in M1 during Hand Movements. Neural Engineering, 2009. NER 
‘09. 4th International IEEE/EMBS Conference on; 2009. p. 506-509.

Okeefe J, Nadel L. The Hippocampus as a Cognitive Map. Behavioral and Brain Sciences. 1979; 
2:520–528.

Okun, M.; Naim, A.; Lampl, I. Intracellular recordings in awake rodent unveil the relation between 
local field potential and neuronal firing. Society for Neuroscience; Chicago, IL, USA: 2009. 

Pei X, Barbour DL, Leuthardt EC, Schalk G. Decoding vowels and consonants in spoken and 
imagined words using electrocorticographic signals in humans. J Neural Eng. 2011; 8:046028. 
[PubMed: 21750369] 

Penfield W. Mechanisms of voluntary movement. Brain. 1954; 77:1. [PubMed: 13160255] 

Pfurtscheller, G. Event-Related Desynchronization (ERD) and Event Related Synchronization (ERS). 
Williams and Wilkins; Baltimore: 1999. 

Ray S, Maunsell JH. Different origins of gamma rhythm and high-gamma activity in macaque visual 
cortex. PLoS Biol. 2011; 9:e1000610. [PubMed: 21532743] 

Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Whittington MA, Kopell 
N. Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 
interneuron network. J Neurophysiol. 2005; 94:1509–1518. [PubMed: 15857967] 

Sabatini BL, Regehr WG. Timing of neurotransmission at fast synapses in the mammalian brain. 
Nature. 1996; 384:170–172. [PubMed: 8906792] 

Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general-purpose 
brain-computer interface (BCI) system. IEEE Trans Biomed Eng. 2004; 51:1034–1043. [PubMed: 
15188875] 

Scheffer-Teixeira R, Belchior H, Leao RN, Ribeiro S, Tort AB. On high-frequency field oscillations 
(>100 Hz) and the spectral leakage of spiking activity. J Neurosci. 2013; 33:1535–1539. [PubMed: 
23345227] 

Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR. Theta and gamma oscillations 
during encoding predict subsequent recall. J Neurosci. 2003; 23:10809–10814. [PubMed: 
14645473] 

Sigeti D, Horsthemke W. High-Frequency Power Spectra for Systems Subject to Noise. Physical 
Review A. 1987; 35:2276–2282. [PubMed: 9898404] 

Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance 
cortical circuit performance. Nature. 2009; 459:698–702. [PubMed: 19396159] 

Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006; 137:1087–
1106. [PubMed: 16343791] 

Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, DiSano M, Aron AR. 
Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and 
primary motor cortex in stopping initiated responses. J Neurosci. 2009; 29:12675–12685. 
[PubMed: 19812342] 

Tiesinga P, Fellous JM, Sejnowski TJ. Regulation of spike timing in visual cortical circuits. Nat Rev 
Neurosci. 2008; 9:97–107. [PubMed: 18200026] 

Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FEN, Whittington MA. Gap junctions between 
interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. 
Journal of Neuroscience. 2001; 21:9478–9486. [PubMed: 11717382] 

Vidal JR, Ossandon T, Jerbi K, Dalal SS, Minotti L, Ryvlin P, Kahane P, Lachaux JP. Category-
Specific Visual Responses: An Intracranial Study Comparing Gamma, Beta, Alpha, and ERP 
Response Selectivity. Front Hum Neurosci. 2010; 4:195. [PubMed: 21267419] 

Miller et al. Page 13

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Whittingstall K, Logothetis NK. Frequency-band coupling in surface EEG reflects spiking activity in 
monkey visual cortex. Neuron. 2009; 64:281–289. [PubMed: 19874794] 

Womelsdorf T, Fries P, Mitra PP, Desimone R. Gamma-band synchronization in visual cortex predicts 
speed of change detection. Nature. 2006; 439:733–736. [PubMed: 16372022] 

Yamamoto Y, Hughson RL. Extracting Fractal Components from Time-Series. Physica D. 1993; 
68:250–264.

Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G. Sharp wave-associated high-
frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J 
Neurosci. 1995; 15:30–46. [PubMed: 7823136] 

Miller et al. Page 14

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• The ECoG power spectrum is naively decomposed into broadband and rhythmic 

phenomena.

• Broadband ECoG has a power-law form, revealing stochastic population 

dynamics.

• Broadband ECoG closely correlates with local cortical activity across areas and 

tasks.

• Broadband ECoG tracks behavior at the 20–50ms timescale.
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Figure 1. Decoupling the cortical spectrum to reveal broadband spectral change
Simple black-and-white pictures of faces and houses were presented to a patient while 

recording from an ECoG electrode on the parahippocampal gyrus. (A) Raw potential, with 

triggers, τq, in the middle of each stimulus and ISI period (noted with arrows, 400ms each). 

Times of face presentation are shown with pink background, with house presentations in 

blue. The gray triggers are the middle of ISI periods. (B) 1-s epochs of raw potential 

centered at each τq are extracted and Hann-windowed: V(τq + t)H(t). (C) The power 

spectrum of each of these epochs is calculated: P(f, q). (D) Each spectrum is normalized 

with respect to the mean spectrum across trials of all types, and the log is taken: P⌢(f, q). 

(E) The average power spectrum is shown for all face/house/ISI presentations in pink/blue/

gray. (F) Principal spectral components, e→1, e→2, e→3 (in red, blue, and green; “PSCs”) 

of the normalized spectra (as in D) are identified, and reveal motifs of change in the power 

spectrum. The first is primarily broadband increase across all frequencies, whereas the 2nd to 

4th typically capture changes in rhythmic, peaked phenomena of power spectral change. (G) 
Isolated broadband spectra for each stimulus type – the 2nd to 4th PSCs have been removed 

and the power spectra are reconstructed, and broadband increase across all frequencies is 

revealed during presentation of house stimuli. (H) Reconstructed power spectra of the 2nd to 

4th PSCs only. Selective increase during house stimuli in the theta and high gamma range 

are extracted from the raw spectra and observed here. (I) The dynamic power spectral 

density after dividing by the average across all time, then taking the log: similar to D, but 

where the power spectrum is estimated at each point in time, using 7-cycle Morlet wavelets: 
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P⌢(f, t). (J) The dynamic spectrum, P⌢(f, t), is projected into the 1st PSC, e→1, smoothed, 

z-scored, and exponentiated to obtain the timecourse of broadband spectral change, B(t). 

Comparison with stimuli reveals that the cortex beneath this electrode is involved in visual 

processing of both face and house stimuli, but house stimuli more dramatically than face 

stimuli.

Miller et al. Page 17

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Inferotemporal category-specific response
(A) A medial (“1”) and a lateral (“2”) inferotemporal electrode are shown in situ. (B) The 

raw power spectral density (“Raw spectra”) from site “1” in (A) is decomposed as illustrated 

in Figure 1. (C) The broadband time series from each site. Note that the lateral electrode 

shows selective increase during face pictures, and the medial electrode shows significant 

response during both face and house stimuli, but with larger response for house picture 

stimuli. Of the 300 presentations of face and house pictures, all 300 correctly identified from 

the spontaneous stream of data (with 22 false positives, (Miller et al., 2009a)). The correct 

face or house label could be identified with 95% accuracy, with 23ms precision (23ms 

standard deviation).
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Figure 3. Peri-calcarine broadband response during a visual search task
(A) The ECoG potential is measured from occipital lobe brain surface sites during 

participation in a visual search task, and decomposed as in Figure 1. (B) The visual search 

task consists of a 4-by-5 array of colored squares. Each cue consists of a star in one of the 

boxes (in this case a blue box), and an arrow. The patient states the color of the box in the 

direction of the arrow from the star (“green” would be the appropriate response in this case). 

Visual search cues are shown for 2 seconds, with blank inter-stimulus-interval (ISI) cues 

shown for intervening 2 seconds. (C) As illustrated previously, power spectral changes 

during different portions of the experiment (top panel) may be appreciated and naively 

decoupled into broadband changes (middle panel, 2nd–4th PSCs omitted) and changes in 

brain rhythms (bottom panel, 2nd–4th PSCs only, with prominent theta and alpha range 

changes). (D) Broadband increases are observed during the various saccades required for 

processing of each cue. Figure modified from (Miller et al., 2010).

Miller et al. Page 19

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Language and auditory area activity during verb generation
(A) The cortical anatomy is shown, with the non-shaded region representing the area of the 

exposed craniotomy, as seen in panels B and C. Yellow lines indicate the Sylvian fissure and 

the central sulcus. The blue dot is an electrode site in the inferior frontal gyrus (IFG) - Broca 

area (Brodmann area 44). The orange dot is an electrode site on the superior temporal gyrus 

(STG - Brodmann area 22). The white dots are the locations of the remainder of the 

electrode sites. (B) The locations of the electrodes are shown on the exposed brain surface, 

and the craniotomy with the grid in situ is also shown (C). (D) As illustrated previously, 

power spectral changes during different portions of the experiment (top panel) may be 

appreciated and naively decoupled into broadband (BB) changes (middle panel, 2nd–4th 

PSCs omitted) and changes in brain rhythms (bottom panel, 2nd–4th PSCs only). (E) BB 

timecourses from IFG (blue trace) and STG (orange trace). Simultaneous audio recording is 

also shown (black trace). (F) The lagged cross-correlation between BB from the two ECoG 

channels and the envelope of the audio trace (absolute value of the Hilbert transformed 

signal) shows that IFG activity (Blue site) precedes speech by 30ms, while STG activity 

(Orange site) follows speech by 180ms. (G) Similar comparison of cross-correlation 

between the IFG and STG sites shows that IFG activity leads STG activity by 280ms. (H) 
The temporal fidelity and the ability of the varying BB can be estimated by examining the 

autocorrelations of the BB from the two sites. As would be expected, the unsmoothed lnA 

autocorrelation falls off much faster. Panels A–C modified from (Miller et al., 2011).
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Figure 5. ECoG broadband power resolves somatotopic representation of fingers
(A) Power spectral changes, raw and decoupled, during thumb movement and rest. (B–D) 
Changes in broadband at different cortical sites for movement of thumb, index, and little 

finger, are each compared with rest. Colors denote a signed r2 measurement of increases and 

decreases in power with movement relative to rest (individually scaled with maximum noted 

below each label). (C) Traces of thumb (dark blue), index (green), and little finger (light 

blue) flexion, with corresponding timecourse of broadband spectral change (pink) for 3 pre-

central cortical sites. Note that broadband timecourse from each site is remarkably specific 

for the flexion of only one finger. Figure partially modified from the supplement of (Miller 

et al., 2012).

Miller et al. Page 21

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Why “band-limited, high frequency” features may be seen in experimental data
(A) Stereotypical time-frequency plot, with task-associated power increases observed in a 

wide frequency range, beginning at f = J0, extending to f = JN. (B) Shows idealized time-

averaged broadband power-law spectra seen during task. (C) At high frequencies, the size of 

the amplifier noise floor drowns out the power in the electric potential due to cortical 

activity (we denote the frequency where this becomes relevant as JN). (D) At lower 

frequencies, the presence of co-existent synchronous rhythms obscures changes in the 

asynchronous broadband, and there is a crossover in power between the task and rest spectra 

(J0). (E) When the difference between task and rest spectra shown in (D) are plotted, it 

becomes clear why spectrograms have band-limited, task-associated, high frequency power 

changes: They are bound on the low end by J0 and the high end by JN.
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