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The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal
Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude
images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-
VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the
dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with milli-
second temporal resolution were obtained using an inverse operator constructed from the spatial source images
of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple corre-
lated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions
including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of
MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL
to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human
median-nerveMEG responses. The results demonstrated that this method easily distinguished sources in the en-
tire somatosensory network. Next, Fast-VESTALwas applied to obtain thefirstwhole-headMEG source-amplitude
images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons
between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simula-
tions and caseswithMEGhuman responses, the results obtained fromusing conventional beamformer technique
were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking
and distorted source time-courses.

Published by Elsevier Inc.
ry, University of California, San
: +1 858 552 7404.

.

Introduction

MEG is a functional imaging technique that directlymeasures neuro-
nal activity with millisecond temporal resolution. The key outcomes of
MEG source imaging are the source locations and the source time-
courses of neuronal activities responsible for the observed MEG field
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distribution. However, if no constraint is imposed, there are many sets
of source configurations that can generate essentially the same MEG
field distribution. To deal with this non-uniqueness, constraints must
be imposed on sources by stipulating a “source model”. A conventional
source model for MEG is a set of equivalent current dipoles (ECDs), a
model that assumes focal neuronal current that can be modeled by
one or more point-like dipoles. Automatedmultiple-dipole model algo-
rithms such as multiple signal classification (MUSIC) (Mosher and
Leahy, 1998; Mosher et al., 1992, 1999a) and multi-start spatio-
temporal (MSST) multiple-dipole modeling (Aine et al., 2000; Hanlon
et al., 2003; Huang et al., 1998, 2000, 2004; Shih et al., 2000; Stephen
et al., 2002, 2003) have been studied and applied to the analysis of
humanMEGdata. Yet, the ability of dipolemodels to adequately charac-
terize neuronal responses is limited, due to 1) difficulties in modeling
extended sources with ECDs and 2) problems in accurately estimating
the number of dipoles in advance (Huang et al., 1998). Another type
of source-modeling technique involves minimum L2-norm solutions
(e.g., dSPM (Dale et al., 2000), MNE (Hamalainen, 2005), sLORETA
(Pascual-Marqui, 2002)). In these approaches, source space (brain vol-
ume or cortex) is divided into a grid containing a large number of
dipoles (typically several thousands). The inverse procedure obtains
the dipole moment distribution across different grid nodes byminimiz-
ing the total power (L2 norm). This solution is obtained using a direct
linear inverse operator (pseudo-inverse with regularization) of the
lead-fields. However, the spatial resolution of the minimum L2-norm
solution is low and often provides distributed reconstructions even if
true generators are focal. Cross-talk between source time-courses of
nearby grid points can also be high. The third type of source modeling
is spatial filtering, which makes assumptions about the temporal prop-
erties of source time-courses. Conventional single-core beamformer
approaches fall into this framework, and assume that different source
time-courses are uncorrelated (Barnes and Hillebrand, 2003; Gross
and Ioannides, 1999; Gross et al., 2001; Hillebrand and Barnes, 2003;
Robinson and Vrba, 1999; Sekihara et al., 2001; Van Veen et al., 1997).
The extent towhich this “uncorrelated assumption” limits the application
of the conventional beamformer remains debated (Brookes et al., 2007;
Dalal et al., 2006;Diwakar et al., 2011a, 2011b), asmost beamformerpub-
lications have not directly addressed the signal leaking and distortion
problems of reconstructed source time-courses when neuronal sources
are correlated. In evoked responses, electro-neurophysiology studies
show that sources can be highly correlated because brain regions work
together to achieve a task goal (Kandel et al., 2000).

Recent developments of dual-core Beamformer techniques from our
lab and others sought to address the problem for highly-correlated
sources and partially overcame this problem (Brookes et al., 2007;
Diwakar et al., 2011a, 2011b). In addition, a recently-developed source
reconstruction algorithm, Champagne (Owen et al., 2012), which uses
an iterative approach to optimize a cost function related to the loga-
rithm of the trace in data model covariance, performed better than sev-
eral conventional approaches and was robust to noise, although its
ability to accurately obtain the source time-courses was not evaluated
(Owen et al., 2012).

A high-resolution MEG time-domain inverse imaging method was
developed earlier in our lab, namely the VEctor-based Spatial-Temporal
Analysis, which was based on a L1-minimum-norm solution (VESTAL
or Standard-VESTAL), in which temporal information in the data is
used to enhance the stability of the reconstructed L1-minimum norm
solution (Huang et al., 2006). Advantages are that Standard-VESTAL:
1) can model many dipolar and non-dipolar sources; 2) requires no
pre-determination of the number of sources (model order); 3) can
resolve 100% temporally correlated sources; and 4) has a substan-
tially higher spatial resolution than many lead-field-based MEG
source modeling techniques (Brang et al., 2010; Huang et al., 2006,
2010). Recently, Standard-VESTAL was expanded from the time-
domain to the frequency-domain to effectively image oscillatory
MEG signals, including complicated MEG slow-waves in patients
with traumatic brain injury (Huang et al., 2009, 2012). The computa-
tional costs of Standard-VESTAL in the time- and frequency-domains
are manageable, but they increase linearly with the number of time
samples or frequency bins.

The present study presents anMEG source imaging technique based
on L1-minimum-norm solution, called “Fast-VESTAL,” that immensely
improves computational speed and other aspects of the source images.
Using simulations, the performance of Fast-VESTAL is assessed for
its: 1) ability to localize multiple correlated sources; 2) ability to
faithfully recover source time-courses; 3) robustness to different
SNR conditions (including SNR with negative dB levels); 4) capabil-
ity to handle correlated brain noise; and 5) statistical maps of MEG
source images. To handle signal with correlated brain noise, a new
objective pre-whitening method was developed to separate noise and
signal subspaces, and successfully remove correlated brain noise from
the data. Then the results are presented from the application of Fast-
VESTAL to the analysis of human MEG responses evoked by median-
nerve stimulation. In addition, for the first time, the whole-brain Fast-
VESTAL source-amplitude images are reported in different frequency
bands for resting-state MEG data in 41 healthy subjects. Resting-state
electromagnetic signals are one of the most widely examined human
brain responses, dating back to the EEG alpha recording. Building
on the work of Wienbruch and colleagues for low-frequency
bands (Wienbruch, 2007), the present study produces a compre-
hensive set of source-based neuronal amplitude/power images that
cover the whole brain for all frequency bands for the resting-state
MEG/EEG recording. Comparisons between resting-state MEG sources-
amplitude images andknownneurophysiology are also provided. Lastly,
performances of Fast-VESTAL, Standard-VESTAL, and conventional
beamformer technique were compared for simulations and human
MEG data.

Material and methods

Theory of MEG source imaging using Fast-VESTAL

Source imaging of the dominant spatial modes
First, we take an imaging (lead-field) approach anddivide the source

space (gray-matter brain volume) into a grid of thousands of potential
source locations. MEG time-domain signal in sensor-space can then be
expressed in a data matrix: B = [b(t1), b(t2),..., b(tT)], where t1, t2,..., tT
are time samples and T is the total number of time samples and b(ti) is
a M × 1 vector containing the magnetic fields at M sensor sites at time
sample ti. This M × T data matrix can be expressed as:

B ¼ GQ þ N ð1Þ

where G is an M × 2P gain (lead-field) matrix calculated from MEG
forwardmodeling for the pre-defined source grid with P dipole loca-
tions, with each dipole location having two orthogonal orientations
(i.e., θ and ϕ). N is an M × T noise matrix. Q is a 2P × T source time-
course matrix. In the spherical MEG forward head model, θ and ϕ
represent the two tangential orientations for each dipole location,
whereas in a realistic MEG forward model using the boundary ele-
ment method (BEM), the θ and ϕ-orientations are obtained as the
two dominant orientations from the singular-value decomposition
(SVD) of the M × 3 lead-field matrix for each dipole, as previously
documented (Huang et al., 2006). The noise term in Eq. (1) is assumed
to beGaussianwhite noise. If correlated noise exists, pre-whitening pro-
cedures can be applied (Huang et al., 2006; Sekihara et al., 1997, 1999).
In the present study, a new objective pre-whiteningmethod was devel-
oped to effectively remove correlated brain and environmental noise
from the data (see below). The inverse solution in Eq. (1) obtains the
source time-courses Q for given MEG sensor wave-forms B. In general,
for each time-sample, since the number of unknown parameters is far
greater than the number of sensor measurements (i.e. 2PN N M), MEG
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source imaging is dealing with a highly under-determined prob-
lem, and there are a large number of solutions that fit the data. To
reduce the ambiguity, additional constraints (source models) are
needed.

In the present Fast-VESTAL approach, we first remove the time-
dependent features from Eq. (1) and only focus on the spatial profiles.
This is done by performing a SVD for theM × T MEG sensor waveform
data matrix:

B ¼ UBSBV
T
B: ð2Þ

In the typical case of M b T, the dimensions for UB, SB, and VB are
M × M, M × T, and T × T, respectively. All temporal information in the
MEG sensor waveform can be represented as a linear combination of
the singular vectors in the matrix VB. In addition, SVD is performed for
the gain matrix G:

G ¼ UGSGV
T
G: ð3Þ

The dimensions for UG, SG, and VG are M × M, M × 2P, and 2P × 2P,
respectively. Substituting Eqs. (2), (3) into Eq. (1) and multiplying the
result with VB from the right side, we have:

UBSB ¼ UGSGV
T
GH ð4Þ

The 2P × MmatrixH = QVB is called the source spatial map matrix
for the given time window, and is independent of individual time sam-
ples. In the above deviation, we also use the fact that the white noise
is uncorrelated with the MEG neuronal signals NVB = 0.

Each column of UBSB is defined as a spatial mode of MEG sensor-
waveforms. The significance of Eq. (4) is that each spatial mode in
the sensor-waveforms be expressed as a linear combination of the
corresponding source imaging maps (i.e., the columns of H). It is
clear that the number of signal (i.e., dominant) spatial modes in a
given MEG data set (usually ranges from a few to a tens of seconds)
is substantially less than the number of time samples in the data
(~100 s to ~100,000 s). Thus, by solving Eq. (4), the computational
cost can be substantially reduced. This step of using temporal projec-
tion is similar to the temporal dimension reduction component of
the Multiple Sparse Priors (MSP) method of Friston and colleagues
(Friston et al., 2008).

Spatial-profile and covariance matrices of sensor waveforms
In practice, if the number of time samples is large, calculating the

SVD of the sensor waveform matrix as in Eq. (2) can be time- and
memory-consuming. However, what is really needed in the left
hand side of Eq. (4) is UBSB, and this can be easily obtained as the
SVD of the M × M, sensor-waveform-based, spatial-profile matrix
R = BBT:

R ¼ BBT ¼ UBSBS
T
BU

T
B ¼ UBΣBU

T
B ð5Þ

where the diagonal elements in SB are simply the square root (SQRT)
of the corresponding eigenvalues of R which are the diagonal ele-
ments in ΣB. If the sensor waveforms B are zero-mean across time
for each MEG channel, R is the same as the sensor covariance matrix
multiplied by the number of time samples T.

Fast-VESTAL solution
Eq. (4) is under-determined, similar to Eq. (1), with the number of

unknown variables in each column of H = [h1, h2,..., hk,..., hM] (i.e.,
2P) much larger than the number of measurements in each column of
UBSB = [s1u1, s2u2,..., skuk,..., sMuM,] (i.e.,M), so additional constraint(s)
are needed to obtain a unique solution for Eq. (4). Here, the number of
signal (dominant) spatial modes k is usually much smaller than the
number of MEG sensor measurements M. After multiplying from the
left side with UG
T , for individual dominant spatial modes of Eq. (4),

Eq. (4) can be written as:

UT
Guisi ¼ SGV

T
Ghi; i ¼ 1;2; :::; k ð6Þ

where i = 1, 2,..., k are the indices of spatial modes in sensor space. The
Fast-VESTAL solution to Eq. (6) is:

min wT hij j
� �

; subject to constraints SGV
T
Ghi≅U

T
Guisi; i ¼ 1;2; :::; k ð7Þ

where the 2P × 1vector hi is the source imaging map associated with
the dominant spatial mode vector ui (dimension M × 1) of the sensor-
domain. In Eq. (7), w is a 2P × 1 weighting vector chosen to remove
potential bias towards grid nodes at the superficial layer and it is usually
taken to be the column norm of the G matrix (Huang et al., 2006;
Matsuura and Okabe, 1997; Uutela et al., 1999) or a Gaussian function

(Ioannides et al., 1993). In the present study, w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag VGV

T
G

� �q
was

chosen to remove some small bias for the reconstructed source loca-
tions in the above choices of w.

In general, the solution to Eq. (7) is a non-linear minimization
procedure since the source imaging maps hi (associated with dom-
inance spatial mode ui) can be either positive or negative. However,
in practice, one can always replace the absolute values in |hi| with
the following two sets of non-negative values related to hi, and
solve the set of equations through linear programming (LP). Specif-
ically, with the introduction of two new non-negative variables hi

a

and hi
b (Eiselt et al., 1987), Eq. (7) can be re-written as:

min wT ha
i þ hb

i

� �� �
subject to SGV

T
Ghi≅U

T
Guisi;hi ¼ ha

i −ha
i ; i ¼ 1;2; :::; k:ð8Þ

Eq. (8) can be solved readily by several LP packages. In the present
study, SeDuMi (http://sedumi.ie.lehigh.edu/) is used to solve the above
equation-set to get source imaging hi for each dominant spatial mode
ui of sensor-domain signal. This step is repeated for all dominant spatial
modes to obtain the final Fast-VESTAL source image matrix H. The com-
putational cost of Fast-VESTAL is proportional to thenumber of dominant
(signal-related) spatial modes k which is usually much fewer than the
number of time samples.

The Fast-VESTAL source imaging result can be plotted on the source
grid as:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag HHT

� �
=T

q
ð9Þ

which is the 2P × 1 root-mean-square (RMS) source amplitude
value, mean across time at each grid node. The main feature of A is
that it is highly sparse, with many of its elements being either zero
or close to zero, as a direct consequence of L1-norm minimization.

One problem that must be addressed by the minimum L1-norm
approach is that the solution has a small tendency (bias) towards the
coordinate axes. For example, in spherical MEG headmodel, for a dipole
at the ith node of the grid, the vector-based L1-minimumnorm solution

can also be expressed as minimizing ∑
P

i¼1
wiωi cos ψið Þj j þ sin ψið Þj jð Þ

where ψi is the angle between total dipole moment and the orientation
of the elevation in a tangential plane containing the dipole node, and

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωθ

i

� �2 þ ωφ
i

� �2q
is the non-negative dipole strength. This will

introduce a bias towards the coordinate axes (Fig. 1 in Huang et al.,
2006). To handle this small bias, an additional correction factor
(| cos(ψi

e)| + | sin(ψi
e)|)−1 was included in the weighting vector w

in Eq. (8) for one more iteration, where ψi
e is the angle associated

with the estimated orientation based on L1-minimum norm solution
without the correction factor (Huang et al., 2006, 2012).

http://sedumi.ie.lehigh.edu/
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Obtain the source time-courses in Fast-VESTAL

Amain advantage of MEG over other functional imaging techniques
(e.g., fMRI and PET) is its excellent temporal resolution. To capitalize on
this, it is essential that a source imaging approach not only accurately lo-
calizes the neuronal activities, but also faithfully recovers the source
time-courses with high temporal resolution.

In the present study, the spatial images obtained by Fast-VESTAL
in Eq. (9) were used to obtain the source time-courses. Here, an in-
verse operator matrix was adopted and directly applied to the sen-
sor waveform matrix B(t). First, the Fast-VESTAL spatial image in
Eq. (9) is assigned as a weighting variable to the gain (lead-field)
matrix:

eG ¼ G• JAT
� �

ð10Þ

where J = [1, 1,..., 1]T is a M × 1 vector of ones, and • indicates the
element-wise matrix product. eG is the M × 2P weighted gain (lead-
field) matrix with each of the 2P columns weighted by the 2P elements
from A in Eq. (9). Since the source maps from the Fast-VESTAL are highly
sparse with most of its elements being zero or near zero, the M × 2P
weighted gain matrix eG is also sparse. Using the SVD of this weighted
gain matrix,

eG ¼ UeGSeGVTeG: ð11Þ

Then the 2P × M linear inversematrixeGþ
foreGcan be constructed as:

eGþ ¼ VeG SeG þ αI
� �−1

UTeG ð12Þ

in which I is an identity matrix and α is the regularization parameter.
The reconstructed, best-fitting, source time-courses of Fast-VESTAL
solution are then obtained using such a linear inverse operator eGþ

:

Q̂≅ eGþ
• AJT
� �h i

B ¼ eGþ
AB: ð13Þ

Here, the 2P × M inverse operator matrix eGþ
A is called the Fast-

VESTAL source time-course operator. The millisecond-by-millisecond
source time-course matrix Q̂ (dimension 2P × T) is simply obtained
by applying eGþ

A to the sensor waveform matrix B as shown in Eq. (13).
In short, the estimated Fast-VESTAL source time-course Q̂ is related to
theA in Eq. (13), andA is related to Fast-VESTAL spatial sourcemapma-
trix H in Eq. (9).

The goodness-of-fit to the MEG sensor signals

The goodness-of-fit to theMEG sensorwaveformmay be obtained by
comparing the predicted sensor waveform using the best-fitting source
time-courses from Eq. (13) to the measured MEG sensor waveforms. In
fact, the goodness-of-fit can be calculated directly from Eq. (13) without
needing to calculate the predicted MEG sensor waveforms. In this ap-
proach, the best-fitting source spatial-profile matrix or the source covari-
ance matrix can also be obtained as:

R̂SOURCE ¼ eGþ
AReGþ

A
T
: ð14Þ

Then, the best-fitting sensor spatial-profile matrix or the sensor
covariance matrix can be expressed as:

R̂ ¼ GR̂SOURCEG
T
: ð15Þ

The goodness-of-fitmeasure of theMEG sensor signals is then calcu-
lated using the diagonal elements of both the measured and the
predicted sensor spatial-profile matrix or the sensor covariance ma-
trix:

GoodnessXof Xfit ¼ 1−

XM
i¼1

Rii−R̂ii

� �2

XM
i¼1

Rii
2

0
BBBB@

1
CCCCA� 100% : ð16Þ

Setup for computer simulations using white noise

In the present study, computer simulations were used to assess
three key issues related to the performance of Fast-VESTAL: 1) the
algorithm's ability to localize multiple correlated sources, 2) the
algorithm's performance for different SNR conditions with white as
well as real brain noise, and 3) the algorithm's accuracy of reconstruc-
tion of source time-courses.

The source grid used by Fast-VESTAL was obtained by sampling the
gray-matter areas from the T1-weighted MRI of each subject (Huang
et al., 2012). The processing pipeline includes the following steps: 1)
the T1-weighted MR images from a subject are registered to a standard
atlas (e.g., MNI-152) using registration programs in FSL (www.fmrib.ox.
ac.uk/fsl/). 2) The cortical, subcortical, and cerebellum gray-matter
masks with pre-defined brain regions from the standard atlas in FSL
are transferred to the individual subject's coordinates, using the inverse
of the transformation in the first step. In this step, the Harvard-Oxford
Atlas (part of the FSL software) is used to parcellate gray matter into
96 cortical gray-matter regions (48 in each hemisphere), 15 subcortical
regions, and the cerebellum. 3) The regional masks in the subject are re-
sampled to a cubic source gridwith 5 mmsize for Fast-VESTAL analysis,
which leads to a gridwith ~7000nodes. A realistic BEMheadmodelwas
used for MEG forward calculation, with the BEM mesh obtained from
tessellating the inner skull surface from the MRI into ~6000 triangular
elements with ~5 mm size.

The performance of Fast-VESTAL was first examined using six simu-
lated dipolar sources (Fig. 1, left panel). Correlated source time-courses
(ground-truth) were assigned to these sources to mimic evoked re-
sponses with 300 ms pre-stimulus and 700 post-stimulus intervals
(Fig. 1, right panel). MEG sensor waveforms were calculated using the
BEM model (Huang et al., 2007; Mosher et al., 1999b) for the sensor
configuration of Elekta/Neuromag VectorView™ whole-head MEG sys-
tem (Elekta-Neuromag, Helsinki, Finland) with 306 MEG channels that
contains 204 planar gradiometers and 102 magnetometers. These 6
sources were placed as follows: two at L-R middle frontal gyri, two in
L-R postcentral gyri and superior parietal lobules, and two in L-R lateral
occipital cortex (Fig. 1). The ground-truth orientations of these 6
sources were [−0.14, −0.75, 0.64], [−0.52, 0.40, 0.76], [−0.78, 0.17,
−0.60], [0.01, 0.99, 0.11], [−0.16, 0.14, 0.98], and [0.47, 0.80, −0.37],
respectively. Three different levels of random white noise were added
to the sensor wave forms to examine Fast-VESTAL's performance in
reconstructing the source locations and source time-courses. After
adding the three levels of white noise, the SNRs of the noisyMEG sensor
waveforms were at 3.74 (White-noise Level-1), 1.24 (White-noise
Level-2), and 0.53 (White-noise Level-3) respectively for the entire in-
terval, and were at 4.46, 1.48, and 0.64 respectively for the post-
stimulus interval, as measured by Frobenius norms (see Results).
Since statistical analyses (see below) depend on some noise in the
pre-stimulus interval, a negligible amount of white noise (“Level-0”)
to the noiseless was added to MEG sensor waveform with the
SNR N 106. Since the SNRwas quite high for Level-0, this condition is re-
ferred to as “Noiseless” throughout this paper.

The selection of the number of dominant signal modes k in SB in
Eq. (4) is straightforward for data with white noise. The selection of k
was based on the “L-shaped” nature of the singular value curve of the
MEG sensor signal in Eq. (2) or equivalently the SQRT of eigenvalues

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/


Fig. 1. Left panel: ground-truth locations of six simulated sources. Right panel: six correlated source time-courses tomimic evoked response, with 300 ms for pre-stimulus and 700 ms for
post-stimulus intervals.
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of the sensor covariancematrix in Eq. (5), allowing us to effectively sep-
arate the signal subspace from the noise subspace (see Results)— a pro-
cedure widely used in processingMEG data (Huang et al., 2006;Mosher
and Leahy, 1998; Mosher et al., 1992; Sekihara et al., 2008).

New objective pre-whitening method to handle correlated brain noise with
pre-whitening, eigenvalue plots, and objective threshold

When studying human MEG responses, correlated environment
noise and especially brain noise are common; this is different from
white noise. In situations with correlated noise, the determination of
signal (i.e., dominant) spatial modes k becomes challenging. The pre-
whitening method has been introduced to handle correlated noise
(e.g., Sekihara et al., 1997, 1999). In these studies using simulated corre-
lated noise, if one has complete knowledge of the correlated noise, the
pre-whitening step effectively determines the signal subspace and
removes the correlated noise. However, it remains a topic of research
as to how correlated brain noise should be handled in realistic situations
when only incomplete or non-simultaneously collected information
Using incomplete information to estimate m

matrix C , and construct pre-whitening ope

Applying PWO to daughter brain noise data, 

forming daughter pre-whitened brain noise 
covariance matrix (DPWBNCM); plotting 
SQRT of eigenvalues of DPWBNCM; 
plotting the 2nd order derivatives of the SQRT
of these eigenvalues in DPWBNCM.

Identifying the noise-subspace from the plot
derivatives; Finding the associated threshold
of the eigenvalue plots of the DPWBNCM.
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forming
(PWSC
of the P
DPWB
select th

Fig. 2.A flow-chart of the objective pre-whiteningmethod (OPWM) for removing correlated bra
noise when replacing the DPWBNCM in the chart with the daughter pre-whitened empty-room
about the correlated noise is available. A typical example is evoked
MEG responses, wherein brain (correlated) noise can be estimated dur-
ing the pre-stimulus interval, but not during the post-stimulus interval
when the evoked signal mixes with the brain noise. Another example is
when brain noise used for pre-whitening is collected before or after the
actual task session. So in practice, onemust find: 1) an objective way to
measure the efficacy of the pre-whitening step, 2) an additional proce-
dure to further remove residual correlated noise when pre-whitening
step is not completely successful, and 3) an objective way to identify
noise subspace in the pre-whitened signal covariance matrix.

In the present study, a newObjective Pre-whiteningMethod (OPWM)
was developed to address the above challenges for effectively removing
correlated brain noise. Our OPWM contained four steps as shown in
Fig. 2: 1) Estimating a “mother” correlated brain noise covariance matrix
based on incomplete information and constructing a pre-whitening oper-
ator (see below), which was then applied to a series of “daughter” brain
noise data sets, thereby forming a series of daughter pre-whitened brain
noise covariance matrices (DPWBNCM); 2) Plotting the SQRT of eigen-
values of these DPWBNCM, and plotting the second-order derivatives of
other brain noise covariance 

rator PWO in Eq. (17).

s of the 2nd order 
 values from SQRT 

g PWO to signal covariance matrix and 

 the pre-whitened signal covariance matrix 
M); Plotting the SQRT of the eigenvalues 
WSCM; Applying the thresholds from 
NCM to the PWSCM eigenvalue plots and 
e signal subspace in PWSCM.   

in noise from the data. The same process was applied to remove correlated environmental
covariance matrix (DPWERCM).
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the SQRT of eigenvalues of DPWBNCM. If the pre-whitening step does not
completely remove the correlated brain noise (it is often the case), the
leading second-order derivatives will be substantially different from
zero. 3) Identifying the noise-subspace from the plots of the second-
order derivatives of eigenvalues of DPWBNCM and finding the associated
threshold values from the SQRT of the eigenvalue plots of theDPWBNCM;
and 4) Applying the pre-whitening operator to the signal covariancema-
trix to obtain the pre-whitened signal covariance matrix (PWSCM), and
then applying the thresholds from the DPWBNCM in Step 3 to the
PWSCMeigenvalueplots and selecting the signal subspace in the PWSCM.

Pre-whitening step
In the pre-whitening step, eigenvalue decomposition (EVD) is first

performed on an estimated M × M mother noise covariance matrix
(see later for how to obtain such a matrix) C = UCΩCUC

T, and then an
M × M pre-whitening operator is constructed:

OPW ¼ UCΩ
−1=2
C UT

C : ð17Þ

Next, the pre-whitening operators are applied to the gainmatrices in
Eqs. (1), (2), (11), MEG sensor waveforms in Eqs. (1), (2), (13), or sen-
sor covariance matrices in Eqs. (5), (14):

GPW ¼ OPWG; eGPW ¼ OPW
eG;B tð ÞPW ¼ OPWB tð Þ;RPW ¼ OPWROT

PW : ð18Þ

The rest of the formulation of Fast-VESTAL takes the same for-
mat when replacing these matrices with their corresponding pre-
whitening ones. Note that after the pre-whitening step, the MEG
sensor waveforms and sensor covariance matrices will become di-
mensionless (i.e., ratio scores). In our implementation of Eq. (17),
the calculation of ΩC

−1/2 was based on the top 60 largest singular
values in ΩC, due to the fact that the later matrix becomes rank 64
after applying MaxFilter to any data set in the Elekta MEG system
(Song et al., 2008; Taulu et al., 2004a, 2004b).

Brain-noise data
To examine the robustness of Fast-VESTAL in realistic situations of

correlated brain noise, MEG brain-noise was collected from a healthy
subject when he was watching a fixation point for over 2 h, in multiple
sessions of 5-minute recordings fromdifferent days. After co-registering
these data sessions and removing epochs containing eye-blinks, eye-
movements, and other artifacts using MaxFilter (see below), the fixa-
tion brain signals were divided into a pool of over 6100 epochs that
were free of artifacts, each of 1000 ms duration. Using these data,
three levels of brain noise were constructed to match the noise levels
of the three white-noise conditions based on Frobenius norms. The
numbers of randomly selected epochs for signal averaging in each of
the three brain-noise conditions were: 125, 14, and 3, respectively.
These conditions were referred as brain-noise Levels-1, 2, and 3.

Assessing the efficacy of pre-whitening using only brain-noise data
Before the realistic brain noise was added to the simulated signal to

challenge the performance of the Fast-VESTAL algorithm, the robust-
ness of the estimated mother noise-covariance matrix in removing cor-
related brain noise was first examined. In practice, the estimation of the
mother noise covariance is always based on partial information. Thus,
the estimated mother covariance matrix of correlated brain noise was
constructed using the pre-stimulus interval partial data (not the entire
interval), assuming that the pre-whitening step removes the correlated
noise for the entire interval, including the post-stimulus section.

AMonte-Carlo approachwas used to evaluate the efficacy of the pre-
whitening approach. For each brain-noise condition, 40 sets of epochs,
each epoch lasting 1000 ms, were randomly selected from our pool of
over 6100 epochs of human brain-noise recordings. Specifically, for the
brain-noise Level-1 condition, each of the 40 sets of epochs contained
125 trials that were then averaged (i.e., 5000 total epochs). In each set,
the mother brain-noise covariance matrix was estimated from the first
300 ms interval of the averaged data, and the pre-whitening step was
run through the entire 1000 ms interval (i.e., daughter brain-noise condi-
tion) using Eqs. (17) and (18). Next, the SQRT of the eigenvalues of the
daughter pre-whitened brain-noise covariance matrix (DPWBNCM) was
plotted for the entire interval. As shown in the Results section, these
plots and their second-order derivatives objectively assessed the quality
of the pre-whitening step and provided an objective way to separate sig-
nal subspace from the noise subspace. This procedure was repeated for
the conditions with brain-noise Level-2 (14 trials averaging) and Level-
3 (3 trials averaging). It is important to emphasize that no simulated
signal was added during this procedure — only brain-noise data were
involved in the analyses.

Analyzing human median-nerve MEG response

The performance of Fast-VESTAL was further examined using
human MEG responses evoked by unilateral median-nerve stimula-
tion. This task is particularly relevant, owing to our excellent under-
standing of the underlying neuronal activity, which allows us to
predict with a high degree of confidence where sources should be
found, and hence to confirm or refute the correctness of the calcu-
lated source localizations. MEG recordings were conducted from a
healthy subject as he underwent right median-nerve stimulation
using a bipolar Grass™ constant current stimulator. The stimuli
were square-wave electric pulses (0.2 ms duration) delivered at
about 1 Hz (ISI: 800 ms to 1200 ms). The intensity of the stimula-
tion was adjusted until robust thumb twitches were observed.
Magnetic fields evoked by median-nerve stimulation were mea-
sured using our Elekta/Neuromag™ whole-head Vectorview™
MEG system in a 6-layer magnetically shielded room (IMEDCO-
AG, Switzerland) (Cohen et al., 2002). EOG electrodes were used
to detect eye blinks and eye movements. An interval of 500 ms
post-stimulus was recorded, using 300 ms pre-stimulus data for
constructing the noise covariance matrix for pre-whitening. Data
were sampled at 1000 Hz and run through a high-pass filter with
0.1 Hz cut-off and through a notch filter (58–62 Hz) to remove
60 Hz power-line noise. Two hundred artifact-free responses were
averaged with respect to the stimulus trigger to increase the SNR.
Maxfilter, also known as signal space separation (Song et al., 2008;
Taulu et al., 2004a, 2004b), was used to remove external interfer-
ences. A five-minute session of resting-state brain noise (eyes-
open), collected from the same subject on a different day, was
used to examine the efficacy of the pre-whitening step and to iden-
tify the noise subspace.

MEG resting-state recording in healthy subjects

To examine the performance of Fast-VESTAL technique for sponta-
neous data, Fast-VESTAL was applied to obtain whole-brain source im-
aging for resting-state MEG data in standard frequency bands. Study
participants included 41 healthy control subjectswith nohistory of neu-
rological or psychiatric disorders (age 26.7 ± 8.4 years, 34 males).
Three blocks of resting-state MEG data with eyes-closed for 5 min
were collected for each block using the same Elekta/Neuromag
VectorView™ whole-head MEG system. During the recording, subjects
were instructed to keep their eyes closed and empty their mind. Data
were sampled at 1000 Hz and were run through a high-pass filter
with 0.1 Hz cut-off and a low-pass filter with 330 Hz cut-off. Eye blinks,
eye movements, and heart signals were monitored. Precautions were
taken to ensure head stability: foam wedges were inserted between
the subject's head and the inside of the unit, and a Velcro strap was
placed under the subject's chin and anchored in superior and posterior
axes. The head positionsweremeasured to ensure that headmovement
across different sessions was less than 5 mm (usually 2–3 mm).
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MEG eyes-closed data were first run through MaxFilter to remove
external interferences (e.g., magnetic artifacts due to metal objects,
strong cardiac signals, environment noise) and to co-register the MEG
data by removing the small head movements across the three 5-min
eyes-closed sessions. Next, residual artifacts near the sensor array due
to eye movements and residual cardiac signals were removed using In-
dependent Component Analysis. The software is our customized version
of ICALAB (bsp.brain.riken.jp/ICALAB/). The EKG artifacts in theMEG data
were also removedwhen theMEG datawere passed throughMaxFilter.
This feature of MaxFilter has been described previously (Song et al.,
2008; Taulu et al., 2004a, 2004b). Removal of EKG artifacts using
MaxFilter is quite straightforward since EKG signals clearly represent
magnetic fields in the Vector Spherical Harmonic Expansion (in signal
space separation), external to the MEG sensor array.

Structural MRIs of the subject's head were collected using a General
Electric 1.5 T ExciteMRI scanner (ver. 14 software release). The acquisi-
tion contains a standard high-resolution anatomical volume with a res-
olution of 0.94 × 0.94 × 1.2 mm3 using a T1-weighted 3D-IR-FSPGR
pulse sequence. To co-register the MEG with MRI coordinate systems,
three anatomical landmarks (i.e., left and right pre-auricular points,
and nasion) were measured for each subject using the Probe Position
Identification system (Polhemus, USA). By identifying the same three
points on the subject's MR images using MRILAB software developed
by Elekta/Neuromag, a transformation matrix involving both rotation
and translation between the MEG and MR coordinate systems was
generated. To increase the reliability of theMEG-MR co-registration, ap-
proximately 80 points on the scalp were digitized with the Polhemus
system, in addition to the three landmarks, and those points were co-
registered onto the scalp surface of the MR images. Based on our expe-
rience with the MEG median-nerve task, which reliably produces pri-
mary somatosensory cortex responses for hand representations that
are associated with unique anatomical landmarks (Huang et al., 2000,
2006), the MEG-MR co-registration error is expected to be less than
3 mm. The T1-weighted imageswere also used to extract the innermost
skull surface (SEGLAB software developed by Elekta/Neuromag). The
innermost skull surface was used to construct a realistic head model
for MEG forward calculation based on the BEM model (Huang et al.,
2007; Mosher et al., 1999b).

To analyze the human resting-state data and assess statistical signif-
icance (see below), 41 sets of “empty-room” data sets were acquired
when no human subjects were inside the MEG scanner. An extra set of
empty-room data was used to estimate the mother noise covariance
matrix in the OPWM step. These empty-room data sets (each lasting
about 2 min) were collected over a 3-year period that coincided with
the human resting-state recordings. The newOPWMdeveloped for sim-
ulated signal with brain noise and the human median-nerve response
was applied in the resting-state data analyses. Here, to remove the cor-
related noise from the environment, an estimated mother noise covari-
ance matrix was first constructed using the extra empty-room data set,
and thepre-whitening operator Eq. (17)was then built from themother
noise covariance matrix. Next, the pre-whitening operator was applied
to each of the 41daughter empty-room data sets to create the daughter
pre-whitened empty-room covariancematrices (DPWERCM). The SQRT
of the eigenvalues from theDPWERCMprovided theobjective threshold
for distinguishing noise subspace from the signal subspace. This thresh-
old was used in the Fast-VESTAL analysis of the pre-whitened data co-
variance matrices for the 41 empty-room data sets and the resting-
state data from 41 human subjects (see Results). For comparison, a
beamformer analysis was applied to the same 82 pre-whitened data
sets.

Assessing the statistical significance of the Fast-VESTAL results

An approach was developed to assess the statistical significance of
the Fast-VESTAL results and then was used to construct statistical
maps of the neuronal activities. For the simulation data with different
noise levels, F-tests assessed the variances between the post-stimulus
700 ms interval over the pre-stimulus 300 ms interval for each grid
node. The F-value maps for the Fast-VESTAL solution were constructed
for the ~7000 grid nodes. False discovery rate (FDR) corrected for mul-
tiple comparisons (corrected p = 0.01) was employed. Additional
thresholding based on the post-stimulus RMS value of 0.3 nA-m was
applied. Grid nodeswith activities below the thresholdwere considered
not detectable and excluded from the statistical analysis.

To assess statistical significance in the analyses of resting-state MEG
data, Fast-VESTALwas used to analyze 41 data sets fromhuman resting-
state recordings and 41 empty-room data after pre-whitening and
objective selection of the signal subspace (see above). After a SQRT
transformation, all source images were registered to the MNI-152
brain-atlas coordinates using FLIRT software in FSL, and spatially
smoothed using 5-mm Gaussian kernel to reduce inter-subject ana-
tomical difference. The Fast-VESTAL results from the empty-room
data sets served as the control group to evaluate the statistical signif-
icance of source amplitudes from the human resting-state data in
two-tailed t-tests. T-test values were plotted as statistical maps
across the grid nodes, using FDR correction (corrected p = 0.01).
The same statistical procedures were applied to the source images
obtained from the beamformer analysis.

Other parameter settings in Fast-VESTAL

Aswith anyMEG source imaging technique, optimal performance of
Fast-VESTAL depends on the settings of certain parameters. In Fast-
VESTAL, three parameters need to be set: 1) the number of dominant
singular values in SG from the SVG of the MEG gain (lead-field) matrix
G in Eq. (4); 2) the regularization parameter α in the inverse operatoreGþ

in Eq. (12) to obtain the Fast-VESTAL source time-courses; and 3)
the number of dominant signal modes k in SB from the SVD of the
MEG sensor waveform in Eq. (2), or equivalently in the sensor covari-
ancematrix in Eq. (5) forwhite-noise conditions, and the corresponding
ones in Eq. (18) for signal with correlated brain-noise after the pre-
whitening step. In previous sections, detailed descriptions of the new
approach were provided, and the results demonstrated that this ap-
proach can differentiate the noise subspace from the signal subspace
and objectively estimates dominant signal modes k, for the conditions
with real correlated brain-noise.

The setting of the other two parameters was straightforward
without any iterations and/or updating procedures. In all simula-
tions and processing of empirical MEG data using Fast-VESTAL, the
parameter α was set at 5% of the largest singular values in SeG in
Eq. (12), the number of dominant singular values in SG was set to
80 in Eq. (4), and all other smaller singular values in SG were set to
be zero. These settings were independent of the MEG signals or the
noise levels (see Results).

Results

Computer simulation result with white noise, correlated sources, and
different SNRs

Different levels of white noise were added to the MEG sensor
waveforms calculated from the 6 sources, which are shown in
Figs. 3(A)(E)(I)(M) where 204 planar gradiometers were super-
imposed. SNR was defined as the ratio of the Frobenius norms of
the noiseless MEG sensor waveform matrix over the random white
sensor noise waveformmatrix. For the whole 1000 ms time interval,
the SNRs for the simulated noisy data sets were at 1.86 × 106 (125.4 dB);
3.74 (11.45 dB); 1.24 (1.90 dB); and 0.53 (−5.49 dB), corresponding to
noise Levels 0 (“noiseless”), 1, 2, and 3 respectively. For just the post-
stimulus interval, the SNRS were at 2.23 × 106 (126.9 dB) for the “noise-
less” Level-0; at 4.46 (12.90 dB) for Level-1; at 1.48 (3.45 dB) for Level-2;
and at 0.64 (−3.95 dB) for Level-3. Fast-VESTAL was used to reconstruct



Fig. 3. Simulated MEG sensor waveforms added white noise (first column) and source time-courses reconstructed from Fast-VESTAL (second column), Standard-VESTAL (third column),
and beamformer (fourth column). Each row displays the data for different white-noise levels. Row 1: white-noise Level-0 (post-stimulus SNR = 2.23 × 106 or 126.9 dB); Row 2: white-
noise Level-1 with post-stimulus SNR = 4.46 or 12.90 dB; Row 3: white-noise Level-2 with post-stimulus SNR = 1.48 or 3.45 dB; and Row 4: white-noise Level-3 with post-stimulus
SNR = 0.64 or −3.95 dB.
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the source locations and source time-courses. In all cases, the number of
dominant signalmodes in SB (i.e., size of the signal subspace)was selected
to be 6, based on the “L-shape” singular value curve (see below).
Standard-VESTAL and beamformer methods were also used to recon-
struct the location and source time-courses. The noise features in the sen-
sor waveforms from 102magnetometers was similar (not shown) to that
of the gradiometers.

Source time-course reconstruction
The 6 source time-courses reconstructed by Fast-VESTAL (Eq. (13))

for the noise levels 0–3 are shown in Figs. 3(B)(F)(J)(N). Good recon-
structions, in terms of shape, onset, and amplitude, were obtained for
all 6 source time-courses, including the high-noise-level condition. In
calculating each of the reconstructed source time-courses, the activities
were summed up via SVD from all voxels within 10 mm from the center
voxel with the strongest activities in each of the 6 clusters.

The reconstructed source time-courses from the Standard-VESTAL
(Figs. 3(C)(G)(K)(O)) were highly similar to those from the Fast-
VESTAL, although more noise was seen in the Standard-VESTAL re-
sults for the high noise levels (Figs. 3(K)(O)). For noise Level-0
(noiseless), the reconstructed source time-courses from both Fast-
VESTAL (Fig. 3(B)) and Standard-VESTAL (Fig. 3(C)) were virtually
identical to the ground-truth source time-courses with strong cor-
relations (Fig. 1). In addition, a beamformer was used to analyze
the same simulated data with the reconstructed source time-courses
shown in Figs. 3(D)(H)(L)(P). In the beamformer solution, the nodes
withmaximumF-values (see below)within 10 cm from the true source
locations were selected. All constructed source time-courses using the
beamformer exhibited substantial distortions, even for the noiseless
condition.

Table 1 lists the percent variance explained (PVE) in the
reconstructed source time-courses relative to the ground-truth
source time-courses by Fast-VESTAL, Standard-VESTAL, and the
beamformer solutions. For each source, the PVE of source time-

courses was defined as: PVEq ¼
1−∑

i
qi tð Þ−q̂i tð Þð Þ2

∑
i
qi tð Þ2

0
B@

1
CA×100% ,

where the q(t) and q̂ tð Þ are the ground-truth and reconstructed
source time-courses, respectively. The upper-left panel of the
table lists the range of PVE for the 6 sources at different white-
noise levels. The PVE values from Fast-VESTAL solutions were in the
upper 90s% to 100% range for white-noise Levels 0–2, and between
83.9% and 94.5% for the Level-3 condition where the SNR was substan-
tially less than one. The PVE values from the Standard-VESTAL solution
were quite high as well, but less than those from the Fast-VESTAL. In
contrast, the PVE from the beamformer-reconstructed sources were
markedly lower, even at the noiseless (Level-0) condition, indicating
substantial distortions in the reconstructed source time-courses.



Table 1
1) The percent variance explained (PVE) in the reconstructed source time-courses; 2) PVE of inter-source cross correlation (ICC) among reconstructed source time-courses (lower-left
triangle in Fig. 4). The comparisons are made for the solutions from Fast-VESTAL, standard-VESTAL, and beamformer; and arranged separately for white noise (left half) from the real
brain noise (right half). Orientations errors were also listed.

Source time-course PVE (%), white noise Source time-courses PVE (%), brain noise

Noise levels Fast VESTAL Std VESTAL Beamformer Fast VESTAL Std VESTAL Beamformer

Level-0 100.0–100.0 100.0–100.0 77.5–89.9 – – –

Level-1 99.6–99.9 99.0–99.8 77.2–89.5 97.7–99.2 95.7–99.4 60.0–91.6
Level-2 96.9–98.9 86.8–95.7 74.2–87.3 87.4–96.2 70.5–90.5 58.7–78.3
Level-3 83.9–94.5 78.1–93.3 60.7–77.9 43.6–87.3 33.5–85.7 9.3–59.0

ICC PVE (%), white noise ICC PVE (%), brain noise

Level-0 100.0 100.0 8.7 – – –

Level-1 99.7 99.5 8.7 99.5 92.4 18.4
Level-2 99.7 93.5 8.9 96.9 71.1 18.2
Level-3 98.4 92.4 13.2 60.2 45.1 15.5

Orientation error (deg), white noise Orientation error (deg), brain noise

Level-0 0.0–0.0 0.0–0.0 0.2–8.0 – – –-
Level-1 0.1–0.5 0.2–0.7 0.3–8.1 0.1–1.5 0.4–2.1 0.7–13.6
Level-2 0.2–2.0 0.3–3.1 0.6–8.2 0.6–6.5 0.6–8.5 0.9–20.4
Level-3 0.7–13.1 1.2–12.5 0.9–16.8 0.7–18.5 1.0–21.5 1.4–24.4
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Inter-source cross correlation exam
Another important measure of reconstructed source time-courses is

the inter-source cross correlation (ICC). The ICC assessed if the
reconstructed source time-courses preserved the inter-relationship
of the time-courses among different sources. Fig. 4(A) plots the
cross-correlation matrix of the 6 ground-truth source time-courses.
The diagonal elements are all one since each source 100% correlated
with itself. The rest of the ICC values (highlighted by the white trian-
gle in the lower-left corner) vary from 0.01 to 0.40. The ICC from both
Fast-VESTAL in Fig. 4(B) and Standard-VESTAL in 4(C) for the white-
Fig. 4. Cross correlation coefficient matrix for the 6 simulated source. (A): using ground-truth s
Level 1; (C): by Standard-VESTAL; (D): by beamformer. The coefficients under the lower-left w
cent variance explained to the ground-truth values, as listed in Table 1.
noise Level-1 condition closely matched the ground truth. In con-
trast, the ICC from the beamformer reconstructed source time-
courses showed markedly reduced correlations over the ground
truth.

The PVE values (relative to the ground-truth) were also calculated
for the ICC measures under the white triangles in the cross-correlation
matrices in Fig. 4 from the three source modeling techniques, which
are shown in the middle-left panel of Table 1. As highlighted in bold,
the PVE values for the ICC from Fast-VESTAL are above 98%, markedly
higher than those from the beamformer, which are 13.2% or lower.
ource time-courses; (B): using time-courses reconstructed by Fast-VESTAL at white-noise
hite triangles were used to calculate the inter-source cross correlation (ICC) and their per-
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The performance of Standard-VESTAL was also good with PVE for
ICC all above 92%, yet slightly inferior to the values obtained by
Fast-VESTAL.
Statistical maps and source location reconstruction for signals with
white noise

An approach was developed to assess the statistical significance of
the Fast-VESTAL results and to construct statisticalmaps of the neuronal
activities. For the simulation data with different white-noise levels,
F-test assessed the statistical significance of variances between
post-stimulus 700 ms interval over the pre-stimulus 300 ms inter-
val for each grid node. The F-value maps from the Fast-VESTAL,
Standard-VESTAL, and the beamformer solutions are shown in the
4-upper panels of Fig. 5 for white-noise Levels 0-3. The range of
the F-values across different noise levels was orders of magnitudes
different, due to different SNRs. To display the F-values in a compa-
rable fashion, the threshold of the color scale was set to the F-value
corresponding to corrected p-value of 0.01 (FDR), whereas the
saturation value of the color scale was set to be Fsatuation = Fthreshold +
(Fmax − Fthreshold) × 0.3. Here, Fmax was the maximum F-value in the
brain volume for a specific noise level condition.

For noise Level-0, the maps from Fast-VESTAL and Standard-VESTAL
were virtually identical to the ground-truth locations of the 6 simulated
sources (Fig. 1). The statistical maps from the beamformer solution re-
vealed the 6 local maxima that matched the ground-truth locations.
However, the spatial extent of the beamformer localmaximawasmark-
edly larger than those obtained from the two VESTAL techniques, with
above threshold F-values in widespread areas throughout the brain,
FV SV BF FV SVR BF

FV SV BF

(A): White-noise Level 0 (B): White-noise Level 1

(E): Brain Noise Level 1

FV: Fast VESTAL
SV: Standard-VESTAL
BF: Beamformer

F thr : p=.01, FDR corrected
F sat = F thr + (F max - F thr)×0.3

*: This slice is 4 mm inferior 
to the other slides in the same 
row. 

F thr F sat 

Fig. 5. F-value maps (post-stimulus over pre-stimulus) of source activity for the 6 simulated s
upper four panels were for white-noise Level-0 (A); white-noise Level-1 (B); white-noise Lev
1 (E) with 125 trial-averaging; brain noise Level-2 (F) with 14 trial-averaging; and brain noise
suggesting potential signal leakage from the beamformer solution.
Good source location reconstructions were also obtained from both
Fast-VESTAL and Standard-VESTAL for white-noise Levels 1-3 as
shown in Figs. 5(B)(C)(D), although some activities spread to the neigh-
boring voxels for the highly noisy condition (i.e., Level-3). In contrast,
substantial signal leakage was observed in the beamformer solution
for all three noise-level conditions.
Monte-Carlo brain noise analysis of pre-whitening efficacy and the
objective threshold of noise subspace

The robustness of Fast-VESTAL was examined using correlated MEG
brain noise collected from a healthy subject when he was watching a
fixation point for over 2 h in multiple 5-minute sessions. The brain-
noise data were divided into a pool of over 6100 artifact-free epochs
(1000 ms duration). Then Monte-Carlo analyses were performed, in
which three conditions of brain noise were constructed that approxi-
mately matched the noise levels of the white-noise conditions based
on Frobenius norms. The number of randomly selected epochs for
trial-averaging in the brain-noise Level-1, 2, and 3 conditions was 125,
14, and 3, respectively.

One key issue for the signal with correlated brain noise is that the
boundary between signal subspace and noise subspace is blurred,
which makes determining the number of signal (dominant) spatial
modes k in Eqs. (6)–(8) more challenging than for cases with white
noise. In Figs. 6(A)(B)(C), the SQRT plots of the eigenvalues in the sen-
sor covariancematrices from simulated signal (white-noise Levels 1–3)
clearly showed different characteristics between the signal subspace
LFV SV BF FV SV BF

FV SV BF FV SV BF

(C): White-noise Level 2 (D): White-noise Level 3

(F): Brain Noise Level 2 (G): Brain Noise Level 1

*

ources reconstructed from FV: Fast-VESTAL; SV: Standard-VESTAL; BF: beamformer. The
el-2 (C); and white-noise Level-3 (D). The three lower panels were for brain noise Level-
Level-3 (G) with 3 trial-averaging.



Fig. 6.Objective thresholding in OPWMto separate noise subspace from signal subspace. Row 1: the SQRT plots of the eigenvalues in the sensor covariancematrices from simulated signal
with white-noise Levels 1–3. Vertical dotted lines indicated the beginning of the noise subspace. Row 2: SQRT plots of the eigenvalues in pre-whitened sensor covariance matrices from
simulated signal with brain noise Levels 1–3. No clear distinctions were seen between noise and signal subspaces. Row 3: SQRT plots of eigenvalues in pre-whitened sensor covariance
matrices for the daughter brain noise conditions from theMonte-Carlo analysis. The dash-dotted lines were the thresholds associatedwith the beginning eigenmode from noise subspace
determined in Row 4. Row 4: second-order derivatives of the SQRT plots of eigenvalues in Row 3. Clear cutoffs of the noise and signal subspaces are seen as indicated by vertical dotted
lines. Row 5: application of the objective threshold to curves from Row 2.
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(i.e., Spatial Modes 1–6) and the flat noise subspace. The vertical dotted
linesmark the beginning of the noise subspace (i.e., number 7). Howev-
er, there is no clear boundary between signal subspace and noise sub-
space for the conditions of simulated signal with different levels of
real brain noise added as shown in Figs. 6(D)(E)(F). This is a common
and difficult problem for analyzing MEG signals with real correlated
brain-noise.

To solve this problem, the efficacy of removing brain noise from the
data for the entire 1000 ms epoch was first examined when the esti-
mated (mother) brain-noise covariance matrix was constructed using
only a portion of the interval. Here, we were only analyzing epochs
with brain noise: no simulated signal was added in this test. First, 40
Monte-Carlo analyses was performed to examine epochs for each
brain-noise level condition. For example, for the brain-noise Level-1,
40 sets of 1000 ms epochs were examined, andwithin each set, 125 tri-
als (i.e., 5000 random epochs were involved) were averaged. In each
set, pre-whitening to the whole 1000 ms epoch was performed follow-
ing Eqs. (17) and (18), by using only the first 300 ms to construct the
mother noise covariance matrix. For brain-noise Level-1 condition
with 125 trials, asterisks connected by a solid line in Fig. 6(G) show
the SQRT of the eigenvalues of the daughter pre-whitened brain-noise
covariance matrices (DPWBNCM) from the entire 1000 ms interval.
The two dashed lines indicate the range of one standard deviation
across the 40 sets of Monte-Carlo analysis. Very similar results were
seen for brain-noise condition Level-2 with 14 trials (Fig. 6(H)) and
for Level-3 with 3 trials (Fig. 6(I)).
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The important characteristic of the SQRT plots of the eigenvalues
from the DPWBNCM for the entire 1000 interval was their second-
order derivatives, plotted in Fig. 6(J). The leading eigenvalues were
different from zero suggesting the pre-whitening step did not
completely remove the correlated brain noise as one would expect.
However, a clear boundary was visible between the signal subspace
(i.e., eigenmodes 1–3) indicating residual brain signal after pre-
whitening, and noise subspace as marked by the vertical dotted
line for the condition of brain-noise Level-1. Obvious distinctions
between residual signal subspace and noise subspace were also
observed for brain-noise Level-2 (Fig. 6(K)) and Level-3 (Fig. 6(L)),
using the second-order derivative approach. Now, knowing the cut-
off of the noise subspace (i.e.,4th eigenmode), one can go back to
Figs. 6(G)(H)(I) and identify the objective threshold of noise sub-
space in the actual SQRT of the eigenvalue plots, which is the value
associated with the fourth eigenmode as indicated by the horizontal
lines. The objective thresholds (horizontal lines) were virtually
identical across all three brain-noise conditions. All of the eigen-
modes with their associated eigenvalue SQRTs above the lines be-
long to the signal subspace.

Finally, objective thresholds were applied to the simulated data that
contained signals from the 6 simulated sources with different levels of
brain noise added. For signalwith brain-noise Level-1, Fig. 6(M) showed
the same SQRT of the eigenvalues as in Fig. 6(D), but at a zoom-in scale.
The horizontal line exhibited the same objective threshold obtained
from the brain-noise Monte-Carlo analysis in Fig. 6(G). Eigenvalues
below the threshold belong to the noise subspace, the beginning of
which is designated by the dotted vertical line in Fig. 6(M) (i.e., 9th
eigenmode). The same threshold approach was applied to simulated
signal with real brain-noise Levels 2 and 3. As indicated by the dotted
lines in Figs. 6(N) and (O), the noise subspace starts at the ninth and
eighth eigenmodes for brain-noise Level-2 and 3, respectively.
Fig. 7. SimulatedMEG sensor waveformswith different levels of real brain noise and the recons
The associated number of trials for averaging was 125 (Level-1), 14 (Level-2), and 3 (Level-3),
from Standard-VESTAL. Column 4: from beamformer.
Computer simulation results with real brain noise, correlated sources, and
different SNRs

The realistic brain noise was added to the simulated signal to chal-
lenge the performance of Fast-VESTAL. Following the pre-whitening
step and the objective threshold method described in the previous sec-
tion, the source time-courses and location maps were reconstructed
using Fast-VESTAL, Standard-VESTAL, and the beamformer solution.
Fig. 7(A) displays the MEG sensor waveforms containing simulated sig-
nals from 6 sources plus the real brain noise after 125 trial averages
(Level 1 brain noise). The reconstructed source time-courses from
Fast-VESTAL (Fig. 7(B)) matched the ground truth source time-courses
well. Reconstructed source time-courses from Standard-VESTAL were
reasonably good (Fig. 7(C)), but inferior to Fast-VESTAL. Obvious dis-
tortions were seen in the reconstructed source time-courses from
the beamformer solution (Fig. 7(D)). For Level-2 brain noise with
14 trials of averaging (sensor waveforms shown in Fig. 7(E)),
reconstructed source time-courses from Fast-VESTAL (Fig. 7(F))
and Standard-VESTAL (Fig. 7(G)) again outperformed those from
the beamformer solution (Fig. 7(H)). For the simulated signal with
high (i.e., Level-3) brain noise with only 3 trials of averaging, the sig-
nal in the post-stimulus interval is barely visible in the MEG sensor
waveforms in Fig. 7(I), yet the reconstructed source time-courses
from Fast-VESTAL (Fig. 7(J)) and Standard-VESTAL (Fig. 7(K)) still
appeared to capture the main signature of the true source time-
courses, although they were noisier than the other noise conditions.
Distortion in the source time-courses was particularly marked from
the beamformer solution (Fig. 7(L)).

For all three conditions with real brain noise, the upper-right panel
in Table 1 lists the PVE relative to the ground-truth source time-
courses using the source time-courses that were reconstructed from
Fast-VESTAL, Standard-VESTAL, and the beamformer solution. All values
tructed source time-courses. Colum 1:MEG sensor waveformswith brain noise Levels 1–3.
respectively. Column 2: reconstructed source time-courses from Fast-VESTAL. Column 3:



Fig. 8.Normalized error of the Fast-VESTAL predictedMEG sensor waveforms over the
ground truth, as a function of the singular value cut-off in the gain matrix. In all three
conditions with different white-noise levels, the errors of prediction reach the satu-
ration level ~80.
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are lower than the correspondingwhite-noise conditions, especially for
the brain-noise Level-3. Fast-VESTAL showed the highest PVE, followed
by Standard-VESTAL and the beamformer solution. The middle-right
panel in Table 1 lists the inter-source correlation PVE values for the
signal with three levels of real brain noise. FAST-VESTAL showed
the highest ICC PVE, with values above 95% for Levels 1 and 3, but
only 60.2% for Level-3. This contrasted with the moderate ICC PVE
values from Standard-VESTAL and the notably low values from the
beamformer solution.

Source orientation reconstruction

The bottom panel of Table 1 lists the errors in source orientation
for each solution. Orientation errors were calculated for the center
voxel with the strongest activities within 10 mm from the true
source locations. The source-orientation parameters were obtained
accurately by Fast-VESTAL for the simulated data. For white and
brain-noise Levels 0-2, the orientation errors were less than 10°.
The largest error in source orientation was 18.5° for brain-noise
Level-3 condition. Orientation errors from Standard-VESTAL and
beamformer solutions were also reasonably small, but somewhat
larger than those from Fast-VESTAL.

Cutoff of the singular values in the gain matrix in Fast-VESTAL

The number of dominant singular values in SGwas set to 80 in Eq. (4)
and all other smaller singular values in SGwere set to be zero. Fig. 8 plots
the normalized error of the Fast-VESTAL-predicted MEG sensor wave-
forms over the ground truth, as a function of the singular value cut-off
in SG. In all three conditionswith different white-noise levels, the errors
of prediction reached the saturation level ~80.

Human median-nerve results for Fast-VESTAL and beamformer

Fast-VESTAL was applied to a data set containing MEG responses
evoked by right median-nerve stimulation in a healthy subject.
Figs. 9(A)(D) shows the measured sensor-waveforms of MEG re-
sponses for the -300 ms–500 ms duration evoked by the right
median-nerve stimulation, with 204 gradiometers and 102 magne-
tometers superimposed, respectively. The −10 ms to 15 ms gap
was removed from the analysis due to the large artifact from the
electrical stimuli. The remaining −300 ms to −10 ms pre-stimulus
interval was used to construct the estimated noise covariance matrix
and to pre-whiten the response for the entire interval. To examine
the efficacy of the pre-whitening step and identify the noise sub-
space, a five-minute session of brain-noise recording collected from
the same subject, but on a different day, was divided into ~310
artifact-free epochs, each lasting 800 ms, with the first 300 ms
used to estimate the mother brain-noise covariance matrix. The
number of dominant spatial modes was selected using the same
OPWM that was developed for the simulated signal with correlated
brain noise.

The predictedMEG sensor waveforms in Figs. 9(B)(E) from the Fast-
VESTAL solution matched the measurement very well. Figs. 9(C)(F)
show that mainly noise remained in the residual waveforms (i.e., mea-
sured minus predicted). The upper panel of Fig. 9 shows the spatial
maps of significance sources, based on the F-tests of source time-
courses in the post-stimulus interval versus the pre-stimulus baseline.
Six sources were obtained by Fast-VESTAL for the responses evoked by
right median nerve stimulation: one in contralateral (left) primary so-
matosensory cortex (cSI), two in contralateral secondary somatosenso-
ry areas (cSII-a and cSII-b), one in contralateral supplementary motor
area (cSMA), one in ipsilateral (right) secondary somatosensory area
(iSII), and one in ipsilateral supplementary motor area (iSMA). The
color scale in Fig. 9 was set in the same manner as for the F-test spatial
maps in simulations (Fig. 5).

The plots in Figs. 9(G)–(L) show the time-courses of the 6 sources
from Fast-VESTAL. The cSI time-course showed sharp early-components
that peaked at ~20 ms and ~30 ms with opposite polarities (Fig. 9(G)).
These sharp transient components were not observed in the time-
courses of the other sources. Two slow components at ~60 ms and
~150 ms were also seen in the cSI time-courses. The time-courses of
the two cSII sources (i.e., cSII-a and cSII-b) were very similar with peak
latencies of the first and second components at ~75 ms and ~140 ms,
respectively (Figs. 9(H)(I)). The time-course of cSMA shows two slow
components with peak latencies at ~125 ms and ~180 ms, respectively
(Fig. 9(J)). The amplitude of the iSII source was weaker than for cSII,
with peak latencies at ~90 ms and ~150 ms (Fig. 9(K)). The iSMA time-
course showed similar peak latencies as those of cSMA, but with weaker
amplitude (Fig. 9(L)). Table 2 lists the cross-correlation coefficients
among these 6 sources, which varied between 12% and 98%.

For comparison, we also performed the beamformer analysis on the
samemedian-nerve datawith 200 trials. There is controversy surround-
ingwhether the signal covariancematrix should be reconstructed using
the averaged signal or the un-averaged trials. Analysis was performed
using both approaches and virtually the same results were obtained.
Fig. 9 presents the beamformer results using the approach with un-
averaged trials. The upper panel of Fig. 9 (second row) displays the
statistically significant sources, based on F-tests of source time-
courses in the post-stimulus interval versus the pre-stimulus base-
line. The sole local maximum in this statistical map was in the cSI
area. No clearly distinguishable local maxima were observed in
other brain regions such as cSII or iSII. As for the simulated cases,
the beamformer solution exhibited widespread signal leakage to
other regions.

Out of curiosity, the beamformer source time-courses were plot-
ted in Figs. 9(M)–(R) of the same six areas for which the Fast-VESTAL
solution showed strong activities. Since many of these areas did not
show visible local maxima, the same locations obtained from the
Fast-VESTAL solution had to be used as seeds for obtaining the
beamformer source time-courses. The early and sharp components
of the cSI time-course (Fig. 9(M)) were similar to that obtained by
Fast-VESTAL (Fig. 9(G)), but the late slow components were missing
in the beamformer solution. The remaining source time-courses
from beamformer appear substantially different from those obtained
from Fast-VESTAL. Many beamformer-derived source time-courses
showed the strong early and sharp components that were absent in
Fast-VESTAL, except for cSI source.
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Fig. 9.Upper panels, top row: F-valuemaps of axial MRI view for the locations of 6 sources obtained by Fast-VESTAL for right median nerve stimulation. The color scale for the F-value was
the same as in Fig. 5. Red arrow for cSI; Blue arrow for cSII-a; Green arrow for cSII-b; Cyan arrow for cSMA;Magenta arrow for iSII; Yellow arrow for iSMA. Row two: F-value maps of the
beamformer solution. Lowpanels, left column:measured andpredictedMEG sensorwaveforms fromFast-VESTAL;Middle column: Fast-VETSLA source time-courses for the above sources;
right column: source time-courses from beamformer.
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Whole-brain source amplitude imaging for resting-state MEG signals using
Fast-VESTAL

Fast-VESTALwas used to obtain the source amplitude (RMS) images
of human resting-state (eyes-closed)MEG signals from 41 healthy con-
trol subjects and from 41 sets of empty-room data. In each human and
empty-room data set, the MEG sensor covariance matrix for the
resting-state recording was calculated for four different frequency
bands, namely in alpha (8–10 Hz), beta (15–30 Hz), gamma (30–
100 Hz), and low frequency (1–7 Hz) bands, after artifact removal
and noise reduction pre-processing steps (see the Materials and
methods section). Fast-VESTAL source images were obtained using
the sensor covariance matrix and then transformed from the
subject's native coordinates to the MNI-152 atlas coordinates.



Table 2
Fast-VESTAL cross correlation coefficients among the time-courses from 6 sources evoked
by median-nerve stimuli in post-stimulus interval.

cSI cSII-a cSII-b cSMA iSII iSMA

cSI
cSII-a 0.71
cSII-b 0.77 0.98
cSMA 0.25 0.32 0.18
iSII 0.12 0.65 0.61 0.60
iSMA 0.22 0.31 0.16 0.95 0.51
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Fig. 10 shows the process of using OPWM to separate the noise sub-
space from the signal subspace in the empty room data. After the pre-
whitening step using the pre-whitening operator built from themother
noise covariancematrix of an extra empty-room data set (see Materials
and methods), the SQRTs of the eigenvalues for the daughter pre-
whitened empty room covariancematrix or DPWERCMwere calculated
from each of the 41 empty-room data sets. Figs. 10(A)–(D) display the
mean (solid lines) and standard deviations (dashed lines) for such
SQRT of the eigenvalues of DPWERCM, across 41 empty-room sets, for
alpha, beta, gamma, and delta plus theta bands, respectively. As for
the simulated case in Fig. 6, the second-order derivatives of the SQRTs
of the eigenvalues from PWERCM show the clear cut of the noise-
subspace at the eigenmode 3 for all bands. The thresholds for the
SQRT of the eigenvalues for DPWERCM for the starts of the noise sub-
space were obtained from the horizontal dash-dotted lines in
Figs. 10(A)–(D) for all frequency bands. Such thresholds were used to
determine the cutoffs of the signal subspaces (spatial modes) in the
pre-whitened covariance matrices for 41 the empty-room data and
the 41 human resting-state data in the Fast-VESTAL data analyses. For
each of the 41 empty-room datasets, a minimum of 2 spatial modes
were used in the Fast-VESTAL analysis.

The t-value maps for the Fast-VESTAL solutions from human sub-
jects versus the empty-room were shown in the 4 upper panels in the
upper panel (top 4 rows) of Fig. 11 for different frequency bands in
MNI-152 brain atlas coordinates, using the registration and smoothing
steps described previously. The ranges of the t-values across bands
were markedly different due to the different SNR levels from human
rhythms (e.g., the SNRs in the alpha band were much larger than those
in the gamma band). To effectively plot these t-values in a comparable
Fig. 10. OPWM separate noise and signal subspaces in empty room data. Top row: SQRT of eige
alpha (A), beta (B), gamma (C), anddelta + theta (D) frequency bands. Bottom row: second-or
of the noise subspace, which are then used in the top row to determine the threshold of noise
fashion, the color scales in Fig. 11 were chosen in the following way:
the threshold of the color scale was set to the t-value corresponding to
a corrected p-value of 0.01 (FDR), and the saturation value of the color
scale was set as tsatuation = tthreshold + (tmax − tthreshold) × 0.5. Here,
tmax was the maximum t-value in the brain volume for that specific
noise-level condition.

Alpha-band source amplitude images
For the alpha band (first row in Fig. 11), the source amplitude images

show strong cortical activity from the bilateral intracalcarine cortices,
supracalcarine cortices, cuneus and precuneus, postcentral gyri, superi-
or parietal lobules, andmidline subcallosal cortices. Considerable alpha-
band activity is also evident in the bilateral lateral–occipital cortices,
angular gyri, and parietal operculum, and posterior aspects of superior
and middle temporal gyri. Cerebella and brain-stem also show strong
alpha activity. An interesting phenomenon is that frontal cortices do
not show as strong alpha activity as the posterior portions of the brain.

Beta-band source amplitude images
A different picture was seen for the MEG source images in the beta

band (second row in Fig. 11). The bilateral postcentral gyri and midline
subcallosal cortices show strong beta-band activity. However, beta-
band activity is not as pronounced as alpha-band activity in bilateral
intracalcarine and lateral–occipital cortices, supracalcarine cortices
cuneus and precuneus, parietal operculum, and temporal lobes. Beta-
band activity is significant in frontal areas (bilateral precentral gyri,
frontal operculum, and anterior aspect ofmidline paracingulate and cin-
gulate gyri). Strong beta-band activity is still seen in the brain-stem, but
is not as pronounced in the cerebella.

Gamma-band source amplitude images
Many interesting patterns of activity were seen in the gamma band

(third row of Fig. 11). Strong activity was notable from midline
paracingulate and cingulate gyri, bilateral superior and middle frontal
sulci, frontal operculum andmidline subcallosal cortices. In addition, bi-
lateral precentral gyri, supramarginal gyri, parietal operculum, angular
gyri, superior parietal lobules, middle temporal gyri, and midline
precuneus also show substantial activity. Furthermore, bilateral anterior
hippocampi, amygdala, and the temporal poles show strong gamma-
band activity, which is markedly more prominent than the activity
nvalues from the daughter pre-whitened empty room covariance matrix (DPWERCM) for
der derivatives of the SQRT of the eigenvalues. The vertical dotted lines show the beginning
subspace (dash-dotted lines in top row).
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Fig. 11. Upper panels (Rows 1–4): t-value maps of the Fast-VESTAL source amplitude images that cover cortex, sub-cortical areas, and cerebellum for resting-state (eyes-closed) in alpha,
beta, gamma, and delta + theta frequency bands. Lower panels (Rows 5–8): t-value maps of beamformer source amplitudes images for different frequency bands.
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from the same regions in alpha or beta bands. Bilateral cerebella and
brain-stem show strongest gamma-band activities among all bands, in
the relative scale. Interestingly, the occipital lobe and posterior tempo-
ral lobe do not exhibit strong gamma-band activity.
Low frequency-band source amplitude images
The bottom row of Fig. 11 shows strong low-frequency activity (1–

7 Hz) from bilateral intracalcarine cortices, supracalcarine cortices,
midline paracingulate, frontal medial cortices, subcallosal cortices, and
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midline posterior cingulate. Considerable low-frequency activity is also
seen in the bilateral Heschl's gyri, frontal operculum, precentral and
poscentral gyri, angular gyri, parietal operculum, and middle temporal
gyri. Bilateral anterior hippocampi, amygdala, temporal poles, and
brain stem also show strong low-frequency activity.

Beamformer source amplitude images
The source images obtained by the beamformer solution for the

human resting-state data were substantially different from those
obtained by Fast-VESTAL. The bottom four rows in Fig. 11 show the
beamformer source-amplitude images as t-value maps between 41
healthy subjects and 41 empty-room data sets. The different frequency
bands were largely undifferentiated by the beamformer maps. In all
bands, almost all brain areas showed activity, except in subcortical re-
gions and in superior portions of the cortex for gamma band activity.
The regions that the exhibited the highest activity were the midline
structures and the cerebellum.

Fast-VESTAL's low computational costs

The computational cost of the conventional VESTAL is already rela-
tively low (Huang et al., 2006) compared withmany non-linear optimi-
zation approaches such as non-linear multiple-dipole modeling (see
review in Huang et al., 1998), and is substantially lower than that of
Standard-VESTAL. In the above examples, the total number of time-
samples was 1000, 777, and ~900,000 for the simulated data, human
median-nerve, and human resting-state signals, respectively. Despite
the high variability in the number of time-samples in these datasets,
the total analysis time was typically in the range of tens of seconds to
obtain source images on a source grid with ~7000 nodes using Fast-
VESTAL for each dataset. The computational cost of Fast-VESTAL is ap-
proximately proportional to the number dominance (signal-related)
spatial modes k when solving Eq. (8), and is not directly related to the
number of time samples as for the Standard-VESTAL. It takes about
10 s to solve the L1-minimum solution and obtain a volume of source
images for each dominance (signal-related) spatial mode in Eq. (8).
The time ΔL1 for solving one L1-minimum norm problem is almost the
same for one spatial mode in Fast-VESTAL, for one time-sample in Stan-
dard time-domain VESTAL, and for one frequency-bin in Standard
frequency-domain VESTAL. The total computational cost is ∼ k × ΔL1

for Fast-VESTAL and T × ΔL1 for Standard time-domain VESTAL. For
the simulation cases with 6 spatial modes and 1000 time samples, the
Fast-VESTAL solution was approximately 1000/6 = 166.7 times faster
than Standard-VESTAL. All programs were developed in MATLAB and
all analyses done on a Dell Precision 7500 Workstation with Dual Intel
Xeon X5550 Processors (each with 8 M Cache, 2.67 GHz, and 6.40
GT/s QPI) and with 24 GB system RAM. Although Fast-VESTAL is in-
herently a good candidate for parallel processing, no parallel pro-
cessing was performed in the present study.

Discussion

Performances of Fast-VESTAL and standard-VESTAL versus beamformer for
simulated data

In extensive evaluations using simulated and real data, the perfor-
mance of Fast-VESTAL for whole-brain source localization was equal
or superior to that of the Standard-VESTAL and beamformer methods,
in several respects. First, Fast-VESTAL and Standard-VESTAL showed su-
perior performances over beamformer in the robustness for accurately
obtaining correlated source time-courses, even at poor SNR levels and
with real brain noise (Figs. 3 and 7). Quantitative assessments (Fig. 4
and middle panels of Table 1) supported this feature with Fast- and
Standard-VESTAL demonstrating PVE values for the ICC over 90% in
most cases, whereas values from the beamformer solution were ex-
tremely low.We believe that the reason for the impressive performance
of Fast- and Standard-VESTAL in obtaining source time-courses and
maintaining high ICC is that no temporal constraints are imposed on
the solutions. This is not the case in beamformer techniques, which
assume that source time-courses are uncorrelated (Barnes and
Hillebrand, 2003; Gross and Ioannides, 1999; Gross et al., 2001;
Hillebrand and Barnes, 2003; Robinson and Vrba, 1999; Sekihara
et al., 2001; Van Veen et al., 1997), and independent component
analysis, which assumes that the source time-courses are statistical-
ly independent (Barros et al., 2000; Jung et al., 2001; Makeig et al.,
1997; Vigario and Oja, 2000; Vigario et al., 2000).

Second, Fast-VESTAL showed its substantial improvement on com-
putational speed over the Standard-VESTAL technique (Huang et al.,
2006). In fact, the computational cost of Fast-VESTAL is basically inde-
pendent of the time samples in the data, but instead proportional to
the number of spatial modes in the sensor-spatial-profile matrix or
sensor-covariance matrix, which usually takes tens of seconds or less.
In contrast, the analysis time of Standard-VESTAL is proportional to
either the number of time-samples in time-domain MEG data or fre-
quency bins in frequency domain MEG data. The time for solving one
L1-minimum norm problem is almost the same for one spatial mode
in Fast-VESTAL, for one time-sample in time-domain Standard-VESTAL,
and for one frequency-bin in frequency-domain Standard-VESTAL. Con-
sequently, it took tens of seconds for Fast-VESTAL to obtain high-
resolution MEG source images when processing datasets containing
~100–1000 (evoked MEG response) to ~100,000 (spontaneous MEG
data) time samples. The processing time using Standard-VESTAL can
be orders of magnitude longer.

The step of using temporal projection Eq. (4) in Fast-VESTAL is sim-
ilar to the temporal dimension reduction in the Multiple Sparse Priors
(MSP) method of Friston and colleagues (Friston et al., 2008). Both ap-
proaches adopted the temporal projection and used sensor covariance
matrix for dimension reduction. One difference is that Fast-VESTAL
explicitly obtains the minimum L1-norm solution for dominate spatial
modes in the sensor waveforms after the temporal projection using
Eq. (4), whereas MSP performs both temporal and spatial projections
and seeks the hyperparameters using the iterative expected maximiza-
tion (EM) approach. A unique feature of Fast-VESTAL is that the process
of obtaining the minimum L1-norm solution for dominate spatial
modes is 1) guaranteed to converge and 2) non-iterative, without the
need for controlling the converging process/criteria. Another unique
feature of Fast-VESTAL is that an inverse operator Eq. (12)was explicitly
provided to faithfully recover the source time-courses with the same
temporal resolution as the original sampling rate (e.g., in millisecond)
even under extremely poor SNR conditions. It is also important to note
that dimension reduction using Eq. (4) is not limited to the minimum
L1 norm solution. In fact, the minimum L2-norm solution can also be
used to solve Eq. (4) if a widely distributed non-sparse solution is
desired.

Objective pre-whitening method for removing correlated brain noise

The present study also developed an objective approach (i.e., OPWM)
to effectively remove correlated brain noise (Fig. 2). OPWM provided 1)
an objective way to measure the efficacy of the pre-whitening step,
when the estimated correlated noise matrix was constructed using
incomplete or non-real time information; 2) an additional procedure
to further remove residual correlated noise when pre-whitening step is
not completely successful, which was based on the plots of SQRT of
eigenvalues of the daughter pre-whitening correlated noise covariance
matrices; and 3) an objective way to identify noise subspace in the
pre-whitened signal covariance matrix. A unique feature of OPWM is
that it uses the second-order derivatives of the SQRT of the eigenvalues
from the daughter pre-whitened noise covariance matrices. This feature
was discovered based on the fact that in cases of pure white noise, the
SQRT of the eigenvalues from noise subspace should be exactly zero. In
correlated brain-noise cases, the second-order derivatives of the SQRT
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of the eigenvalues from the daughter pre-whitened noise covariance
matrices was shown to be an effective way to differentiate noise sub-
space from residual signal subspace after pre-whitening. OPWMwas ap-
plied extensively in the present study to remove correlated brain noise
before the MEG signals were processed by Fast-VESTAL, Standard-
VESTAL, and the beamformer methods. The high similarity of the results
from these three inverse source imaging methods for white-noise and
brain-noise conditions underscores the good performance of OPWN
(Fig. 3 versus Fig. 7; upper panels versus lower panels in Fig. 5; and left
versus right panels in Table). We believe that the OPWM approach for
removing correlated noise from the data is not inherently limited to
Fast-VESTAL or MEG signal processing, but rather could be applied to
any time-series analysis.
Median-nerve responses

The application of Fast-VESTAL to the median-nerve MEG re-
sponse of a single subject demonstrated the strength of this method
in localizing multiple sources in human brain responses that are
highly correlated. The cSI source from primary somatosensory cor-
tex and its time-course, which exhibited initial sharp transient com-
ponents at 20 and 30 ms followed by slow later components, are
consistent with the known neurophysiology of the somatosensory
system and previous studies (Forss and Jousmaki, 1998; Hari and
Forss, 1999; Hari et al., 1993; Huang et al., 2000, 2004, 2005, 2006;
Jousmaki and Forss, 1998; Kawamura et al., 1996). Since a relatively
large time-window of 15 to 500 ms post-stimulus interval was used
in this analysis, the cluster of cSI sources from Fast-VESTAL covered
Brodmann areas (BA) 1, 2, and 3b (Fig. 9), which are all part of the
hand representation of the primary somatosensory cortex and are
highly contiguous in space. The cluster did not further differentiate
the sub-regions of the cSI cortex (e.g., BA 3b from BA 1 and 2) as
they do in conventional VESTAL analysis using individual time sam-
ples from a much shorter post-stimulus interval (Huang et al.,
2006). Likewise the cSI time course shown in Fig. 9(A) actually rep-
resented the combined activities from BA 3b, 1, and 2, namely, the
early transient 20 ms and 30 ms activities from BA 3b plus the
later ~60 ms and ~150 ms activities from BA 1 and 2. Responses
from these sub-regions within SI were originally revealed using
the Standard-VESTAL algorithm when analyzing individual time
samples in a much shorter post-stimulus interval (Huang et al.,
2006). In fact, Fast-VESTAL was applied to the analysis of a shorter
period (i.e., 15–150 ms) and indeed, two sub-clusters within cSI
cortex were identified, one in BA 3b and another in BA 1 and 2. The
time course of the BA 3b sub-cluster showed strong transient
20 ms and 30 ms activity, and the time course of the BA 1 and 2
sub-clusters showed later ~60 ms and ~150 ms activities (figure
not shown).

The contralateral and ipsilateral SII and SMA responses obtained
from Fast-VESTAL (Fig. 9) also agreed well with previous findings
(Forss and Jousmaki, 1998; Fujiwara et al., 2002; Hari and Forss, 1999;
Hari et al., 1993; Huang et al., 2005, 2006; Simoes et al., 2003). It was
notable that there were two sources in the cSII region, one slightly
more posterior (cSII-b, green arrow) than the other (cSII-a, blue
arrow). The cSII-b source is also designated ventral parietal cortex by
others (Disbrow et al., 2001). The source time-courses obtained from
Fast-VESTAL further revealed that the 6 sources were inter-correlated
with correlation coefficients ranging from 10% to 98%. Altogether,
these findings demonstrate Fast-VESTAL's ability to localize highly-
correlated sources and resolve source time-courses, which is vital for a
more complete understanding of the neurophysiology of the somato-
sensory system. In addition, the cSI source preceded the other sources
in contralateral and ipsilateral hemispheres (Fig. 9). Activity in cSIIs
and cSMA of the contralateral hemisphere was earlier than those from
corresponding areas in the ipsilateral hemisphere (i.e., iSII and iSMA).
These findings are highly consistent with the known neurophysiology
of the somatosensory system (Kandel et al., 2000).

In contrast, the beamformer solution was only able to find one obvi-
ous local maximum in the cSI (Fig. 9, second row). The absence of the
other sources that are known to exist was striking, and underscores
the beamformer's difficulty in source detection under the conditions
examined in present study. To our knowledge, in all published studies
that used beamformer for analyzing median nerve responses, cSII, iSII,
and other non-primary somatosensory sources were not reported
(Gaetz and Cheyne, 2003; Gaetz et al., 2009; Hashimoto et al., 2001;
Hillebrand et al., 2013; Hirata et al., 2002; McCubbin et al., 2004). We
believe that this was due to the high inter-source cross correlations,
which substantially violate the basic beamformer assumption that the
sources must be uncorrelated. Our explanation was supported by a
close analysis of the cross correlations in Table 2 in which 8 out of the
15 cross-correlation coefficients fromFast-VESTALwere above 50%. Fur-
thermore, the early transient activity at 20-30 ms post-stimulus from
the beamformer source time-courses (location seeded by Fast-VESTAL
solutions) in cSII-a (Fig. 9(M)), cSII-b (Fig. 9(N)), cSMA (Fig. 9(P)),
and iSMA (Fig. 9(R)) was inconsistent with known neurophysiology of
the somatosensory system, owing to a lack of direct thalamo-cortical
projections to these non-primary somatosensory areas (Kandel et al.,
2000).

A previous study (Hymers et al., 2010) suggested that the use of un-
averaged individual trials rather than trial-averaged responses to con-
struct the signal covariance matrix may improve the localization of
correlated sources, assuming that inter-regional source correlations
are attenuated in the un-averaged trials. However, no difference was
found between these two approaches in our beamformer analyses of
median nerve data. This result suggests that the neuronal sources
evoked by median-nerve stimuli are actually highly time-locked to the
electric stimuli, such that the beamformer solution will have problems
localizing the correlated time-locked sources.

Source amplitude images of human resting-state activity

The present study also assessed the performance of Fast-VESTAL
relative to the beamformer method in reconstructing resting-state
MEG source amplitude images for each standard frequency band.
To our knowledge, this is one of the first comprehensive MEG/EEG
source amplitude (power) imaging studies for resting-state signal
that covers the entire brain for multiple frequency bands. The MEG
source-amplitude imaging method (or the SQRT of the source
power images) in the present study for the human resting-state
rhythms is different from theMEG source covariance/functional con-
nectivity source analysis. Here, the strength of the neuronal sources
was assessed for different frequency bands, whereas the MEG source
covariance/functional connectivity source analysis examines the
similarity of the shapes of the source time-courses (Brookes et al.,
2011a, 2011b; Hall et al., 2013; Hipp et al., 2012; Soto and Jerbi,
2012). Therefore, it should not be surprising that the resting-state
source amplitude images from Fast-VESTAL look significantly differ-
ent from the functional connectivity source images.

On the other hand, a high degree of similaritywas apparent between
Fast-VESTAL source-amplitude images and the most recent source
amplitude images from Hall and colleagues (Hall et al., 2013). In
their study, the use of variance information (i.e. data that have not
been variance normalized) in source-space projected Hilbert enve-
lope time series yields important spatial information. They showed
that employing the variance information improves the spatial delin-
eation of network nodes. Additional analyses are needed to explore
the similar findings across the two different approaches (i.e., Fast-
VESTAL versus the use of variance information in source-space
projected Hilbert envelope time series).

Resting-state alpha-band activity detected by EEG (Berger, 1929)
and MEG (Cohen, 1968, 1970) is known to be strong in the posterior
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half of the head (occipital, parietal, and posterior temporal regions), but
may extend into the central areas in regions that generate the rolandic
mu rhythm, see reviews in (Hari et al., 1997; Niedermeyer and Lopes
da Silva, 2005). Our results obtained from Fast-VESTAL for the alpha-
band were highly consistent with this neurophysiology. The present
study builds upon this knowledge by providing a more refined analysis
of the generators of human alpha-band activity. For example within the
occipital lobe, activity from intracalcarine, supracalcarine, and lateral-
occipital cortices was clearly distinguishable in the Fast-VESTAL source
images (Fig. 11). Likewise, it has not been clear whether the alpha-
band activities in the central sulcus area (i.e., the rolandic mu rhythm)
are mainly from the postcentral gyrus (primary somatosensory cortex),
the precentral gyrus (primary motor cortex), or both. The Fast-VESTAL
source images in the alpha band showed that although alpha activity
extended to the precentral gyrus, the dominant activity was clearly
from the postcentral gyrus, more specifically from the hand representa-
tion area of the somatosensory cortex.

The Fast-VESTAL source-amplitude images for the generation of the
beta-band MEG signals were also highly consistent with previous EEG
and MEG findings. Beta-band activity from the pre- and postcentral
gyri is part of the rolandic mu rhythm (Niedermeyer and Lopes da
Silva, 2005). The Fast-VESTAL source images further showed that the
postcentral gyri beta-band (mu) activity is mainly from the hand repre-
sentation area of the somatosensory cortex, consistent with previous
MEG research (Manshanden et al., 2002).

Our gamma-band source amplitude images from Fast-VESTAL also
clearly showed larger involvement of frontal generators, different
from those previously observed in alpha or beta bands (Fig. 11). Inter-
estingly, gamma-band activitywas also found in the anterior hippocam-
pi, the amygdala, and the temporal pole. These results suggest thatMEG
resting-state gamma-band signal may be useful for studying memory
and emotion processing. Fast-VESTAL-based MEG source amplitude
images were also derived for low-frequency bands: delta (1–4 Hz)
and theta (4–7 Hz) bands. The locations of midline frontal activity in
paracingulate gyrus, medial frontal cortices, and subcallosal cortices ap-
pear to be consistent with theta activity seen in EEG, even though most
of EEG studies were task-activated (e.g., problem solving) and provided
no specific information on source locations (Mizuki et al., 1980, 1984,
1992; Niedermeyer and Lopes da Silva, 2005; Takahashi et al., 1997).
Another interesting finding from the Fast-VESTAL result is the high de-
gree of similarity between gamma band and delta-theta band for the
inferior frontal and anterior temporal regions (Fig. 11). We are in the
process of analyzing the functional connectivity of these regions across
these frequency bands.

The results of source amplitude resting-state images from the
beamformer solution were markedly different from those that
employed Fast-VESTAL. The beamformer method showed little spa-
tial differentiation among the different frequency bands. Although
the neurophysiology of the human somatosensory system has
been well studied, an understanding of the source amplitude im-
ages for different frequency bands is limited. As such, the quality
of the beamformer source amplitude images for resting-state data
cannot be assessed with certainty, which is a limitation of the
present study. Additional information from techniques such as elec-
trocorticography will be needed to address this issue.

In summary, the Fast-VESTAL MEG source imaging algorithm ob-
tains L1-minimum-norm solutions for the sensor-waveform covariance
matrix. Computer simulations demonstrated that Fast-VESTAL localizes
correlated sources andaccurately reconstructs their source time-courses
even at poor signal-SNR conditions. A new objective pre-whitening
method, OPWM, was also developed and used in Fast-VESTAL to objec-
tively remove correlated brain noise. The application of Fast-VESTAL to
human MEG median-nerve responses further demonstrated its power
in reconstructing source time-courses that were highly consistent with
known electrophysiology of the human somatosensory system. Further-
more, Fast-VESTAL provided thefirst set of comprehensiveMEG source-
amplitude images that covered the entire brain in standard atlas coordi-
nates for different frequency bands of resting-state signals. Lastly, the
Fast-VESTAL solution also has a low computational cost.
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