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Many sources of fluctuation contribute to the fMRI signal, and this makes identifying the effects that are truly
related to the underlying neuronal activity difficult. Independent component analysis (ICA) – one of the most
widely used techniques for the exploratory analysis of fMRI data – has shown to be a powerful technique in iden-
tifying various sources of neuronally-related and artefactualfluctuation in fMRI data (bothwith the application of
external stimuli andwith the subject “at rest”). ICA decomposes fMRI data into patterns of activity (a set of spatial
maps and their corresponding time series) that are statistically independent and add linearly to explain voxel-
wise time series. Given the set of ICA components, if the components representing “signal” (brain activity) can
be distinguished form the “noise” components (effects of motion, non-neuronal physiology, scanner artefacts
and other nuisance sources), the latter can then be removed from the data, providing an effective cleanup of
structured noise. Manual classification of components is labour intensive and requires expertise; hence, a fully
automatic noise detection algorithm that can reliably detect various types of noise sources (in both task and
resting fMRI) is desirable. In this paper, we introduce FIX (“FMRIB's ICA-based X-noiseifier”), which provides
an automatic solution for denoising fMRI data via accurate classification of ICA components. For each ICA compo-
nent FIX generates a large number of distinct spatial and temporal features, each describing a different aspect
of the data (e.g., what proportion of temporal fluctuations are at high frequencies). The set of features is then
fed into a multi-level classifier (built around several different classifiers). Once trained through the hand-
classification of a sufficient number of training datasets, the classifier can then automatically classify new
datasets. The noise components can then be subtracted from (or regressed out of) the original data, to provide
automated cleanup. On conventional resting-state fMRI (rfMRI) single-run datasets, FIX achieved about 95%
overall accuracy. On high-quality rfMRI data from the Human Connectome Project, FIX achieves over 99% classi-
fication accuracy, and as a result is being used in the default rfMRI processing pipeline for generating HCP
connectomes. FIX is publicly available as a plugin for FSL.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Functional magnetic resonance imaging (fMRI) has become a
widely-used approach for mapping brain function. In most fMRI exper-
iments, however, many sources of temporal fluctuation (e.g., head
movement, respiratory motion, scanner artefacts, etc.) contribute to
the recorded voxel-wise time series. Such artifacts reduce the signal-
idi).

ghts reserved.
to-noise ratio, complicate the interpretation of the data, and canmislead
statistical analyses (in both subject- and group-level inference) that
attempt to investigate neuronally-related brain activation. Thus,
separating “signal” from “noise”1 is a very important challenge in fMRI
neuroscience. This is particularly important for resting-state fMRI,
1 Throughout this paper we use the terms “artefact” and “noise” interchangeably, in
both cases referring to structured noise in the data, and not unstructured noise (e.g., MRI
thermal noise, which in practice in fMRI data is close to being Gaussian and uncorrelated
in space and time).
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because functional networks are identified on the basis of spontaneous
correlations between distinct regions, where spatially-extended arte-
facts can easily contribute problematically to estimated correlations.

There are two major types of noise removal techniques for fMRI
datasets — approaches that employ additional physiological recordings
(or, “model-based approaches”) and those that are data driven (for
a detailed review, see Murphy et al., NeuroImage Special Issue on
Mapping the Connectome, in press). One of the most well-known
techniques of the former type, RETROspective Image CORrection
(RETROICOR Golver et al., 2000), measures the phases of the cardiac
and respiratory cycles, and attempts to remove low-order Fourier
terms that are synchronisedwith these exogenousmeasurements. Sim-
ilar approaches are taken in Shmueli et al. (2007) and Birn et al. (2006):
these filter the aspects of the imaging data that demonstrate strong
correspondence with the measurements (e.g., in terms of phase or
correlation).While these approaches can perform quitewell in cleaning
respiratory and cardiac noises, their success depends heavily on the
availability and quality of the physiological measurements. Moreover,
physiological monitoring data, if available/collected, are not expected
to relate to all common forms of artefact (e.g., scanner artefacts and
headmovements). This is the fundamental reason behind development
and adoption of “data-driven” approaches.

Many data-driven approaches employ independent component
analysis (ICA), which has been shown to be a powerful tool for separat-
ing various sources of fluctuations found in fMRI data. ICAwasfirst used
for fMRI by McKeown et al. (1998) for decomposing the data into dis-
tinct components (each consisting of a map and its representative
time course) that are maximally spatially independent. Some compo-
nents were considered artefactual, while others reflected the brain's
activation in response to the task imposed on the subject. Later,
(e.g., Kiviniemi et al., 2003) it was shown that amongst the struc-
tured processes identifiable through ICA, resting-state networks could
be found as components distinct from each other and from artefactual
effects in the data.

Since ICA requires a large number of samples to functionwell, its ap-
plication to fMRI (where there are normally orders of magnitude more
voxels than time points) is believed to be more robust in the spatial
than in the temporal domain. Also, the underlying neural processes in
the data may well be more non-Gaussian in space than in time (partic-
ularly for resting-state data), adding to the greater robustness of spatial
ICA (Smith et al., 2012). With respect to the separation of activation
from artefacts, and of spatially distinct activations from each other, spa-
tial independence has been a successful and enduringmodel, and nearly
all applications of ICA (to both task and resting fMRI) to date have used
spatial ICA.

The success of ICA in separating BOLD signal from noise makes it
an attractive preprocessing tool for denoising both task and resting
fMRI. If ICA can decompose the data into a set of noisy components
(i.e., artefactualfluctuations) andnon-artefactual components (i.e.,fluc-
tuations of interest), one can “clean” the data by subtracting the
artefactual components from the data (or regressing them out of the
data). However, identifying the artefact components manually can be
very labour-intensive, and requires in-depth knowledge of (ideally all
possible) signal and noise fluctuations' spatiotemporal characteristics.
Therefore, several previous approaches have attempted to offer fully-
automatic solutions to ICA classification. As one of the first attempts,
Kochiyama et al. (2005) proposed an automatic solution for removing
the effects of task-related motion, which characterises the ICs by
their task-related changes in signal intensity and variance; therefore
this may be effective for task fMRI, but does not naturally extend
to resting-state. Perlbarg et al. (2007) proposed an approach that
characterises the activity of the voxels in certain regions of interest
(ROIs) that are known a priori to correspond to noisy behaviour. Given
the wide range of artefacts that can be present in fMRI data, Tohka
et al. (2008) proposed a set of 6 spatial and temporal features that cap-
ture a wider range of ICs' characteristics, while (DeMartino et al., 2007)
defined 11 features. Such features might include the fraction of spatial
map supra-threshold voxels lying on the brain edge, or the fraction of
temporal spectral power lying above some frequency threshold. In
both cases the features were then fed into a trained multivariate classi-
fier, which attempted to automatically classify newly-seen components
into signal vs. noise. Our approach is roughly similar, but we defined
more than 180 features (including features similar to those defined in
the previous papers), and utilise multiple different classifier approaches,
combined via classifier stacking.

In this paper, we introduce FIX (FMRIB's ICA-based X-noiseifier),
which is a fully automatic (once hand-trained) solution for cleaning
(both task and resting) fMRI data of various types of structured noise.
Using FIX consists of five steps: spatial ICA, estimation of a large number
of spatial/temporal features for each component of each dataset, classi-
fier training (using hand labeling of components), application of the
classifier to new datasets, and denoising (removal of artefact compo-
nents from the data). In the ICA step,we employMELODIC (Multivariate
Exploratory Linear Optimised Decomposition into Independent Compo-
nents) (Beckmann and Smith, 2004) from the FMRIB Software Library
(FSL2). We assessed the performance of FIX against manual component
classifications across various fMRI datasets and found good to excellent
performance across a wide range of resting fMRI datasets.

In an associated paper (Griffanti et al., submitted for publication), we
have evaluated in detail the effect of ICA + FIX fMRI cleanup on both
standard fMRI datasets and accelerated (Feinberg et al., 2010; Moeller
et al., 2010) datasets. We also compared the various approaches that
one might take to remove the artefactual components from the data
once they have been classified as artefact by FIX. These investigations
include evaluation (of the effect of the various cleanup options) on
both the spatial and temporal (and hence network) characteristics of
resting-state networks.

Methods

The general approach for applying FIX is:

1. Apply standard preprocessing steps, typically: rigid-body head mo-
tion correction, optional spatial smoothing, and high-pass temporal
filtering to remove slow drifts.

2. Apply ICA to decompose the preprocessed data into a set of indepen-
dent components.

3. Use FIX to identify which of the ICA components correspond to
artefactual processes in the data.

4. Remove those components from the preprocessed fMRI data.

The spatial smoothing step in the pre-processing might reduce the
sensitivity of ICA (andhence FIX) to certain kinds of artefacts and signal.
However, in somedatasets, the signal-to-noise ratio and amount of data
(in particular, number of timepoints) might be sufficiently poor that
application of smoothing before running ICA may be helpful overall.

We now include a brief introduction to ICA (the first step of FIX's
approach for denoising fMRI data) and then describe FIX's overall archi-
tecture, statistical-learningmodel, set of input features, and hierarchical
classifier.

Independent component analysis

We decompose a single run of fMRI space-time data into multiple
components usingMELODIC (Beckmann and Smith, 2004), built around
FastICA (Hyvärinen andOja, 1997). Thismodels the data as a linearmix-
ture of different processes, the spatial distributions of which are time-
invariant (apart from overall amplitude modulation by the associated

http://www.fmrib.ox.ac.uk/fsl)
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timecourse) and statistically independent. ICA assumes the following
linear model

Y ¼ AMþ E; ð1Þ

where Y is the T × Vmatrix of fMRI time series with T time samples and
V voxels;M is a K × Vmatrix of K ≪ T spatial components of the inde-
pendent sources (comprisingV voxels each) andA is the T × Kmatrix of
the K corresponding time courses (comprising T samples each). E is the
residuals in the probabilistic ICA model (Beckmann and Smith, 2004),
and is assumed to comprise the unstructured noise that dominates the
weakest eigenvectors of an initial principal components analysis de-
composition applied before the main ICA algorithm.

To reduce the structured noise using ICA, it is necessary to identi-
fy the subset of A andM that demonstrate artefactual behaviour tem-
porally and/or spatially. Having found such a subset, one can clean
the data by (for example) regressing the set of artefactual time
courses Ab out of the original data, or by taking the product of arte-
fact time courses and spatial maps AbMb and subtracting that from
the data. For detailed investigations of different methods for re-
gressing the artefactual components out of the data, see Griffanti
et al. (submitted for publication).

Example of good and bad ICA components
We now show several examples of “good” and “bad” ICA compo-

nents from typical fMRI datasets, primarily in order to help clarify the
following descriptions of FIX's spatial and temporal features.

Independent components were manually labeled into different
classes — primarily “good” (for signal) and “bad” (for noise). Compo-
nents which could not be unambiguously identified as good or bad
were labeled as “unknown”; in such cases, FIX treats these components
as “good”, as the desired final behaviour is generally to be conservative
with respect tominimising the chance of incorrectly removing valid neu-
ronal signal. When possible, the “noise” components were further sub-
classified as: movement-related, white matter “signal”, interaction be-
tween susceptibility artefacts andheadmotion, cardiac pulsation/arterial
contribution, large veins, or MRI acquisition-related issues (although to
date FIX does not make use of these sub-categorisations). The manual
identification of each component was carried out by first looking at the
thresholded spatial map (typically abs(Z) N2.3 3), then at the temporal
power spectrum, and finally at the time series. When necessary, the
spatial map of the component was viewed unthresholded.

The examples are shown as viewed by the “Melview” programme
written specifically to display and hand-classify ICA components for
FIX training. The list of components (and their assigned classifications)
appears on the right, and, for the currently selected component, the
spatial map, temporal power spectrum and time course are displayed.

Fig. 1 illustrates example components identified as good for 3 differ-
ent types of acquisition: (A) 3 × 3 × 3.5 mm resolution, TR = 2 s,
smoothed with a 5 mm full-width-half-maximum (FWHM) Gaussian
kernel; (B) 3 × 3 × 3 mm resolution, TR = 3 s, smoothed with a
5 mm (FWHM) Gaussian kernel, automatic estimation of the number
of ICs; (C) 1.6 × 1.6 × 1.6 mm resolution, TR = 1.11 s, multi-band
acceleration factor = 6, unsmoothed spatially.

Fig. 2 shows example movement-related bad components. Fig. 3
demonstrates how two more noise components (respectively, white
matter fluctuations and susceptibility-related artefact) are clearly arte-
fact as judged spatially, though the spectrum of the second example
does not look very strongly artefactual. Fig. 4 shows an example of
cardiac pulsation (artery) bad components, identified in the CSF in the
3 Voxel-wise Z-statistics are derived from standardising the spatial maps' initial voxel-
wise statistics by their corresponding residual's standard deviation (more details in the
Independent component analysis section and Beckmann and Smith (2004)).
ventricles in one case, and anatomically following arteries (most
commonly around the posterior cerebral artery and middle cerebral
branches) in the other. Fig. 5 shows components relating to major
veins — in these cases, the sagittal sinus vein. Vein components tend to
have similar temporal characteristics (including power spectra) to those
of good components. Fig. 6 shows two examples of MRI acquisition/
reconstruction related artefacts — they do not look like artefacts arising
directly from any aspect of physiology. Fig. 7 shows two example
“unknown” components, which do not look like clean neuronally-
related signal, but may contain some aspects of it.

Features

Probably the most important element of multivariate classifica-
tion is the extraction of an effective set of features to feed into the
core classifier. A set of fairly independent features, each often corre-
lating well with the target variable (or class) will make the learning/
classification task easy; on the other hand, if the class is a very
complex function of the features, learning may become difficult.
FIX uses over 180 features, capturing components' spatial and tem-
poral characteristics.

Temporal features capture the dynamics of an IC time series (denoted
by a), and spatial features model various characteristics of an IC's spatial
map (denoted bym). The first feature, however, is the number of ICs as
determined by MELODIC and is therefore considered “spatio-temporal”;
the presence and extent of various noise types in the data are expected to
affect the number of independent components. Thus, f1may be a contrib-
uting factor to or a predictor of the likelihood of an IC being signal or
noise. The rest of the features are classed as temporal or spatial, and
are described below.

Temporal features

Autoregressive (AR) properties. Temporal smoothness, which can be esti-
mated by fitting AR(n)models to a component's time series, is expected
to help differentiate signal from certain artefacts. Let c1,1 denote the
parameter of an AR(1) model, c1,2 and c2,2 denote the parameters of
an AR(2) model, and vp denote the variance of the residual of AR(p)
models up to order p = 6. The first AR-based features are the slope
and intercept of the straight line4 that explains v as a function of p
(increasing ARmodel order will result in a better fit and hence a smaller
residual variance). The extent of such improvement in goodness of fit
decreases as the extent of noise in the time series increases (e.g., in
the case of white Gaussian noise, no meaningful improvement is ex-
pected). Thus, these features are expected to be help separate signal
and noise components.

This is a valid point, in that. However, what this feature measures is
the extent of deviation of the trend (as we increase the order of the AR
model) from a straight line;more deviationmeaningmore signal. In the
case of linear relationship, this feature will perfectly capture the extent
of signal; otherwise (e.g., for a logarithmic relationship) this featurewill
still capture the part of the story. Moreover, the data supports the valid-
ity of this statement as it is a fairly discriminant feature.

The next AR-based features are simply c1,1, c1,2, c2,2, v1 and v2. These
features capture the extent of autocorrelation and thepower of uncorre-
lated noise as estimated from the lowest order AR models. In general,
signal components are expected to have higher temporal autocorrela-
tion and smaller residual variance, compared to unstructured noise
components.
4 In the case of a nonlinear (e.g., logarithmic) relationship between the order of the AR
model and the goodness of fit, this feature is still valid for capturing the direction of this
relationship.
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Fig. 1. Examples of “good” components from three different acquisitions. The spatial map for the high resolution, short TR acquisition (bottom; acquisition C, see text for more details) is
visually strikingly different fromamore standard acquisition (top andmiddle, acquisitionsA andB, see text),with the signal above threshold following very closely the cortical gyrification.
The spectral power lies primarily between 0 and 0.05 Hz for each component.

Fig. 2. Example movement-related artefacts. The signal above threshold in the spatial maps is essentially at the edges of the brain. The frequencies of the power spectra are disparately
distributed and the time courses visually dissimilar.
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Fig. 3. Two further noise components: “white matter” and “susceptibility-motion”.
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AnOrnstein–Uhlenbeck process can be considered as the continuous-
time analogue of the discrete-time AR(1) process and hence has similar
properties. An Ornstein–Uhlenbeck process at satisfies dat = θ(μ − at)
Fig. 4. Examples of cardiac-related components. This includes components due to cardiac pulsa
located in the ventricles, or following the main arteries (posterior cerebral artery, middle cereb
dt + σdWt, where θ N 0 and σ N 0 denote the speed of mean reversion
and volatility, respectively, and Wt denotes a Wiener process. Overall,
signal components are expected to have smoother (i.e., slower mean
tion and arterial contribution. The signal above threshold in the spatial maps is essentially
ral branches).

image of Fig.�3
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Fig. 5. Example components relating to large veins. The signal above threshold in the spatial maps is essentially following the sagittal sinus.

456 G. Salimi-Khorshidi et al. / NeuroImage 90 (2014) 449–468
reversion) and less volatile dynamics than noise components. Thus, in-
cluding θ and σ in FIX's feature base is expected to boost its discriminant
power.
Distributional properties. While signal components' time series are
expected to have fairly normal distributions, noise components can be,
for instance, bimodal (e.g., due to scanner artefacts) or have long-

image of Fig.�5


Fig. 6. Two MRI acquisition/reconstruction related artefact components.
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tailed distributions (e.g., sharp peaks in the time series that are due to
rapid head movements). Distributional features can summarise the
shape of a time series' distribution (e.g., as measured via a histogram),
in terms of its mean, median, tail, etc., and aid FIX in detecting signal
vs. noise. Thus, the next features correspond to the time series' kurtosis
(considering the width of peak and tail weight for the distribution),

image of Fig.�6


Fig. 7. Two examples of “unknown” components.
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skewness (measuring the asymmetry of the distribution), mean–median
difference (another indicator of the asymmetry), entropy (− ∑ ipi log pi,
another measure of “information content”) and negentropy (mean(a3)2/
12 + kurtosis(a)2, which quantifies the extent of normality).
Jump amplitudes. The extent of jumps (or, sudden changes) in time
series' amplitude is important characteristics of components; while
signal time series are expected to be fairly smooth, large jumps can
be present in noise components' time series (e.g., due to motion, or

image of Fig.�7


Table 1
The table of abbreviations for various subsets and transformations of component spatial
maps. Masks have 0 s and 1 s for voxels' values, while non-mask options comprise a sub-
set of original voxels, with their original Z-statistics.

Abbreviation Description

m IC's spatial map
ma Absolute value ofm, i.e., |m|
mp The positive voxels of m
mn The negative voxels of m
mp

b The mask for positive voxels of m
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scanner artefact). Thus, FIX's next features reflect the extent of such
properties:
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where std(.) denotes standard deviation and asub is a after excluding
the largest jump's vicinity (a window of 5 time points). These fea-
tures are different from each other by virtue of different measures
of normalisation. The last of these features has already been found
useful for detecting noise ICs and recommended by Tohka et al.
(2008).

Fourier transform. The Fourier transform can attempt to distinguish
signal components from noise components in terms of the distribution
of their power in the frequency domain. Typically, signal time series
are expected to have higher content/power in low frequencies and al-
most no content in high frequencies (because of the smoothing effect
of the haemodynamics on the fMRI signal), whereas noise time series
may have content anywhere (or even “everywhere”) in the frequency
range. Therefore, FIX's next set of features is derived from the fast
Fourier transform (FFT) applied to the time series. The first group of
FFT-based features is quite coarse, in that they are the ratio of total
power above a given frequency to the power below that frequency,
with several different frequency thresholds (one per new feature):
0.1, 0.15, 0.2 and 0.25 Hz. The second group of FFT-based features is
finer evaluations of the power spectrum; they measure the percent of
total power that falls in each frequency bin, for the binned frequency
ranges: 0:0.01, 0.01:0.025, 0.025:0.05, 0.05:0.1, 0.1:0.15, 0.15:0.2 and
0.2:0.25 Hz. Clearly for datasetswith longer TR, someof these frequency
bins will not be relevant.

A further frequency-based set of features is derived by assuming that
in signal components, the neural signals take the form of a flat power
spectrum (Niazy et al., 2011). Therefore convolving a canonical haemo-
dynamic response with a white-noise neural signal results in a sample
from such a model. Similarity of a given component spectrum to such
simulated spectra will decrease its likelihood of being noisy. We there-
fore compare the actual power spectrum with the mean spectrum gen-
erated under the assumption of pure neural signal, and generate a new
set of features, where each feature quantitates how different these two
spectra are, for one of 7 frequency bins in the spectra. Assume that P
is the vector of aforementioned FFT-based “fine” features for a given
component. One can derive p's equivalent under the “neural noise”
hypothesis by simulating5 100 time series, and averaging and binning
the resulting spectra. That is, given the simulated time series (i.e., a(i),
where i = 1, 2, …, 100), we extract their corresponding p vectors
(i.e., p(i), where i = 1, 2, …, 100) and average them (denoted by
p0 = ∑ ip(i)/100). The new FFT-based features are derived by com-
paring p and p0 vectors and calculating the sum of standardised errors
(i.e.,∑ bins((p − p0)2/p2)) aswell as the vector of squared standardised
errors (i.e., (p − p0)2/p2).
5 In order to simulate such time series, we assume a Gamma((δ/σ)2, δ/σ2) HRF, where
δ = 6/TR and σ = δ/2. Next, we convolve the HRF with a white noise “neural” signal,
which is a vector of white Gaussian noise with a length equal to the real data time series.
Correlation. Correlation of a time series with other reference time series
(e.g., head motion) is the basis of FIX's next set of temporal features.

Functional time series (i.e., signal fluctuations) are strongly associat-
edwith thebrain's greymatter (GM),while fluctuations inwhitematter
(WM) and cerebrospinal fluid (CSF) are mostly associated with arte-
facts. In order to quantify a time series' association with each of these
tissue types, FIX's next of features is derived from the time series' corre-
lation with GM-, WM- and CSF-derived time series. In order to extract
these reference time series, WM, GM and CSF masks are extracted
using FSL's tissue-type segmentation tool (FAST) (Zhang et al., 2001).
Each tissue type's reference time series is simply the average of all
time series that correspond to voxels that belong to that tissue type. If
we have available high-quality structural image (such as with HCP
data), which has already been pre-processed by FreeSurfer cortical/
subcortical modelling, we utilise tissue-type segmentations from that
instead of using FAST.

The next set of correlation-based features employ headmotion time
series. We take the 6 rigid-body head motion parameters as estimated
by the head motion correction applied in the data pre-processing
(3 translations and 3 rotations), resulting in 6 timeseries (i.e., 6 param-
eters per time point). We also take the backwards-looking temporal
derivatives (resulting in 6 further timeseries), and then the squares of
all 12 timeseries (resulting in a further 12). We derive several new
features by correlating the IC time series with each of these 24 motion
parameter time series. From correlating the IC time series with the 24
motion time series, we derive 24 new features, and also add further
features that summarise the maximum of the first 6, the maximum of
the remaining 18, and the maximum of all 24. We also regress the IC
time series against the 24 motion time series, take the magnitude of
the 24 regression parameters, and add new features corresponding to
the largest two of these, and also the average of all 24.
Spatial features
In order to extract some of the spatial features, spatial maps are

required to be processed/transformed first. Table 1 shows these trans-
formations and their corresponding abbreviations that the rest of this
section will refer to. To date, the threshold τ for components' maps
has been fixed at 2.5 (note that MELODIC-generated ICA spatial maps
are in “units” of Z-statistics).
Clusters' sizes and spatial distribution. The distribution of the activation
and deactivation cluster-sizes is useful indicators of the extent of noise
in components. For instance, a signal component might be expected to
have a relatively small number of fairly large clusters, whereas some
types of artefact component are expected to have a large number
of smaller clusters. We form c, to be a list of a spatial map's cluster
(i.e., connected components that survive cluster-forming threshold τ)
sizes (in mm3), sorted in descending order, excluding clusters smaller
than 5 voxels. Features that summarise c are length (c), mean(c)–
mn
b The mask for negative voxels ofm

mp
τ The voxels inm that are bigger than τ

mn
τ The voxels inm that are smaller than − τ

mp
τ,b The mask for voxels that are bigger than threshold τ

mn
τ,b The mask for voxels that are smaller than threshold − τ
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median(c), max(c), var(c), skewness(c), kurtosis(c), c[1], c[2], and c[3]
(i.e., the first third elements of c).

An alternative way of looking at the spatial distribution of clusters
can help detect the presence of scanner noise (e.g., rapid movements
when the acquisition is interleaved). Assume that V = [v1, v2, …, vn]
and u = [u1, u2, …, un] contain n slice-specific measures derived from
m andmp

τ, respectively, where vi and ui denote the percent of total var-
iance that falls in the ith slice in m and mp

τ, respectively. FIX's next
features are max(v) and max(u), as well as the number of slices that
have more than 15% of total variance of m and mp

τ. These features will
detect the presence of slices that contain a high percentage of compo-
nent maps' total variance (see Fig. 6). It is also likely for neighbouring
slices to contain a high percentage ofmaps' total variance in signal com-
ponents, whereas some noise components may have most of the signal
in just the odd or just the even slices. Thus, next features attempt to
distinguish such cases by calculating the difference between the per-
centage of variance that is explained by even and odd slices (for both
m and mp

τ) and also the difference between the percentage of variance
that is explained by slices [1,2,5,6,9,10, …] and [3,4,7,8,11,12, …] (for
both m and mp

τ).
Another useful property of spatial maps/distributions is that it

is quite unlikely for signal components to have strong presence of
both activation and deactivation in their spatial maps and hence the
presence of such patterns can be an indicator of noise. In order to assess
the strength of this property in components, FIX devises an alternative
approach in looking at the spatial distribution of statistics thatmeasures
and compares summary statistics such as mean and SD of intensity for
m and ma. If m and s denote the mean and SD of nonzero voxels in m,
ma and sa denote the mean and SD of nonzero voxels in ma, z = m/s,
za = ma/sa, and e and ea denote the entropies of nonzero voxels of m
andma. The next set of features are e and ea (measuring the randomness
in voxel-wise distributions), z (measuring how the overall distribution
of voxel-wise statistics differs from zero, i.e., whether positive and
negative voxels are equally present), z/za (for a negative or positive
image, this number is expected to be very close to −1 or 1, whereas
for an image that has both positive and negative present, this will be
close to 0), 1 − sum(mn

b)/sum(mp
b) and 1 − sum(mn

τ,b)/sum(mp
τ,b).

Voxels overlaying bright/dark raw data voxels. For the next set of fea-
tures we multiply point-wise the ICA spatial maps (Z-statistics) by
the mean (across time) pre-processed fMRI time series data, because
there can be intensity information in the mean data that indicates
whether voxels are grey matter vs. (e.g.) large blood vessels. We
also divide point-wise, generating a second statistical image. The 4
new features generated are the 95th and 99th percentiles of these
two new images.

Percent on brain boundary. High overlap between the brain's boundary
and a component's spatial map indicates that a component is probably
motion-related (Tohka et al., 2008). In order for FIX's features to capture
such instances,first, the brainmask is extracted using FSL's brain extrac-
tion tool (BET) (Smith, 2002). Subtracting this mask from an eroded
version of itself results in an “edge mask”. Given the variation in the ex-
tent of head-motion noise, FIX employs 5 edgemasks, ranging fromvery
thin/conservative (the mask minus its once-eroded version) to very
thick/liberal (themaskminus its five-times-eroded version). Extracting
the following features for each of the 5 masks results in the next set of
3 × 5 = 15 features:

sum m: � Sð Þ=sum mð Þ
sum m: � Sð Þ=sum Sð Þ
sum mτ;b

p : � S
� �

=sum mτ;b
p

� �
;

ð3Þ

where sum function adds the values of all the voxels, S denotes the edge
mask and . ∗ denotes element-wise multiplication. These features mea-
sure what percent of an IC spatial map's mass and size falls on the brain
intensity edges and what percent of edges is covered by the IC; higher
values in these features corresponds to higher likelihood of the IC
being noise (see the example at the bottom of Fig. 2).

Mask-based features. Using spatially-specific masks may be the only
solution for detecting some noise components that have signal-like
spatio-temporal characteristics (as defined by other features) and are
located in brain regions such as Sagittal Sinus, CSF, and WM. For exam-
ple, signal in major veins may look temporally like valid signal compo-
nents, and may have similar cluster-like spatial characteristics (see
Fig. 5). FIX employs 3 hand-created standard-space masks, each com-
prising a distinct set of major vein voxels. They are transformed from
standard-space into the subjects' native space, before being used by
FIX feature extraction. Given the subject-to-subject anatomical variabil-
ity, three masks are derived from each of these three masks: The first
mask is the most conservative (i.e., the smallest/thinnest) and the last
mask is the most liberal (i.e., the largest/thickest) one. For each of
the 9 masks, features are extracted based on Eq. (3), except that here,
S denotes the different “vein” masks.

In the case of datasets where we have suitable structural images
to derive subject-specific major vein masks, we utilise these instead
of the standard-space masks. For example, from HCP data, we divide
the T1-weighted structural image by the co-registered T2-weighted
image; this enhances major veins strongly (Glasser and Van Essen,
2011). The resulting image is thresholded, masked by a dilated
standard-space vein mask (to add robustness to the whole process)
and finally transformed into the space of the native fMRI data, before
being used as vein masks as described above.

BOLD signal is expected to be found within the GM. The second
group of mask-based features therefore employs tissue-type masks,
since a component's overlapwith these tissue types is a strong predictor
of it being signal or noise. Having extracted thesemasks (as described in
the Temporal features section), features are extracted based on Eq. (3),
where S denotes the (WM, GM and CSF) masks.

Other spatial features. FIX uses other spatial features that are measures
of an IC's map's smoothness and its TFCE (threshold-free cluster
enhancement) (Smith and Nichols, 2009) statistics. It is expected that
spatial maps of signal components are “smooth”, i.e., a fairly small num-
ber of connected components (clusters). Some noise components, on
the other hand, are expected to have a “rough” spatial map, i.e., a fairly
large number of small clusters, or a patchy spatial map. In this study,
smoothness of a spatial map is calculated using random field theory
(as described by Salimi-Khorshidi et al. (2010)). As a result, the 2 new
features are the spatial smoothness in mm and voxel counts.

Despite the importance of cluster-size statistics in separating signal
and noise components, signal-related clusters in an image are not solely
defined by their extent; such clusters can also be associated with fairly
high peaks. Low sensitivity of traditional cluster-based methods to the
latter type of signals justifies the use of TFCE statistics, which has
shown better sensitivity in detecting signals of various characteristics
(Smith andNichols, 2009). In order to improve FIX's ability in separating
signal and noise, its next features aremaximumTFCE statistics form,ma

and standardisedm (i.e., m image divided by its SD).
The last spatial feature detects (high-spatial-frequency) “stripy”

patterns of alternating positive and negative values in the spatial
maps. In order to detect the presence of such a pattern, first, m and
ma are both smoothed (σ = 2 mm). In the presence of such a pattern
these two images are expected to be very different from each other
after smoothing, and hence are smoothed and then compared to define
a further feature for this type of noise.

Finally, additional features added are image-acquisition parame-
ters, i.e., spatial and temporal resolutions, and the size of the image
data in the x, y, z and t dimensions. Clearly these features do not dis-
criminate between different components within a given dataset (as
they are the same for all components), but may help normalise other
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features when combined with those inside classifiers, if datasets with
different acquisition parameters are combined for training/classification
by FIX.

Feature selection

Feature selection attempts to automatically choose a subset of rele-
vant features for building robust learning models. It is of particular im-
portance where there is low number of data samples, each summarised
with a large number of features. By removing most irrelevant and
redundant features, feature selection helps improve the performance
of many learning models by alleviating the effect of the curse of
dimensionality, enhancing generalisation capability, speeding up learn-
ing process and in some cases improving model interpretability. FIX
employs a combination of F-score, logistic regression and a linear
support vector machine (SVM) for feature selection.

For a given feature j, the F-score is calculated as

F j ¼
xS
j−x j

� �2 þ xN
j −x j

� �2

1
nS−1

XnS
i¼1

xS
i; j−xS

j

� �2 þ 1
nN−1

XnN

i¼1
xN
i; j−xN

j

� �2
;

ð4Þ

where nS and nN are the number of signal and noise data samples (from
the total number of ICA components across all runs in the training data);
x j,x

S
j andx

N
j denote the average of the jth feature across thewhole train-

ing dataset, and across the signal-only and noise-only components; and
xi,jS /xi,jN is the jth feature of the ith signal/noise component. The numera-
tor denotes the inter-class variance, while the denominator is the
sum of the variance within each class; a feature with a relatively large
F-score is expected to have a relatively high signal vs. noise discriminant
power. A criticism of the use of the F-score (despite its simplicity and ef-
fectiveness) in this context is that it considers each feature separately
and therefore cannot reveal information shared across features. Thus,
we also considered the feature ranking that is provided by logistic re-
gression and linear SVM.

Logistic regression is widely used as a classification technique,
modelling the outcome/classification as a linear combination of fea-
tures. As described in detail in the Logistic regression section, a given
feature's coefficient in the linear model has its corresponding signifi-
cance score, or P-value, which denotes its importance in prediction.
FIX fits univariate logistic regression (i.e., one feature at a time) and
uses the resulting−log10 of each feature's P-value as a score for feature
ranking. The multivariate feature ranking technique in FIX is based on a
linear SVMmodel (see Feature selection using SVM section for details).
Similar to the previous two, this approach results in a vector of scores
(one per feature) that can be the basis of importance-based ranking of
features.

Assume that L F , LLR, and LSVM, denote the rankings resulting from
F-score, logistic regression and linear SVM, respectively. FIX aggregates
the top-ranking features from these three rankings and decides on the
final subset of features; if a feature is amongst the top 50% of at least
one of the three rankings (i.e., L F , LLR , and LSVM), then it will pass
FIX's feature selection filter (see Hierarchical classifier section for the
place of feature selection in FIX's hierarchy).

Hierarchical classifier

Assuming that MELODIC's output consists of components that are
either purely signal or purely noise, FIX aims to detect the noise compo-
nents and clean the fMRI data accordingly. In reality, however, it is quite
likely that such components are not pure and instead consist of a mix-
ture of signal and noise. On the other hand, an important criterion for
FIX's success is to clean the fMRI data from noise, while preventing, or
more realistically, minimising the loss of signal.

“Impurity” of components and the fundamental differences across
the various types of artefact cause heterogeneity across different noise
components' characteristics. Therefore, in a classification context,
the decision boundary that separates noise from signal is expended
to be a complex one. In other words, it is quite likely that in the
N-dimensional feature space, signal and noise components are not
two simple clusters and hence not trivially separable. Additionally,
when manually classifying the components, experts tend to consider
the components' spatial maps and time series separately, and then
implicitly follow multiple if-then rules that determine the final label.
This shows the complexity of the decision boundary, which consists of
collecting and combining evidence in spatial and temporal domains
and feeding them through a complex decision-making process. In
order to learn such a multi-criteria decision process, FIX employs an
ensemble learning (or classifier fusion) approach.

Assume that D ¼ Da∪Dm is the dataset containing the full set of
features, where Da and Dm denote the temporal and spatial subsets of
features. Applying feature selection (see Feature selection section) to
D results in Dsel⊂D, which can consist of both temporal and spatial
features (denoted byDa−sel andDm−sel respectively). This process results
in 6 different datasets (D, Dm, Da, Dsel, Dm−sel, and Da−sel) that one can
train a given classifier on (note that, all these datasets have a column
that contains the components' labels, i.e., signal or noise). Using subsets
of features can make the detection of signal/noise easier, as there are
components that show their signalfluctuations only in spatial, temporal
or other subset of features. In order to achieve this detection in a classi-
fication setting, however, there is no absolute best classifier; k-NN
(described in k-NN section) is a reliable local classifier, but cannot cap-
ture the patterns that exist in the full dataset; decision trees (described
in the Decision trees section ) are very good at learning complex deci-
sion boundaries that can be represented as a series of if-then rules;
support vector machines (described in the Support vector machines
section) are very well capable of (applying the kernel trick and) finding
decision boundaries with maximum margin/generalisation. Plus, the
empirical comparisons of classifiers showed that “the best learner”
varies from application to application.

In order to compensate for one classifier's weakness through other
classifiers' strengths, ensemble learning (also known as classifier
fusion) has been proposed — learners that combine multiple classifiers
(Galar et al., 2012; Wolpert, 1992). Here, instead of fine-tuning and
choosing a single best classifier, one combines variations of multiple
classifiers in order to improve the final results. FIX utilises an ensemble
technique known as stacking (Wolpert, 1992),where outputs of individ-
ual classifiers become the inputs of a “higher-level” learner (in FIX's
case, we tested decision tree, random forest, linear SVM and SVM with
RBF kernel) that works out the best way of combining them (see
Fig. 8). The mathematical details of these classifiers can be found in
the Classifiers section. Training the ensemble consists of extracting D,
Dsel , Da , Dm , Da−sel and Dm−sel , training the k-NN, decision tree and
SVMs, on each of the datasets, and training the fusion-layer classifier
using the lower-level classifiers' probabilistic outputs (Dzeroski and
Zenko, 2004).

Learning and generalisation
The fundamental goal of machine learning is to generalise beyond

the examples in the training set. This is because, no matter how much
data we have, it is very unlikely that we will see those exact examples
again in future datasets. Performing well on the training set can be
easy (the classifier can simply memorise the examples), and can create
the illusion of success. Hence, when training and/or evaluating a learner
algorithm, one must devise a strategy to minimise the risk of over-
fitting (i.e., effectively memorising the examples).

In this study, FIX is tested using a leave-one-out (LOO) approach
across sets of ICA output components. If the training data consists of n
MELODIC outputs (e.g., one per imaged subject), each fold of the
cross-validation uses n − 1 datasets for training, and tests the learned
decision boundary on the left-out dataset. In the case of havingmultiple
runs of data from each subject (such as with the rfMRI data from the
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Fig. 8. FIX's hierarchical classifier. In the data layer, full, feature-selected, temporal, spatial, temporal-feature-selected and spatial-feature-selected datasets (D, Dsel, Da, Dm, Da − sel and
Dm − sel, respectively), are each classified by 5 classifiers. These classifiers consist of k-NN, SVMr (SVMwith RBF kernel), SVMp (SVM with polynomial kernel), SVMl (linear SVM) and
decision tree (simply called tree here). The result is a vector of 30 (5 × 6) probabilities (0 and 1 denoting perfect noise and perfect signal, respectively), which is the input to a fusion-
layer classifier, whose output is the probability of IC being signal/noise.

Table 2
FIX classification accuracies from Human Connectome Project data. TPR = true positive
rate, i.e., the percentage of true signals correctly classified. TNR = true negative rate,
i.e., the percentage of true artefacts correctly classified. As the FIX “threshold” is lowered,
TPR ismaximised at the expense of high TNR; an “optimal” thresholdmight be considered
to be 5–10 (shown in bold, for threshold 10).

FIX threshold 1 2 5 10 20 30 40 50

TPR (mean) 99.9 99.8 99.7 99.6 99.3 98.8 98.4 97.4
TNR (mean) 96.7 97.5 98.5 98.9 99.3 99.5 99.6 99.7
TPR (median) 100 100 100 100 100 99.0 98.8 98.0
TNR (median) 97.1 97.7 98.8 99.2 99.5 99.6 99.7 99.8
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Human Connectome Project, with 4 15-minute runs per subject), it is
safest to leave out all runs for a given subject and train on all datasets
of all other subjects, in order to be able to generalise LOO accuracy re-
sults that will validly describe the expected classifier performance
when applied to future subjects.

Performance indices

FIX's performance can be summarised by its accuracy in detecting
signal and noise components in comparison with labels as provided by
the experts. We characterise classification accuracy in terms of two
measures of success: TPR (“true positive rate”, meaning the percentage
of true signal components correctly detected) and TNR (“true negative
rate”, meaning the percentage of true artefact components correctly
detected). We can also average the two measures to give an overall
“accuracy”, although this is not on its own generally as meaningful as
the two separate measures.

Given that FIX's output is a probability, a threshold is applied to de-
termine the binary classification of any given component. Changing the
threshold shifts the balance between TPR and TNR; lowering it increases
the TPR and decreases the TNR. For the LOO accuracy testing, therefore,
we can evaluate several thresholds in order to show how the balance
between prioritising TPR vs. TNR can be varied. We are not concerned
with over-fitting relating to testing several thresholds, as the TPR/TNR
curves (as a function of threshold) are slowly-varying (and generally
objectively shallow) monotonic functions of the threshold, and we
only tested a few different values.

Results

Example results showing several different kinds of ICA components
from a range of fMRI acquisition protocols have been presented above
(Figs. 1 to 7). In this section we present quantitative results relating to
the accuracy of FIX in correctly classifying ICA components as signal
vs. noise. As discussed above, the evaluation of optimal methods for
the removal of noise components (once identified by FIX), and investi-
gation of the effects of this removal on resting-state spatial maps and
network modelling, is outside the scope of this paper, and is covered
in a separate followup paper (Griffanti et al., submitted for publication).

High quality rfMRI data from the Human Connectome Project

The 3 T rfMRI data being acquired in theHumanConnectomeProject
has fairly high spatial and temporal resolution (2 × 2 × 2 mm, 0.73 s),
utilising a multiband acceleration of ×8 (Ugurbil et al., 2013), and is
acquired in relatively long runs (15 min) (Smith et al., 2013; Van
Essen et al., 2013). 100 runs, from 25 subjects (ages 22–35 y, 17 fe-
males), were hand-labeled. We trained FIX and used leave-one-
subject-out testing to evaluate classification accuracy. As described
above, the final FIX classification threshold (which has arbitrary units)
can be varied to change the balance between true-positive-rate (accura-
cy in classifying good components) and true-negative-rate (accuracy in
classifying bad components).

The LOO results for a range of thresholds are shown in Table 2. From
these subjects a good choice of threshold would seem to be 10, which
results in a mean TPR and TNR of 99.6 and 98.9% (median values across
subjects of 100 and 99.2). We also hand-labeled ICA components from
a single run from each of 20 further subjects (10 females), acquired sev-
eral months later than the original subjects, also as part of the ongoing
HCP acquisition of data from over 1000 subjects. We applied FIX using
the original training from the 100 runs described above. This was partly
carried out to confirm that FIX was working well using the original
FIX training, when applied to later acquisitions, and when the ICA com-
ponents were generated by a very slightly improved version of the
MELODIC ICA code (one would hope that minor changes in the data
and/or the ICA programme would not invalidate FIX training). Across
all components from these new 20 runs, at a FIX threshold of 5, FIX
achieved TPR and TNR of 99.7 and 99.6, i.e., even better than the original
LOO results. FIX has been implemented in the HCP processing pipeline,
and future rfMRI data will be made available with FIX cleanup already
applied (as well as being made available without the cleanup).

Using the data from 131 HCP subjects, the full set of FIX featureswas
evaluated using principal component analysis (PCA) to see how much
redundancy there is across the features. Concatenating the feature
vectors from all components from all subjects' ICA decompositions
resulted in 53,690 feature vectors. Each feature in this concatenated fea-
ture matrix was normalised across subjects to zeromean and unit stan-
dard deviation, and the matrix was then fed into PCA. The eigenvalues

image of Fig.�8


463G. Salimi-Khorshidi et al. / NeuroImage 90 (2014) 449–468
showed that 36 eigenvectors are required to explain 95% of the variance
in the full feature set from all subjects (with 67 eigenvectors required to
explain 99% of the variance, and 99 required to explain 99.9%). From
this we conclude that there is some redundancy in the full set of 185
features, but that a much smaller number of features would not carry
all of the information that is made available to FIX's classifier.

The aforementioned level of redundancy amongst features might
suggest the adoption of a “global” feature selection for minimising
the number of features (columns) in D and its subsets (e.g., Dm and
Dm−sel), and hence a more optimal computation pipeline. In FIX, how-
ever, we do not advocate this approach for the following reason. Unlike
noise types such as head motion, that are commonly observed in most
datasets, and can sometimes have multiple components in a given
dataset's ICA decomposition, there are some component types that
occur much more rarely (e.g., certain types of scanner artefact, such as
thosewith high-spatial-frequency stripy patterns of alternating positive
andnegative values in the spatialmaps). The FIX feature set is specifical-
ly designed to detect both common and rare noise types. Employing
feature selection techniques that aim to minimise the number of fea-
tures while having minimal (but not zero) impact on the overall error
would probably result in the exclusion/elimination of such features
that are specific to low-occurrence noises. Thus, we utilise a solution
that does not fully exclude any of the features from the very beginning.

Results from more standard datasets/scanners

Standard EPI acquisition, single study dataset with study-specific FIX
training

We analysed rfMRI data from 45 subjects (ages 63–75 y, 33%
female) acquired using a single protocol on a Siemens 3 T Verio using
standard EPI (3 × 3 × 3mm, 3 s, 10 min). ICA components from all sub-
jects were hand-labeled, and used to train FIX, with accuracy evaluated
using LOO testing. The mean (median) across-left-out-subject TPR &
TNR results at a threshold of 10 were 96.2 & 95.1 (100 & 92.2). The
average number of ICA components estimated by MELODIC was 70.7
per subject, and the average number of (hand-labeled) signal compo-
nents was 8.8; hence these results mean that on average only 0.3 good
components are misclassified as bad per subject (or, put another way,
on average, two out of three subjects have no good-componentmisclas-
sifications, with the third having a single one).

Standard EPI, different protocols and scanners combined
We combined the above dataset with 61 further subjects' datasets

from a range of other 3 T studies using a range of acquisition protocols.
ICA components from all subjects were hand-labeled, and used to train
FIX, with accuracy evaluated using LOO testing. Themean (median) TPR
& TNR results at a threshold of 20 were 96.1 & 86.0 (100 & 91.5).

Multiband-accelerated EPI from a standard 3 T clinical scanner, single
study dataset with study-specific FIX training

We analysed rfMRI data from 25 subjects (ages 63–75y, 33% female)
acquired on a standard Siemens Verio with a 32-channel head coil
(2 × 2 × 2 mm, 1.3 s, multiband ×6, 10 min). ICA components from
all subjects were hand-labeled, and used to train FIX, with accuracy
evaluated using LOO testing. The mean (median) TPR & TNR results at
a threshold of 20 were 97.9 & 96.8 (100 & 98.8).

Combinedmultiband EPI data froma standard 3 T clinical scanner and pilot
data from the HCP “Connectome Skyra”

We combined the above dataset with early HCP pilot datasets
from 14 subjects (ages 18–30y, 50% female) acquired on the Siemens
“Connectome Skyra” (2x2x2mm, 1.37 s, multiband ×4, 23 min). ICA
components from all subjects were hand-labeled, and used to train
FIX, with accuracy evaluated using LOO testing. The mean (median)
TPR & TNR results at a threshold of 10 were 98.4 & 96.1 (100 & 96.7).
Comparing FIX with standard classifiers

In order to choose the best fusion-layer classifier, we assessed
decision tree (i.e., FIX-TREE), random forest (i.e., FIX-RF), linear SVM
(i.e., FIX-SVM-LIN), and SVM with RBF kernel (i.e., FIX-SVM-RBF) in
the stacking layer. Moreover, in order to justify such a complex classifier
architecture in FIX, we compared these four solutions with 6 widely
used classification techniques, i.e., LDA (linear discriminant analysis),
SVM-RBF (SVMwith RBF kernel), SVM-LIN (linear SVM), TREE (decision
tree), RF (random forest), and GLM (logistic regression). The compari-
son corresponds to 8 datasets each with different characteristics (see
High quality rfMRI data from the Human Connectome Project and
Results from more standard datasets/scanners sections). For instance,
while one of these is a combination of multiband EPI data from a stan-
dard 3 T clinical scanner and pilot data from the HCP “Connectome
Skyra” (i.e., a fairly large dataset with a good quality), another one is a
combination of two different high-TR acquisitions. According to the
results in Fig. 9 FIXwith random forest in the stacking layer outperforms
the standard classifiers, i.e., it has the highest average “mean accuracy”
across these datasets. Moreover, according to the comparisons in the
early stages of FIX's development, when the quality of training data
(in terms of size, mix and acquisition quality) is lower, the gap widens
in FIX's favour.

Conclusions and discussion

We have described a new tool for the automated denoising of arte-
facts in fMRI data, achieved by running independent component analy-
sis, identifying which components correspond to artefactual processes
in the data, and removing those from the data. Our tool, FIX, can achieve
over 99% classification accuracy on the best fMRI datasets, and around
95% accuracy on more “standard” acquisitions (particularly if study-
specific training is carried out). FIX therefore can be a very valuable
tool for the cleanup of fMRI data.

FIX employs a large number of features in order to inform its
decision making about many component-wise attributes, ranging
from spatial and temporal characteristics to image-acquisition parame-
ters. As presented in the High quality rfMRI data from the Human
Connectome Project section, features are partially correlated, which
might suggest a hard feature selection prior to any classification.
While hard feature pre-selection might purify the feature-base of
redundancies, it introduces the risk of losing some useful/discriminant
information. Most feature-selection techniques are sensitive to the
inter-class discriminant power of features, which makes them ideal
for cases where there is minimal within-class heterogeneity. However,
comparing various fMRI artefact components (e.g., Figs. 2–6) shows
that there is a huge heterogeneity across various different kinds of arte-
facts, in terms of their causes and their spatial and temporal character-
istics. Consider a feature that is defined to be particularly helpful in
identifying a rare artefact type. Automated feature selection might
well reject this feature, as it does not provide good discrimination be-
tween noise (as a whole, averaged over all artefact types) and signal.
Therefore, FIX does not employ a global feature selection, which drops
the features from the whole process; it rather advocates a stacking
architecture, where a high-level learner decides (in a data-driven
way) how to combine feature-selected classification's results with clas-
sification results from temporal, spatial and full-data classifications (see
Fig. 8). Under this hierarchy, for a particular training dataset, if feature
selection did not lose any discriminant power and could outperform
every other scenario (as shown in Fig. 8) across all components, the
high-level learner will only consider the result from the Dsel path in
Fig. 8.

Similar to other classification techniques, when training FIX, we ide-
ally need “expert” labeling to be provided with the training data. In the
case where there is a bias (e.g., always calling a particular type of arte-
fact signal) in the experts labeling, the classifier will be biased as a
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Fig. 9. FIX-RF and FIX-SVM-RBF outperform the commonly-used classifiers on a broad set of rfMRI datasets that cover a board range of data-acquisition/-quality scenarios, common in
rfMRI. In the figure, classifiers are shown on the x-axis, and the y-axis shows the average accuracy across all datasets. For each dataset, accuracy is defined as the average of subject-
wise (TPR + TNR)/2 (see Performance indices section), where TPR and TNR denote the true positive and true negative rates, respectively. The thick blue and red lines show the mean
and median of accuracy across datasets, respectively, and dashed blue and red lines show the best classifier's (i.e., FIX-RF) performance in terms of its mean and median, respectively.
Thus, on average, FIX is expected to outperform other classifiers, and the best simple classifier next to FIX is SVM-RBF.
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result. In the case where there are inconsistencies in the labeling
(i.e., similar components being labeled as both signal and noise),
then the classifier will not be able to learn that concept (due to con-
flicting evidence). This is unavoidable for such approaches, but in
such cases one might at least hope to ameliorate the lack of expertise
by utilising several “experts” to cross-check each others labeling re-
sults. Where it is necessary to apply auto-classification without the
confidence of expert training (or when the training data does not
well match the data to be classified) it would probably be advisable
to choose a conservative classification threshold to reduce the risk
of removing signal components.

In addition to the quality of expert's labeling, the quality of the data
itself, in terms of acquisition quality and the heterogeneity in the train-
ing dataset (which can increase when combining different datasets), is
an important factor that can influence FIX's performance. As the results
in the Results section show, FIX's performance varies from 95% on con-
ventional datasets to 99% and more on high-quality HCP data. When
combining multiple (relatively different) datasets, FIX's performance
can even drop to lower than 95%. Thus, we recommend training FIX
on homogeneous datasets in order to improve its accuracy. In case of
training FIX on a pool of multiple datasets, the recommended approach
is to first test its performance on held-out datasets, and if (slightly) less
accurate than desired, utilise a conservative threshold.

FIX is publicly available; the current version (v1.05) is available as a
“plugin” for FSL (the FMRIB Software Library) from www.fmrib.ox.ac.
uk/fslwiki/fsl/FIX - it is not yet bundled as part of FSL, as it currently
relies also on other software, in particular on Matlab (or Octave)
and R. We plan to recode a future version of FIX to remove these de-
pendencies and release it as part of FSL. The FIX download includes
training-weights files for “standard” fMRI acquisitions and for Human
Connectome Project rfMRI data; in our experience, new acquisition
protocols do benefit from customised re-training of FIX. Hand training
of FIX on new datasets ideally needs at least 10 subjects' ICA outputs
to be hand labeled, and quite possibly more than that; the scripts
supplied with fix make LOO evaluation very straightforward, and the
value of adding further hand labeling can be established by noting
whether the LOO result (as a function of number of datasets manually
labeled) is asymptoting.
Acknowledgments

We are very grateful to Erin Reid and Donna Dierker (WashU), for
helping with the FIX training (hand-labeling of ICA components) from
HCP data, to Eugene Duff and other members of the FMRIB Analysis
Group for input on the FIX feature set and scripting, and to David Flitney
(Oxford), for creating theMelview ICA component viewing and labeling
tool. We are grateful for partial funding via the following NIH grants:
1U54MH091657-01, P30-NS057091, P41-RR08079/EB015894, and
F30-MH097312. Gwena e lle Douaud is funded by the UK Medical
Research Council (MR/K006673/1).

Appendix A. Classifiers

This appendix provides a summary of the classifiers used in FIX and
briefly explains theirmathematicalmodels. The classification unit in FIX
has two main tasks: Learning and prediction. The learning (or infer-
ence) phase consists of training a two-class classification model on
Dataset D ¼ xi; yif gNi¼1 , where N denotes the number of examples in
the data, xi denotes the features vector (of lengthm) corresponding to
the ith example, and yi is a scalar denoting ith example's class (e.g., 0
for noise and 1 for signal). In the prediction phase, on the other hand,
the trained model scores a given feature vector x∗ with a likelihood of
it being signal or noise.

k-NN

The k-nearest neighbour algorithm (k-NN) is a method for classify-
ing objects based on the closest training examples in the feature
space. It is a type of instance-based learning (or lazy learning) where
the decision function for each test example is only approximated locally.
The k-NN algorithm is amongst the simplest of all machine learning
algorithms: an object is classified by a majority vote of its neighbours,
with the object being assigned to the class most common amongst its
k nearest neighbours. Here, however, the proportion of the votes for
the winning class are returned, so that k-NN's output becomes probabi-
listic (and hence more appropriate for stacking).

http://www.fmrib.ox.ac.uk/fslwiki/fsl/FIX)
http://www.fmrib.ox.ac.uk/fslwiki/fsl/FIX)
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The k-NN algorithm's only parameter, k, is a positive integer (typically
small). The best choice of k depends on the data; generally, larger values
of k reduce the effect of noise on the classification, but make boundaries
between classes less distinct. A good k can be selected by various heuristic
techniques such as cross-validation. In binary (two class) classification
problems, it is helpful to choose k to be an odd number as this avoids
tied votes. One of the main disadvantages of the k-NN algorithm is that
its accuracy can be severely degraded by the presence of noisy or irrele-
vant features, or if the feature scales are not consistent with their impor-
tance.Much research effort has been put into selecting or scaling features
to improve classification (Venables and Ripley, 2002).

Logistic regression

The fundamental model underlying ordinary linear regression posits
that a continuous outcome variable is, in theory, a linear combination of
a set of predictors, plus an error. In otherwords, for an outcomevariable,
yi, and a set ofm predictor variables (i.e., features), the multiple regres-
sion model is of the form

yi ¼ β0 þ
Xm
j¼1

β jxi jð Þ þ ϵ; ð5Þ

where βj denotes the regression coefficient (i.e., the expected change in
yi per unit change in feature i assuming that all other features are held
constant), and ϵ is the error of prediction. Given that one of the under-
lying assumptions of the above model is that the dependent variable,
Y, is continuous, one cannot directly use this model for classification.

The generalised linear model (GLM) framework, however, provides
a flexible generalisation of ordinary linear regression that allows for
response variables that have other than a normal distribution. This gen-
eralisation is provided by allowing the linear model to be related to the
response variable via a link function and by allowing the magnitude of
the variance of each measurement to be a function of its predicted
value. Binary logistic regression is a special GLM that employs a logistic
link function for modelling the probability of dichotomous outcome
variables (e.g., signal/‘1’ vs. noise/‘0’).

Assume that in D, we denote signal with 1 and noise with 0, and
p = P(Y = 1) = 1 − P(Y = 0). In the absence of other information,
we would estimate P by the sample proportion of cases for which Y
is 1. However, in the regression context, it is assumed that there is a
set of predictor variables/features, x, that are related to Y and, thus,
can provide additional information for predicting Y. In binary logistic
regression, this mapping from feature space, x, to class labels is a linear
model for the natural logarithm of the odds (i.e., the log-odds) in favour
of Y = 1:

log
P Y ¼ 1 xijð Þ

1−P Y ¼ 1 xj Þð
� �

¼ log
π

1−π

h i
¼ β0 þ

Xm
i¼1

β jxi ið Þ; ð6Þ

or alternatively

P Y ¼ 1 xijð Þ ¼ e
β0þ

Xm
j¼1

β jxi jð Þ

1þ e
β0þ

Xm
j¼1

β jxi jð Þ
:

ð7Þ

Because of the nature of the model, its parameters are estimated
usingmaximum likelihood rather than least-squares.When using logis-
tic regression, one can decide to enter a variable into the model if its
associated significance level is less than a given P-value (e.g., 0.05).
Variable-wise P-values (that the logistic regression model provides)
are useful criteria for feature selection: Only features that have signifi-
cant effect on the dependent variable can be selected.
Support vector machines

A support vector machine (SVM) is a supervised learning approach
that is used for classification and multivariate regression analyses
(Cortes and Vapnik, 1995). Suppose examples in data D each belong
to one of two classes (i.e., with noise being −1 and signal being 1),
and the goal is to decide which class a new data point (feature
vector) x∗ will be in. In the simplest case a data point is viewed as a
P-dimensional vector (a list of m features), and we want to know
whether we can separate such points with a (m − 1)-dimensional
hyperplane. This is a linear classifier. There are many hyperplanes that
might classify the data. One reasonable choice as the best hyperplane
is the one that represents the largest separation, or margin, between
the two classes.

In all SVM analyses (described below), non-binary variables are
scaled, i.e., data are scaled internally to zero mean and unit variance.
The centre and scale values are kept and used for later predictions
(i.e., for x∗).

Linear SVM
Any hyperplane can be written as the set of points satisfying

w:x−b ¼ 0; ð8Þ

where. denotes the dot product and w the normal vector to the hyper-
plane. The parameter b

wk k determines the offset of the hyperplane from
the origin along the normal vector. If the training data are linearly sep-
arable, we can select two hyperplanes in a way that they separate the
data with a maximum margin and there are no points between them,
i.e.,

w:x−b ¼ l and w:x−b ¼ −1: ð9Þ

The distance between these two hyperplanes is 2
wk k, which can be

maximised by minimising ‖w‖, while preventing data points from fall-
ing into the space between the separating planes. This way, the infer-
ence problem of the SVM becomes the following optimisation problem:

minimise wk k; subject to yi w:xi−bð Þ≥1;1≤ i≤N: ð10Þ

This optimisation problem is difficult to solve analytically because it
depends on ‖w‖, the norm ofw, which involves a square root. Altering
the equation by substituting ‖w‖ with 1

2 wk k2 , while preserving the
same w and b at the minimum, results in the following quadratic pro-
gramming optimisation problem

minimise
1
2

wk k2; subject to yi w:xi−bð Þ≥1;1≤ i≤N; ð11Þ

that is easier to solve. By introducing Lagrange multipliers α, the previ-
ous constrained problem can be expressed as

min max
1
2

wk k2−
Xn
i¼1

αi yi w:xi−bð Þ−1½ �
( )

: ð12Þ

Only a few αi will be greater than zero, whose corresponding xi are
exactly the “support vectors” (features defining the separating hyper-
plane), which lie on the margin and satisfy yi(w. xi − b) = 1. From
this, one can show that the support vectors also satisfy

w:x−b ¼ 1=yi ¼ yi⇔b ¼ w:xi−yi; ð13Þ

which then allows the calculation of b as

b ¼ 1
NSV

XNSV

i¼1

wxi−yið Þ ð14Þ
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This solution requires some modification if there exists no hyper-
plane that can perfectly split the two classes. This solution is known as
the “soft margin”method (Cortes and Vapnik, 1995), which will choose
a hyperplane that splits the examples as clean as possible, while still
maximising the distance to the nearest cleanly split examples. This is
achieved by introducing slack variables, ζi, which measure the degree
of misclassification of example xi

yi w:xi−bð Þ≥1−ζ i; i≤ i≤N: ð15Þ

The optimisation of the soft-margin objective function becomes a
trade-off between a large margin and a small error penalty:

min
w;ζ ;b

1
2

wk k2 þ C
XN
i¼1

ζ i

( )
; subject toyi w:xi−bð Þ≥1−ζ i; ζ i≥0: ð16Þ

By using Lagrangemultipliers (as done above), soft-margin SVM has
then to solve the following optimisation problem:

min
w;ζ ;b

max
α;β

1
2

wk k2 þ C
XN
i¼1

αi yi wxi−bð Þ−1þ ζ i½ �−
XN
i¼1

βiςi

( )
;

with αi;βi≥0:

ð17Þ

Having learned the SVMmodel, for any testing instance x∗, the deci-
sion function (predictor) is f(x∗) = sgn(wTx∗ + b). Detailed description
of SVM methodology can be found in Schölkopf et al. (2000) and its
references.

Nonlinear SVM
The nonlinear SVM generally employs the application of nonlinear

kernels to the feature space, resulting in an algorithm that is formally
similar to the linear case, except that every dot product (between two
features) is replaced by a nonlinear kernel function. In other words,
the maximum-margin hyperplane is fitted in a transformed feature
space. The most common such kernels are shown in Table 3.

The ‘C’-constant of the regularisation term in the Lagrange formula-
tion (an internal parameter of the soft-margin SVM) is optimised by
cross-validation, e.g., via an internal LOO loop (run inside each fold of
the outer-most LOO loop). Moreover, model selection for SVMr is
achieved empirically, where the optimal values of the width hyper-
parameter are expected to lie between the 0.1 and 0.9 quantiles of the
‖x − x′‖2 statistic (Caputo et al., 2002). We use the median, but any
value in between those two bounds has been found to produce good
results.

Feature selection using SVM
After obtaining a linear SVM model, the weights w can be used to

rank the relevance of each feature; the larger the |w(j)| (the weight
corresponding to jth feature), the more important is the role that the
jth feature plays in the decision function. Note that, only such weights
in the linear SVM model have this simple interpretation, so this ap-
proach is restricted to linear SVM.

Decision trees

A decision tree uses a tree-like graph or model of decisions and their
possible consequences. A decision tree, when used as a classifier, is a
Table 3
The most commonly used kernels for nonlinear SVM.

Kernel name Formula

Polynomial (homogeneous) k(xi,xj) = (xi. xj)d

Polynomial (inhomogeneous) k(xi,xj) = (xi. xj + 1)d

Gaussian radial basis function (RBF) k(xi,xj) = exp(−γ‖xi − xj‖2)
predictive model which maps the features of an example (xi) to its
class labels (yi). Leaves represent (probabilistic) class labels (e.g., signal
and noise) and branches represent conjunctions of features that lead to
those class labels.

As with the other approaches described above, decision trees are
first trained and then used to predict (classify). Most learning algo-
rithms used for constructing decision trees are top-down; at each step
of their operation, they work by choosing a feature, x(j), that is the
next best feature to use in splitting the set of N items/examples in D.
Different algorithms use different specific formulae for defining “best”,
but they all agree in that “best” is defined by how well a given variable
splits the set into homogeneous subsets that have the same class. One of
the common formulae for learning the tree is recursive partitioning in a
conditional inference framework.

Conditional inference trees estimate a relationship between all xi
and yi pairs in D by binary recursive partitioning in a conditional infer-
ence framework. In its first step, the algorithm tests the global null
hypothesis of independence between any of the input variables and
the response (i.e., class labels); it stops if this hypothesis cannot be
rejected. Next, it selects the input variable with strongest association
to the response. This association is measured by a P-value correspond-
ing to a test for the partial null hypothesis of a single input variable
and the response. In its second step, it implements a binary split in the
selected input variable, and then repeats the first and second steps.
The mathematical details of this approach can be found in Strasser
and Weber (1999); Hothorn et al. (2006a, 2006b).

In this study, we employed decision trees both as one of the distinct
lower-level classifiers and as higher-level (fusion-level) classifier that
combines the lower-level classifier outputs. In both cases, we stop the
tree's growth if it results in end leaves with less than 20 examples in
them, or if the discriminant test is not significant (P N 0.05).

Random forests

Significant improvements in classification accuracy have resulted
from growing an ensemble of classifiers and letting them vote for the
most popular class (seeHierarchical classifier section). Random forest re-
fers to an ensemble learning method for classification (and regression)
that operates by creating multiple decision trees at training and output-
ting the class that is most voted for by individual trees. The method was
first introduced by Breiman (2001), which combines his “bagging” idea
with the random selection of features introduced independently by Ho
(1998) and Amit and Geman (1997).

Constructing a model within the random-forests framework
requires making several choices regarding the shape of the decision to
use in each “node”, the type of predictor to use in each “leaf”, the split-
ting objective to optimise in each node, and the method for injecting
randomness into the trees.

The types of decisions to make at each node vary from simple
thresholding of a single dimension of the input (very common and
leads to trees that partition the space into hyper-rectangular regions)
to other decision shapes, such as splitting a node using linear or qua-
dratic decisions. When in an end leaf, leaf predictors determine the pre-
diction for a given sample/example. Choices here vary from using a
histogram for categorical data, or constant predictors for real valued
outputs. Note that, in theory, one could employ more complicated pre-
dictors (e.g., Support Vector Machine or any other classifier); however,
in practice the simple predictors aremore common (e.g., due to the lack
of large number of sample in an end leaf).

One of the most important components in defining an algorithm
within the random-forest framework is the splitting objective function,
which refers to the process of ranking the candidate splits of a leaf as the
tree grows. The most common such measures are information gain and
the Gini impurity. On the last choice, in order to inject randomness into
each tree, Breiman's original algorithm (which is the technique used in
this paper) proposes the following approach: Each tree is trained on a



Table 5
FIX's spatial features.

Index Name & description

47–55 Spatial maps' supra-threshold cluster-size distribution characteristics
56–61 The balance of negative and positive voxels in spatial maps
62–65 The ratio of the Z-stat to mean functional maps
66–69 Slice-wise statistics
70–73 Slice-groups' (e.g., slices with even or odd index) statistics
74–85 Spatial maps' overlap and correlation with GM, CSF and WMmasks
86–87 Smoothness estimates
88–90 TFCE features
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bootstrapped sample of the original dataset, and each time a leaf is split,
only a randomly chosen subset of the dimensions are considered for
splitting. In Breiman's model, once the dimensions are chosen the split-
ting objective is evaluated at every possible split point in each dimen-
sion and the best is chosen.

In this study, we employed Breiman's random forest algorithm both
as an independent classifier to compare FIX with, and as a higher-level
classifier that combines the lower-level classifier outputs. In both
cases, we employed a forest with 500 trees, where the splits are ranked
by their Gini impurities.
91–105 Edge-mask features
106–177 Sagittal sinus and veins mask-based features
178 Stripiness score/feature
Ensemble learning in FIX

In the early days of machine learning, many distinct approaches
were proposed, each with its own strengths and weaknesses. Hence
much effort was put into comparing between approaches in order to
select a single “optimal” one for a given problem. Systematic empirical
comparisons showed that the best learner varies from application to
application, and systems containing many different learners started
to appear. Effort was then put into trying many variations of many
learners, but still selecting just the best one. Following this, it was
noted that, if instead of selecting the best variation found, one combined
many variations, the results are better – oftenmuch better – and at little
extra effort for the user. Creating such model ensembles is now com-
mon. In the simplest technique, called bagging, one simply generates
random variations of the training set by resampling, learns a classifier
on each, and combines the results by voting. This works because it
greatly reduces variance while only slightly increasing bias. In boosting,
training examples have weights, and these are varied so that each new
classifier focuses on the examples the previous ones tended to get
wrong. In stacking, which is the ensemble technique used in FIX, the
outputs of individual classifiers become the inputs of a “higher-level”
classifier that learns out how best to combine them.

FIX employs multiple classifiers (i.e., linear SVM, SVM with RBF
kernel, random forest, and conditional-inference tree) as its high-level
learner. This makes FIX's hierarchical classifier a stacking ensemble
learner. The details of the inputs to this high-level learner are described
in the Hierarchical classifier section.
Appendix B. Feature summaries

In this appendix (see Tables 4 and 5), we list the temporal and spatial
features that are described in the Features section. The goal of this sec-
tion is to provide a detailed figure for the number of features that FIX
has in each (sub-)category of spatial and temporal features (described
in the Features section).
Table 4
FIX's temporal features.

Index Name & description

1 The number of independent components, as determined by MELODIC
2–3 The relationship between the order of the AR model and its goodness of fit
4–5 The parameter and the residual of AR(1)
6–8 The parameters and the residual of AR(2)
9:10 The skewness and kurtosis of the time series
11 The difference between timeseries mean and its median
12–13 Entropy (two different calculations)
14–19 Timeseries' jump characteristics
20–23 The ratio of the sum of power above fHz to the sum of power below fHz, for

f = 0.1, 0.15, 0.2 and 0.25
24–30 Percent of total power that falls in 0:0.01, 0.01:0.025, 0.025:0.05,

0.05:0.1, 0.1:0.15, 0.15:0.2 and 0.2:0.25 Hz bins
31–38 Comparing the timeseries with their null model (i.e., convolving white noise

with HRF)
30–44 Timeseries' correlation with motion timeseries and their derivatives
45–46 Timeseries' mean-reversion features
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