
Neurodegenerative Disease Diagnosis using Incomplete Multi-
Modality Data via Matrix Shrinkage and Completion

Kim-Han Thunga, Chong-Yaw Weea, Pew-Thian Yapa, Dinggang Shena,*, and for the
Alzheimer’s Disease Neuroimaging Initiative**

Kim-Han Thung: khthung@email.unc.edu
aDepartment of Radiology and BRIC, The University of North Carolina at Chapel Hill, U.S.A.

Abstract

In this work, we are interested in predicting the diagnostic statuses of potentially

neurodegenerated patients using feature values derived from multi-modality neuroimaging data

and biological data, which might be incomplete. Collecting the feature values into a matrix, with

each row containing a feature vector of a sample, we propose a framework to predict the

corresponding associated multiple target outputs (e.g., diagnosis label and clinical scores) from

this feature matrix by performing matrix shrinkage following by matrix completion. Specifically,

we first combine the feature and target output matrices into a large matrix and then partition this

large incomplete matrix into smaller submatrices, each consisting of samples with complete

feature values (corresponding to a certain combination of modalities) and target outputs. Treating

each target output as the outcome of a prediction task, we apply a 2-step multi-task learning

algorithm to select the most discriminative features and samples in each submatrix. Features and

samples that are not selected in any of the submatrices are discarded, resulting in a shrunk version

of the original large matrix. The missing feature values and unknown target outputs of the shrunk

matrix is then completed simultaneously. Experimental results using the ADNI dataset indicate

that our proposed framework achieves higher classification accuracy at a greater speed when

compared with conventional imputation-based classification methods and also yields competitive

performance when compared with the state-of-the-art methods.
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1. Introduction

Alzheimers Disease (AD) is the most prevalent form of dementia. It is ultimately fatal and is

ranked as the sixth leading cause of death in United States in year 2012 (Alzheimer’s

Association, 2013). Neurodegeneration associated with AD is progressive and the symptoms

usually begin with gradual memory decline followed by a gradual loss of cognitive and

motor abilities that will cause difficulties in the daily lives of the patients. Eventually, the

patients will lose the ability to take care of themselves and will need to rely on the intensive

care provided by others. This has posed significant medical and socioeconomic challenges to

the community (Alzheimer’s Association, 2013).

Owing to the criticality of this issue, it is vital to diagnose AD accurately, especially at its

prodormal stage, i.e., amnestic mild-cognitive impairment (MCI), so that an early treatment

can be provided to possibly stop or slow down the progression of the disease. MCI, which is

defined as a condition where the patient has noticeable cognitive decline, but with-out

difficulty in carrying out daily activities, has high probability to develop into AD. With the

help of emerging neuroimaging technology, the progress and severity of the

neurodegeneration associated with AD or MCI can now be diagnosed and monitored in

different ways (modalities). Magnetic resonance imaging (MRI) scans, for instance, provide

3D structural information about the brain, where features such as region-of-interest (ROI)-

based volumetric measure and the cortical thickness can be extracted from the MRI to

quantify brain atrophy that is usually associated with the diseases (Du et al., 2007; Fan et al.,

2007; Klöppel et al., 2008; Desikan et al., 2009; Oliveira Jr et al., 2010; Gerardin et al.,

2009; Cuingnet et al., 2011). Flourodeoxyglucose positron emission tomography (FDG-

PET), on the other hand, can be used to detect abnormality in term of glucose metabolic rate

at brain regions preferentially affected by AD (Higdon et al., 2004; Foster et al., 2007;

Chetelat et al., 2003; Chételat et al., 2005; Herholz et al., 2002). Beside neuroimaging

techniques, another line of research uses biological and genetic data to develop potential

biomarkers for AD diagnosis. The important measurements in biological and genetic data

that are closely related to cognitive decline in AD patients include the increase of

cerebrospinal fluid (CSF) total-tau (t-tau) and CSF tau hyperphosphorylated at threonine 181

(p-tau), the decrease of CSF amyloid β (Aβ), and the presence of gene apolipoprotein E

(APOE) ∊4 allele (Fagan et al., 2007; Morris et al., 2009; Fjell et al., 2010).

Although it is common to use information from only one modality such as structural MRI

for diagnosis of AD/MCI, complementary information from multiple modalities (Fjell et al.,

2010; Walhovd et al., 2010; Landau et al., 2010; Zhang et al., 2011; Liu et al., 2014) can be

combined for more accurate diagnosis. This is supported by the results reported in recent

studies (De Leon et al., 2006; Fan et al., 2008; Ye et al., 2008; Hinrichs et al., 2009, 2011;

Davatzikos et al., 2011; Zhang and Shen, 2012; Zhang et al., 2011; Liu et al., 2013). To

support AD research using multi-modality data, Alzheimer’s Disease Neuroimaging

Initiative (ADNI) has been actively collecting data from multiple modalities (e.g., MRI,

FDG-PET and CSF data) from AD, MCI and normal control (NC) subjects yearly or half-

yearly. Unfortunately, not all the samples in ADNI dataset are completed with the data from

all different modalities. For example, while all the samples in the ADNI baseline dataset

contain MRI data, only about half of the samples contain FDG-PET data (which is referred
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as PET throughout the manuscript) and another different half of the samples contain CSF

data. The “missing” data in the ADNI dataset is due to several reasons, such as, high

measurement cost (i.e., PET scans), poor data quality and unwillingness of the patients to

receive invasive tests (i.e., collection of CSF samples through lumber puncture).

There are basically two approaches to deal with missing data in a dataset, i.e., we can either

1) discard the samples with missing data, or 2) impute the missing data. Most existing

approaches discard samples with at least one missing modality and perform disease

identification based on the remainder of the dataset. However, this approach discards a lot of

information that is potentially useful. In fact, if following this approach for multi-modality

analysis using MRI, PET and CSF data, about 2/3 of the total samples at ADNI baseline

dataset will have to be removed.

The data imputation approach, on the other hand, is more preferable as it provides the

possibility to use as many samples as possible in analysis. In fact, incomplete dataset is

ubiquitous in many applications and thus various imputation methods have been developed

to estimate the missing values based on the available data (Schneider, 2001; Troyanskaya et

al., 2001; Zhu et al., 2011). However, these methods work well only when a small portion of

the data is missing, but become less effective when a large portion of the data is missing

(e.g., PET data in ADNI). Recently, low rank matrix completion (Candès and Recht, 2009)

has been proposed to impute missing values in a large matrix through trace norm

minimization. This algorithm can effectively recover a large portion of the missing data if

the ground truth matrix is low rank and if the missing data are distributed randomly and

uniformly (Candès and Recht, 2009). Unfortunately, the latter assumption does not hold in

our case since, for each subject, the data from one or more of the modalities might be

entirely missing, i.e., the data is missing in blocks.

In this paper, we attempt to identify AD and MCI from the NCs using incomplete multi-

modality dataset from the ADNI database. Denoting the incomplete dataset as a matrix with

each row representing a feature vector derived from multi-modality data of a sample,

conventional approach for solving this problem is to impute the missing data and build a

classifier based on the completed matrix. However, it is too time consuming (as matrix size

is large) (Xu and Jordan, 1996; Jollois and Nadif, 2007) and inaccurate (as there are too

many missing values) to apply the current imputation methods directly. In addition, the

errors introduced during the imputation process may affect the performance of the classifier.

In this paper, we largely avert the problems of the conventional approach by proposing a

framework that 1) shrinks the large incomplete matrix through feature and sample

selections, and 2) predicts the output labels directly through matrix completion on the

shrunk matrix (i.e., without building another classifier on the completed matrix).

Specifically, we first partition the incomplete dataset into two portions -training set and

testing set. Each set is represented by an incomplete feature matrix (each row contains

feature vector of a sample), and a corresponding target output matrix (i.e., diagnostic status

and clinical scores). Our first goal is to remove redundant/noisy features and samples from

the feature matrix so that the imputation problem can be simplified. However, due to the

missing values in the feature matrix, feature and sample selections can not be performed
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directly. We thus partition the feature matrix, together with the target output matrix, into

submatrices with only complete data (Ghannad-Rezaie et al., 2010), so that a 2-step multi-

task learning algorithm (Obozinski et al., 2006; Zhang and Shen, 2012) can be applied to

these sub-matrices to obtain a set of discriminative features and samples. The selected

features and samples then form a shrunk, but still incomplete, matrix which is more

“friendly” to imputation algorithms, as redundant/noisy features and samples have been

removed and there are now a smaller number of missing values that need to be imputed. We

propose to impute the missing feature data and target outputs simultaneously using a matrix

completion approach. Two matrix completion algorithms are explored: low rank matrix

completion and expectation maximization (EM). Experimental results demonstrate that our

framework yields faster imputation and more accurate prediction of diagnostic labels than

the conventional imputation-based classification approach.

In brief, we propose a framework for a solution for this problem - classification using

incomplete multi-modality data with large block of missing data. The contributions of our

framework are summarized below:

• Feature selection using incomplete matrix (i.e., matrix with missing values) through

data grouping and multi-task learning.

• Sample selection using incomplete matrix through data grouping and multi-task

learning.

• Improve imputation effectiveness by focusing only on the imputation of important

data.

• Improve classification performance by label imputation.

2. Data

2.1. ADNI background

Data used in the preparation of this article were obtained from the ADNI database

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food

and Drug Administration (FDA), private pharmaceutical companies and non-profit

organizations, as a $60 million, 5-year public-private partnership. The primary goal of

ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI and

early AD. Determination of sensitive and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new treatments and monitor their

effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California - San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and

ADNI-2. To date, these three protocols have recruited over 1500 adults, ages 55 to 90, to
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participate in the research, consisting of cognitively normal older individuals, people with

early or late MCI, and people with early AD. The follow up duration of each group is

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date

information, see www.adni-info.org.

2.2. Subjects

We only used the baseline data in this study, amounting to a total of 807 subjects (186 AD,

395 MCI and 226 NC). All 807 subjects have MRI scanned, while only 397 subjects have

FDG-PET scanned and 406 subjects have CSF sampled. The general inclusion/exclusion

criteria used by ADNI are summarized as follow: 1) Normal subjects: Mini-Mental State

Examination (MMSE) scores between 24–30 (inclusive), a Clinical Dementia Rating (CDR)

of 0, non-depressed, non MCI, and nondemented; 2) MCI subjects: MMSE scores between

24–30 (inclusive), a memory complaint, have objective memory loss measured by education

adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of

significant levels of impairment in other cognitive domains, essentially preserved activities

of daily living, and an absence of dementia; 3) mild AD: MMSE scores between 20–26

(inclusive), CDR of 0.5 or 1.0, and meets NINCDS/ADRDA criteria for probable AD.

Since MMSE and CDR were used as parts of the criteria in categorizing subjects to different

disease groups in ADNI dataset, they might provide complementary information in the data

imputation process. Thus, in this study, three clinical scores were also included (CDR

global, CDR-SB1 and MMSE) as target outputs in addition to target label. The information

of the subjects (i.e., gender, age and education) and clinical scores (i.e., MMSE and CDR

global) used in this study are summarized in Table 1.

2.3. Data processing

The MRI and PET images were pre-processed to extract ROI-based features. For the

processing of MRI images, anterior commissure (AC) - posterior commissure (PC)

correction was first applied to all the images using MIPAV software2. We then resampled

the images to 256 × 256 × 256 resolution and used N3 algorithm (Sled et al., 1998) to

correct the intensity inhomogeneity. Next, the skull was stripped using the method described

in (Wang et al., 2011), followed by manual editing and cerebellum removal. We then used

FAST (Zhang et al., 2001) in the FSL package3 to segment the human brain into three

different types of tissues: grey matter (GM), white matter (WM) and cerebrospinal fluid

(CSF). After registration using HAMMER (Shen and Davatzikos, 2002), we obtained the

subject-labeled image based on a template with 93 manually labeled region-of-interests

(ROIs) (Kabani, 1998). For each subject, we used the volumes of GM tissue of the 93 ROIs,

which were normalized by the total intracranial volume (which is estimated by the

summation of GM, WM and CSF volumes from all ROIs), as features. For PET image, we

first aligned it to its corresponding MRI image of the same subject through affine

transformation, and then computed the average intensity of each ROI in the PET image as

1CDR-SB: CDR Sum of Box, summation of six CDR subscores.
2http://mipav.cit.nih.gov/index.php
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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feature. In addition, five CSF biomarkers were also used in this study, namely amyloid β

(Aβ42), CSF total tau (t-tau) and tau hyperphosphorylated at threonine 181 (p-tau) and two

tau ratios with respective to Aβ42 (i.e., t-tau/Aβ42 and p-tau/Aβ42). As a result, there are a

total of 93 features derived from the MRI images, 93 features derived from the PET images

and 5 features derived from the CSF biomarkers used in this study. Table 2 summarizes the

number of samples and the number of features used in this study for each modality. The

numbers under the column “All” represent the number of samples with all the three

modalities available.

3. Classification through matrix shrinkage and completion

Figure 1 illustrates our framework, which consisted of three components: 1) feature

selection, 2) sample selection, and 3) matrix completion. Let X ∈ ℝn×d (n samples, d

features) and Y ∈ ℝn×t (n samples, t targets) denote the feature matrix (that contains features

derived from MRI, PET and CSF data) and target matrix (that contains label [−1 1] and

clinical scores), respectively. As shown in the leftmost diagram in Figure 1, X is incomplete,

and about half of the subjects do not have PET and CSF data. The dataset is divided into two

parts, one for training and one for testing. The target outputs for all the training samples are

known, but the target outputs for the testing samples are set to unknown for testing purposes.

The input features X and clinical scores of Y are first z-normalized across all the samples, by

using mean and scale obtained only from the training data. All the missing data are ignored

during the normalization process. Then, two stages of multi-task sparse regression are used

to remove noisy or redundant features and samples in the training set. The remaining matrix

is a matrix with the most discriminative features and samples from the training set. The

same set of features selected in the training set are also selected for the testing set. The

shrunk training feature matrix together with the testing feature matrix forms a shrunk feature

matrix Xs. We then stack Xs with the corresponding target outputs Ys (where the values is

unknown for the testing set) to form an incomplete matrix Z. Finally, a matrix completion

algorithm (Goldberg et al., 2010; Ma et al., 2011; Schneider, 2001) is applied to Z, so that

missing features and the unknown testing target outputs can be predicted simultaneously.

The signs of the imputed target labels are then used as the classification output for the

testing samples. The following subsections describe the three main components of the

framework in more details.

3.1. Feature selection

Not all the features are useful in classification. In fact, noisy features may decrease

imputation and classification accuracy. In this step, the noisy or redundant features in the

incomplete dataset are identified and removed through multi-task sparse regression (with

details provided later). However, due to the missing values in the dataset, we can not apply

sparse regression directly to the dataset. We first group the incomplete training set into

several overlapping submatrices that are comprised of samples with complete feature data

for different modality combinations, to which sparse regression algorithm can be applied.

Some parts of the submatrices are overlapping as we use a grouping strategy that uses the

maximum possible numbers of samples and features for each submatrix, so that as much

information as possible is used for sparse regression. For example, Table 3 shows the seven
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possible types of modality combination, denoted as “combination pattern” (CP), for a

dataset of 3 modalities, possibly with incomplete data. As shown in Table 3, a samples with

lower CP is a “subset” of some higher CPs, where these higher CPs contain modality data

that can be grouped with the lower CP to form a submatrix. For instance, the first row of

Table 3 indicates that CP1 is “subset” of CP3, CP5 and CP7, as CP1 contains only

“Modality 1” data, which is also part of CP3, CP5 and CP7’s data. Thus, we can combine

“Modality 1” data from CP3, CP5 and CP7 with CP1 to form a submatrix that contains the

maximum availability of samples with “Modality 1” data.

For the ADNI dataset used in this study, Modality 1, 2 and 3 are used to denote MRI, PET

and CSF, respectively. At ADNI baseline, MRI data is complete while PET and CSF data is

incomplete, resulting four possible types of data combination, i.e., CP1, CP3, CP5 and CP7.

Each CP can borrow data from the higher CPs as indicated in the last column of Table 3 to

form a submatrix. The graphical illustration of the submatrices is shown in Figure 2. The red

blocks in Figure 2 mark the four submatrices and their corresponding target outputs. Each

submatrix has four interrelated target outputs (i.e. 1 label and 3 clinical scores), which can

be learned together using a multi-task learning algorithm, by treating the prediction of each

output target as a task. Let Xi ∈ ℝni×di and Yi ∈ ℝni×ti denote the input submatrix and its

corresponding output matrix for the i-th multi-task learning in the training set, respectively.

Then the multi-task sparse regression of each submatrix is given as

(1)

where ni, di, ti and αi ∈ ℝdi×ti denote the number of samples, the number of features, the

number of target outputs and the weight matrix for the i-th multi-task learning, respectively.

‖.‖2,1 in Eq. (1) is the l2,1-norm (group-lasso (Yuan and Lin, 2006; Liu et al., 2009)) operator

which is defined as , where  denotes the k-th row of αi. The use of l2-

norm for  forces the weights corresponding to the k-th feature (of Xi) across multiple

tasks to be grouped together, while the subsequent use of l1-norm for  forces certain

rows of αi to be all zero. In other words, Eq. (1) tends to select only common features

(corresponding to non-zero-valued rows of αi) for all the prediction tasks. Thus, αi is a

sparse matrix with a significant number of zero-valued rows that correspond to redundant

and irrelevant features in each submatrix. In Figure 2, we arrange αi according to the feature

indices in X, so that the shaded rows in αi are corresponding to the columns in Xi (illustrated

by red block in the Figure), while the empty rows in αi are corresponding to the features not

included in Xi. In this way, each row of αi is corresponding to the same feature index in X.

The features that are selected for at least one of the submatrices (i.e., rows with at least one

non-zero value in [α1 α2 α3 α4]) are finally used for the training and the testing sets. In this

study, we determined αi for each multi-task learning by using 5-fold cross-validation test

based on the accuracy of the label (i.e., first column of Yi) prediction of the training

samples. The training and the testing sets with the selected features are then used in sample

selection as described in the following subsection.
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3.2. Sample selection

In this step, another multi-task learning is used to select representative samples from the

training set that are closely related to the samples in the testing set. This is similar to sparse

representation reported by other liter-atures (Huang and Aviyente, 2006; Wright et al.,

2010), a subset of samples is selected to represent a test sample. The only difference here is

that we perform sparse representation for a group of testing samples, instead of one testing

sample, to 1) select common samples from the training set that well represent the samples in

the testing set, and 2) remove unrelated or redundant samples from the training set. The

procedure of sample selection is similar to feature selection described previously, with some

modifications on the input and output matrices of the multi-task learning.

Let Xtr and Xte respectively denote the shrunk training and testing feature matrices from the

previous step that contain only the selected features. Xtr and Xte are first transposed (or

rotated by 90 degree) so that each column of Xtr
T and Xte

T contains features of a sample.

Then Xtr
T and Xte

T are used as the input and output to the multi-task learning, where the

task is now defined as the prediction of each testing sample from the training samples. If

there are no missing values in Xtr
T and Xte

T, this multi-task learning will select a set of

common samples (analogous to common features in feature selection) in the training set for

all the prediction tasks. However, due to the missing values in Xtr
T and Xte

T , we can not

perform sample selection directly. Instead, similar to feature selection, we group the input

matrix (Xtr
T ) into submatrices that contains complete data for the maximum possible

number of samples and features. For each submatrix in Xtr
T , all the samples in Xte

T that

contain the same set of input features are identified. Each pair of input submatrix and output

submatrix with the same features set forms a multi-task learning problem, with its

optimization equation given as

(2)

where , , βi ∈ ℝn
tri

×n
tei, , ntri and ntei denote the input

submatrix, output submatrix, weight matrix, length of the selected features, number of

training samples, and number of testing samples of the i-th multi-task learning, respectively.

Figure 3 summarizes the illustration of the sample selection. Note that the target matrix is

incomplete like the input matrix. This causes different number of targets for each multi-task

learning, which is reflected by different width of the weight matrix βi. Due to the use of

‖.‖2,1 term in Eq. (2), βi learned is a sparse matrix with some all-zero rows. Training subjects

corresponding to all-zero rows of [β1 β2 β3 β4] are removed as noisy/irrelevant samples. We

assume that removal of noisy or unrelated samples from the training set can consequently

improve the accuracy of the missing values imputation, and thus the classification

performance. To justify this assumption, we have included a simulation test on our proposed

sample selection algorithm using synthetic data in Appendix A.
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3.3. Matrix completion as classification

The original incomplete matrix is shrunk significantly after the feature and sample selection

steps. Let Xs and Ys denote the shrunk version of matrix X and Y, respectively, while ns and

ds denote the number of remaining samples and data features, respectively. The stacked

matrix Z = [Xs Ys] ∈ ℝns×(ds+t) still contains some missing values, including the target

outputs of the test set which are to be estimated. The objective of this step is to impute the

missing input features, missing target labels, and missing clinical scores simultaneously.

Two imputation methods are tested for this step, namely the modified Fixed-point

Continuation (FPC) algorithm (Goldberg et al., 2010; Ma et al., 2011) and the regularized

expectation maximization (EM) algorithm (Schneider, 2001).

3.3.1. Modified FPC (mFPC)—The multi-task regressions used in the features and

samples selection steps have selected the most discriminative input features for the (training)

target outputs and the most representative training samples for the testing samples,

respectively. As a consequence, the columns of target outputs (Ys) of the stacked matrix Z
could be linearly represented by the columns of data features (Xs); while the rows of the

testing samples in Z could be linearly represented by the rows of the training samples. The

matrix Z is thus probably low rank (as some rows could be represented by other rows, etc.).

However, in practice, measurements in Xs and Ys could contain certain level of noises.

Therefore, the incomplete Z can be completed using trace norm minimization (low trace

norm is often used to approximate low rank assumption), together with two regularization

terms (i.e., the second and third term in Eq. (3)) to penalize the noises in Xs and Ys. As the

objective of our study is prediction of target labels, we separate the data in Z into two parts:

1) the target labels (P), and 2) the rest of the data (Q). The regularization terms are changed

accordingly to have one logistic loss function (Lp(u, v) = log(1 + exp(−uv))) for the output

labels (as the output labels can only take value 1 or −1), and one square loss function (Lq(u,

v) = 1/2(u − v)2) for the rest of the data (as other data can take any value). The imputation

optimization problem is thus given as:

(3)

where ΩP and ΩQ denote the set of observed (i.e., non-missing) labels in Ys and the set of

observed values for the rest of the data, respectively; |.| denotes an operator for the number

of elements; ‖.‖* denotes an operator for the trace norm; and zij, pij and qij are the predicted

observed values, observed target labels and other observed data, respectively. λm and µ are

the positive parameters used to control the focus of the minimization problem in Eq. (3). If

λm is high, Eq. (3) will focus on minimizing the Lp term (second term); if µ is high, Eq. (3)

will focus on minimizing the trace norm term (i.e., stronger low rank assumption), and vice

versa.

This optimization problem is solved by using the modified FPC algorithm (Goldberg et al.,

2010), which consists of two alternating steps for each iteration k:

1. Gradient step:
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(4)

where τ is the step size and g(Zk) is the matrix gradient which is defined as:

(5)

2. Shrinkage step:

(6)

where S(·) is the matrix shrinkage operator. If SVD of Ak is given as UΛVT, then

the shrinkage operator is given as:

(7)

where max(·) is the elementwise maximum operator.

These two steps are iterated until convergence where the objective function in Eq. (3) at k-th

iteration is stable.

3.3.2. Regularized EM (rEM)—We also use the regularized EM (rEM) algorithm

developed in (Schneider, 2001) to impute missing values. Symbols defined in this

subsection should not be confused with the symbols used in other sections. Let X ∈ ℝn×d be

an incomplete matrix with n number of samples and d number of variables, its mean vector μ

∈ ℝ1×d and covariance matrix Σ ∈ ℝd×d are to be estimated. For a given sample x ∈ ℝ1×d

with missing values, let xm ∈ ℝ1×d
m and xa ∈ ℝ1×da denote the parts of vector x containing

variables with missing values and available values, respectively. Then xm can be estimated

through linear regression model below

(8)

where µm ∈ ℝ1×dm and µa ∈ ℝ1×da represent the portions of μ that corresponding to xm and

xa, respectively, while B ∈ ℝd
a
×dm and e ∈ ℝ1×dm are the regression coefficient matrix and

random residual vector (with zero mean and unknown covariance matrix C ∈ ℝdm×dm),

respectively. We are now ready to describe the imputation using EM algorithm, which is an

iterative process that consists of three steps, 1) expectation step: the mean μ and covariance

matrix Σ is estimated, 2) maximization step: the conditional maximum like-lihood estimate

(MLE) of the parameters of the regression model (i.e, B and C) is computed, based on the

expected value of μ and Σ, and, 3) imputation step: the missing values is estimated using (8)

based on the computed parameters. After missing values are imputed, it will iterate back to

step 1, where a new set of μ and Σ is estimated based on the completed x, and the whole

process is repeated until a convergence condition is met (i.e., the estimated μ and Σ become

stable). Regularized EM algorithm consists of the same steps as EM algorithm, with a
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modification on the maximization step, where the regression coefficients in B are computed

through ridge regression method (Hoerl and Kennard, 1970). For more detailed information

about rEM algorithm, interested reader may refer to (Schneider, 2001). In our framework,

rEM is used to estimate unknown target outputs and missing input features in the matrix

completion step.

4. Results and discussions

The proposed framework was tested using the ADNI multi-modality dataset, which includes

MRI, PET and CSF data. In this section, the proposed framework is first compared with the

baseline frameworks which will be defined in the following subsection. Then, the proposed

framework is compared with two state-of-the-art methods (i.e., incomplete Multi-Source

Feature (iMSF) learning method and Ingalhalikar’s algorithm for classification based on

incomplete dataset) and also an unimodal classifier using only MRI features. In addition, we

evaluate the effect of parameters selection (i.e., λs, λm and µ) of the proposed framework on

the classification performance. Finally, we also identify the features that are always being

selected in this study.

The classification performance of all the compared methods is evaluated using a 10-fold

cross-validation scheme. For each fold, another 5-fold cross-validation scheme is applied on

the training dataset to select the best parameters for multi-task learning in feature selection

and also for sparse regression based classifier in the baseline methods. The multi-task

learning in feature selection and sample selection is realized by using matlab function

mcLeastR from SLEP4. SLEP is a powerful sparse learning package where it achieves fast

convergence in computation by using Nesterov’s method (Liu et al., 2009; Nesterov, 1983)

to solve smooth reformulation of the problem and accelerated gradient method (Nesterov,

2007; Liu and Ye, 2010) to solve regularized non-smooth optimization problem. There are

infinite choices for λf (i.e., multi-task learning parameter in feature selection). Fortunately

for the solver mcLeastR that we used, it automatically computes the maximum λmax value

for our problem. Thus, each λf value that we input to this solver is treated as a fraction to

λmax, e.g., the true regularization parameter used for λf = 0.1 is actually 0.1 × λmax.

Therefore, we choose parameter λf from these candidate values: {0.001, 0.005, 0.01, 0.05,

0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }, which roughly cover the whole range of

possible λf values. The λf value used for each fold of experiment is determined based on the

highest accuracy of regressed Y label of the training data through 5-fold cross-validation test

on the training data. As a result, λf is different for each fold of experiment, i.e., different data

sparsity for each fold of experiment is assumed. For sample selection, we fix a small value

for λs, aiming to only remove unrelated samples from the training set. For mFPC matrix

completion algorithm, we use grid search to select values of its parameters (i.e., μ and λm),

i.e., fixed value of μ and λm are used for all the folds based on the best classification result in

grid search.

Four classification performance measures are used in this study, namely 1) accuracy: the

number of correctly classified samples divided by the total number of samples; 2)

4http://www.public.asu.edu/~jye02/Software/SLEP/index.htm
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sensitivity: the number of correctly classified positive samples divided by the total number

of positive samples; 3) specificity: the number of correctly classified negative samples

divided by the total number of negative samples; and 4) area under receiver operating

characteristic (ROC) curve (AUC). The positive samples are referred to AD in AD/NC

classification and MCI in MCI/NC classification, respectively.

4.1. Comparison with baseline frameworks

Four imputation methods are included in the baseline framework for comparison in this

study:

1. Zero imputation. In this method, the missing portion of the input data matrix is

filled with zero. Since all the features were z-normalized (i.e., with zero mean and

unit standard deviation) before the imputation process, “zero imputation” is

equivalent to fill the missing feature values with the average observed feature

values (i.e., all the missing values in a column of data matrix are filled with the

mean of the observed values in the same column).

2. k-nearest neighbor (KNN) imputation (Speed, 2003; Troyanskaya et al., 2001).

The missing values are filled with a weighted mean of the k nearest-neighbor rows.

The weights are inversely proportional to the Euclidean distances from the

neighboring rows. We set k = 20 after some empirical tests.

3. Regularized expectation maximization (rEM) (Schneider, 2001). Details are as

described in the previous section. We used the default parameter values for the

rEM code downloaded from http://www.clidyn.ethz.ch/imputation/index.html.

4. Fixed-point continuation (FPC) (Ma et al., 2011). FPC is one of the low rank

matrix completion method that uses the fixed point and Bregman iterative

algorithms. It is the original version of Eq. (3) with the regularization terms Lp and

Lq replaced by a square loss function for all the observed data. The matlab code for

FPC is included in the singular value thresholding (SVT) package5. The parameter

value of FPC, i.e., µ, is determined empirically.

These imputation methods are used in two baseline frameworks for comparisons:

1. Baseline 1: Conventional method. Impute the incomplete data matrix and then train

a classifier using the completed training set data.

2. Baseline 2: Use the proposed feature and sample selection method to shrink the

incomplete dataset, impute the missing features in the shrunk incomplete feature

matrix, and then train a classifier based on the completed shrunk training set data.

The only difference between the two baseline frameworks above, is that the first baseline

framework imputes missing values on the original feature matrix, while the second baseline

framework imputes missing values on the shrunk feature matrix. We use sparse regression

classifier for the two base-line frameworks, its formulation is given as:

5http://svt.stanford.edu/code.html
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(9)

where X, Y, and α are defined as the input feature matrix, the output target matrix (including

class labels and clinical scores), and the weight matrix, respectively. We obtain α based on

the completed training set and multiply it with the completed feature matrix from the testing

set to produce regressed outputs. The sign of the regressed output of a testing sample that

corresponds to the class label is used as the predicted class label. There is one regularization

parameter in Eq. (9), i.e., λ, which is always positive and is primarily used to control

features sparsity in X. We determine the value of λ by performing a 5-fold cross-validation

test based on the completed training dataset.

Table 4 summarizes the AD/NC classification performance of all the frameworks in

comparison. Results reported are the average measurements of 10 repetitions of 10-fold

cross-validation test. As shown in the Table 4, all performance of baseline 1 frameworks are

improved in baseline 2 framework (i.e., from 0.80–0.83 to 0.85–0.87). In fact, all the four

performance measures (i.e., accuracy, sensitivity, specificity and AUC) increase after

applying the proposed feature and sample selection steps before the imputation in base-line

2 framework. In addition, the average imputation time is significantly reduced, as shown in

the last column of Table 4. For example, FPC and rEM respectively complete the imputation

with 8 times and 4 times faster in the baseline 2 framework, if compared with the baseline 1

framework. We thus have shown the efficacy of the proposed feature and sample selection

methods in removing the unrelated samples and noisy features, which is beneficial to the

imputation process, both in terms of accuracy and speed. In addition, the classification

performance is further improved to 0.88–0.89 if the target labels are imputed simultaneously

with the incomplete data features using the modified FPC (mFPC) and rEM methods.

Although the classification performances of both mFPC and rEM are similar, mFPC

performs significantly better than rEM in terms of computation speed. Similar findings are

observed for MCI/NC classification as shown in Table 5.

4.2. Comparison with non-imputation state-of-the-art methods

Recently, several algorithms have been proposed to deal with incomplete dataset where the

data is missing in blocks. We compare our proposed frame-work with these methods, which

are briefly described in the following:

1. Incomplete Multi-source Feature learning (iMSF)6 (Yuan et al., 2012; Xiang et

al., 2013). The iMSF predicts the target output labels of the incomplete multiple

heterogeneous data without involving data imputation. This is a multi-task learning

algorithm that is able to deal with missing feature values. The iMSF is available in

two versions for multi-task learning part, i.e., the logistic version and the regression

version, along with one regularization parameter. We test both versions of iMSF

with a range of regularization parameters (i.e., {0.005, 0.01, 0.05, 0.1, 0.2, 0.3 and

6http://www.public.asu.edu/~jye02/Software/MALSAR/
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0.4}) and finally choose the one with the highest classification accuracy for

comparison.

2. Ingalhalikar’s algorithm (Ingalhalikar et al., 2012). This algorithm uses an

ensemble classification technique to fuse decision results from multiple classifiers

constructed from subsets of data. The data subsets are obtained by applying a

grouping strategy similar to ours. We implemented Ingalhalikar’s algorithm and

tested it on our dataset. Specifically, we group the data into subsets, select features

using signal-to-noise ratio coefficient filter (Guyon and Elisseeff, 2003), use linear

discriminant analysis (LDA) as classifier, and finally fuse all the classification

results of the subsets into a single result for each sample. We used two fusion

methods for this algorithm, i.e., 1) weighted average: each classifier is assigned a

weight based on its training classification error, 2) average: all the classifiers are

assigned with equal weight.

Tables 6 and 7 show the comparison of classification performance between the proposed

framework (using rEM and mFPC imputation methods) and the iMSF and Ingalhalikar’s

algorithm. Both tables shows that the proposed framework outperforms the Ingalhalikar’s

algorithm but performs competitively to iMSF.

iMSF-regression has the highest sensitivity for AD/NC classification and has the highest

specificity for MCI/NC classification. iMSF-logistic performs well in MCI/NC

classification, may be because that there is non-linear relationship between the features and

MCI, which can be better captured by logistic loss function. However, iMSF-logistic does

not perform as well in AD/NC classification, if compared with iMSF-regression and our

proposed methods. In addition, both versions of iMSF have lower AUC for both categories

of classification, if compared with our proposed methods.

Ingalhalikar’s algorithm has the lowest performance in this study if compared with iMSF

and our proposed method. The proposed framework, though not involving ensemble

procedure, is competitive with state-of-the-art algorithm.

The proposed framework performs the best in term of classification accuracy and AUC

values. In term of classification accuracy, the proposed framework using rEM performs the

best in AD/NC classification while the proposed framework using mFPC performs the best

in MCI/NC classification. Though the performance difference of the proposed framework

and iMSF is small in term of classification accuracy (about 1%), there is a sub-stantially

significant difference in term of AUC, which is not sensitive to threshold. Both mFPC and

rEM imputation algorithms achieve the highest AUC values for both AD/NC and MCI/NC

classifications, which are the most important measure in classification.

We performed additional t-tests to examine the significance of our results. We picked AUC

values for the t-test, as AUC values are not sensitive to threshold. All the AUC values

obtained from the 10 repetitions of the 10-fold cross-validation are used for comparisons,

i.e., 100 AUC values from the proposed methods, versus 100 AUC values from the methods

of comparison. The null hypothesis is that both methods have no significant difference in

term of AUC values, while the alternative hypothesis is there is significant difference in
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term of AUC values obtained by the two methods at 95% confidence level. We show the p-

values of the t-test at the last two columns of the Table 6 and Table 7. The p-values that are

marked with * indicates that the differences are significant at 95% confidence level.

Table 6 shows that our proposed framework using rEM and mFPC perform statistically

significantly better than all the methods in comparison in both the AD/NC and MCI/NC

classifications, in term of AUC values.

4.3. Comparison with unimodal classifier using MRI data

We also compare the performance of the proposed framework with a unimodal classifier

using only MRI data, as shown in Table 8. Since all the samples have MRI data, the number

of samples used is same as previous experiment. The same sparse regression classifier in Eq.

(9) is used in this test. Superior performance of the proposed framework demonstrates the

importance of including information from other modalities to improve disease diagnosis

accuracy.

4.4. Effect of parameters selection of mFPC

It is important to select a set of robust parameters for matrix completion, so that the

proposed framework works well for most of the situations. Figure 4 shows the classification

accuracies and AUC of the proposed mFPC-based framework for a range of λm and μ

values. As shown in the figure, the classification accuracy is consistently high when small μ

and large λm are used. With small μ and large λm, the objective function in Eq. (3) will focus

on the minimization of logistic function (i.e., target label prediction) instead of the

minimization of the trace norm (i.e., low rank matrix completion). This implies that the

incomplete matrix Z is completed using higher rank than expected. This is probably due to

the measurement noise in the dataset, which causes an increase in the rank of Z. Based on

the plot in Figure 4, Eq. (3) that satisfy μ ≤ 10−3 and λm ≥ 0.05 yield reasonably good label

prediction.

4.5. Effect of λs on sample selection

Figure 5 shows the effect of λs on sample selection in Eq. (2) to the average number of

samples selected (from the training dataset) and the average classification accuracy (i.e.,

accuracy of the label imputation) of the matrix completion. As shown in Figure 5, the

average number of samples selected reduces gradually when λs is decreasing, while

relatively consistent in terms of classification accuracy for mFPC. This implies that there are

a lot of redundant samples in the training set, which can be removed without significantly

affecting the accuracy of the label imputation. To examine the performance of sample

selection using synthetic data, please refer to Appendix A.

One of the possible limitations of the proposed sample selection is that the output space is

not considered in the algorithm (as this information is not available for the testing samples),

which might cause possible bias in the result if there is measurement noise in the output

space. For example, the feature space for highly coherent samples is very similar, but due to

measurement noise in the output space, they may have different outputs. In worst case

scenario (e.g., using too large λs value), the l1-regularized algorithms (i.e., the l1-norm part
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of the l2,1-norm) may select only one sample and discard the others, which cause bias in the

result. This problem can be ameliorated by including the additional l2-regularization, such as

that done in Elastic Net (Zou and Hastie, 2005). This will help retain some coherent samples

and allow some averaging effect. Another possible solution is to perform sample selection

and output variable estimation iteratively, which we leave it as our future work.

4.6. Most discriminative features

Table 9 shows the statistics of the features selected by the proposed feature selection method

for the incomplete ADNI data, during the AD/NC and MCI/NC classifications, respectively.

On average, more than 60% of the features is removed for both cases. The number of

features selected for each fold varied significantly, e.g., it can go as low as 45 or as high as

120 for AD/NC classification. This is probably because the regularization parameter λf in

Eq. (1) is chosen from a wide range of values (i.e., {0.001, …, 0.9}).

In addition, we also include the distribution of the most discriminative features according to

modalities in Table 9. We define the most discriminative features (MDFs) as the features

that were selected for more than 90% of the times, i.e., more than 90 times in the 10

repetitions of the 10-fold cross-validation run. Most of the MDFs are located in MRI

modality, for both the AD/NC and MCI/NC classifications. We also observed that more

features were selected for AD/NC than MCI/NC classification. This is probably because

MCI, which is the early stage of AD, affects less brain regions (or ROIs) if compared with

AD, where its abnormalities are widely spread across brain regions.

Table 10 shows the names of the MDFs for each modality. The common MDFs selected for

AD/NC and MCI/NC classifications are also included in Table 10, if exist. The common

MDFs for MRI modality include hippocampal formation, middle temporal gyrus, uncus, and

amygdala. The atrophy at these ROIs has been reported to be associated with memory and

cognitive impairments or closely related to the AD/MCI pathology (De Leon et al., 1997;

Convit et al., 2000; Yang et al., 2012; Poulin et al., 2011). For AD/NC classification, since

there are many MDFs from MRI, we only list the MDFs that were selected in all cross-

validations and repetitions in Table 10.

On the other hand, the common MDFs for FDG-PET modality include middle frontal gyrus

and precuneus, which are similar to the findings in (Mielke et al., 1998; Scarmeas et al.,

2004). For CSF biomarkers, the selected MDFs were t-tau/Aβ42 for AD/NC classification

and Aβ42 and t-tau for MCI/NC classification.

Figures 6 and 7 graphically show the locations of the selected ROI-based features (for MRI

and PET modalities) for both the AD/NC and MCI/NC classifications, respectively.

5. Conclusion

In this work, we propose a novel classification framework that is able to deal with datasets

with significant amount of missing data (e.g., data missing in blocks). Conventional

imputation-based classification approach is slow and inaccurate for this type of dataset. We

accomplish accurate label prediction by applying matrix completion on a shrunk version of
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the data matrix. The matrix shrinkage operation simplifies the imputation task since

redundant features and samples have been removed and less missing data needs to be

imputed. The experimental results demonstrate the efficacy of feature selection and sample

selection in improving the classification performance of the conventional imputation-based

classification method, both in terms of speed and accuracy. The proposed framework also

yields competitive performance, compared with the state-of-the-art methods such as iMSF

and Ingalhalikar’s algorithm. Based on the t-test of their AUC values, the proposed

framework using rEM and mFPC are statistically significantly better than iMSF and

Ingalhalikar’s algorithm in AD/NC and MCI/NC classifications.
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Appendix A. Test on sample selection algorithm using synthetic data

Sample selection was used in this work to select samples from the training set that are

closely related to the testing samples before imputation of missing values and class labels.

We assume that sample selection can remove outlier or unrelated samples from

inhomogeneous dataset, and consequently improves the classification performance. To

justify our assumption, we have tested the proposed sample selection algorithm by using

several sets of synthetic data. The synthetic data with ns number of samples, nf number of

variables and σ noise level, is generated as follows:

1. Generate a rank-r matrix Xr ∈ ℝns×nf by multiplying a randomly generated ns × r

matrix with another randomly generated r × nf matrix, where elements of both

matrices are drawn i.i.d. from a standard normal distribution.

2. Add Gaussian noise N(0, σ2) to each element of matrix Xr.

3. Generate a weight vector w ∈ ℝnf×1 where its elements are drawn i.i.d. from a

standard normal distribution.

4. Generate output label Y ∈ ℝnf×1 from Y = sign(Xr × w + N), where N is a noise

vector with its elements are drawn i.i.d. from N(0, σ2).

We simulated a multi-modal dataset by generating two different Xr with the same label Y,

and arranging them side by side, e.g., X = [Xr1Xr2]. We simulated heterogeneous dataset by
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generating several X with different rank or w, and stacking them together, e.g., Xhet = [X1;

X2], where X1 ∈ ℝns1 ×2nf and X2 ∈ ℝns2 ×2nf. We simulated missing data by randomly

removing half of the feature data (row by row) from the second modality of Xhet (i.e.,Xr2

part for both X1 and X2).

Table A.11 shows the details of the generated data. One homogeneous data and two

inhomogeneous (heterogeneous) data were generated. The homogenous data was created by

using a single matrix X1, the inhomogeneous data 1 was created by stacking X1 and X2,

while inhomogeneous data 2 was created by stacking X1, X2 and X3. Each Xm, m = {1, 2, 3}

is a “two-modality” simulated data, with each modality containing 80 features (i.e., nf = 80),

respectively. The rank for each modality data is shown in Table A.11. Each synthesized data

with four different levels of noise (i.e., σ = {2, 1, 0.5, 0.1}) were used in experiment.

We then tested our framework (specifically the sample selection algorithm) on the synthetic

data by using 10-fold cross-validation scheme, similar to the scheme used in this manuscript.

The simulation results using homogeneous and 2 types of inhomogeneous data are shown in

Figure A.8, A.9 and A.10, respectively. The x-axis of these figures is the λ in sample

selection, the higher the λ value, the more the removed training samples. The average

number of samples selected from the training set for each fold is shown at the bottom right

corner of all the three figures. The other three plots in these figures are the classification

accuracies versus λ, using mFPC, KNN and EM imputations, respectively. From the Figure

A.8, the classification accuracies for mFPC and KNN are rather stable for all the λ values, as

expected for homogeneous data. However, we surprisingly notice that the sample selection

improves the classification accuracies for EM imputation using incomplete homogeneous

data matrix. This is probably because sample selection removes some noisy samples from

the training samples that improves the EM imputation. From the Figure A.9, where the

number of “outlier” samples is about 10% of the total samples, the sample selection

algorithm slightly improves the classification accuracies for all the three imputation

methods, especially when the noise level in the data is higher, i.e., σ = {2, 1}. However, we

also notice that there are some declines in classification accuracies for low noise curves (σ =

{0.1, 0.5}) using KNN and EM imputations, when higher λ values are used. When the

number of “outlier” samples is increased to about 20% of the total samples, the classification

accuracies of mFPC and KNN improve significantly, particularly for data with higher noise

level, as shown in Figure A.10. The effect of sample selection on EM imputation is not

obvious for both the inhomogeneous data matrices 1 and 2.

In summary, these simulation results support our assumption that removing noisy samples

(due to Gaussian noise) or unrelated samples (due to inhomogeneous data) from the training

dataset can improve classification performance. Sample selection improves mFPC and KNN

imputation when the data is more noisy and inhomogeneous, while improves EM imputation

when the data is homogeneous.
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Table A.11

Synthetic data: One homogeneous data matrix and two inhomogeneous data matrices. Xm,m

= {1, 2, 3} is a simulated two-modality data matrix, e.g., [Xr1Xr2], with nsm number of

samples and rank (r1r2), where r1 and r2 are the ranks for Xr1 and Xr2, respectively. The

inhomogeneous data matrix 1 is simulated by stacking X1 and X2, while the inhomogeneous

data matrix 2 is simulated by stacking X1X2 and X3 data.

Data matrices X1 X2 X3

ns1 rank ns2 rank ns3 rank

Homogeneous 100 (60,40) 0 − 0 −

Inhomogeneous 1 100 (60,40) 10 (20,10) 0 −

Inhomogeneous 2 100 (60,40) 10 (20,10) 10 (10,10)

Figure A.8.
Classification result for homogenous data matrix.
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Figure A.9.
Classification result for inhomogeneous data matrix 1.
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Figure A.10.
Classification result for inhomogeneous data matrix 2.
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Research Highlights

• Identify AD/MCI using incomplete dataset via matrix shrinkage and completion.

• A 2-step multi-task learning algorithm is used for feature and sample selection.

• Missing features and the unknown target labels are imputed simultaneously.

• Proposed feature and sample selection improves conventional imputation-based

methods.

• Proposed framework outperforms conventional methods in term of speed and

accuracy.
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Figure 1.
Classification via matrix shrinkage and matrix completion. There are three main parts in this

framework: feature selection, sample selection and matrix completion. Note that feature

selection only involves training set. (Xs, Ys: Shrunk version of X and Y; Zc: Completed

version of Z.)
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Figure 2.
Feature selection for incomplete multi-modal data matrix with multiple related target outputs

by first grouping the data into submatrices and then using multi-task learning on each

submatrix to extract common discriminative features. The red boxes come in pairs, which

mark the submatrices that are comprised of largest possible number of samples for each

pattern of modality combination and their corresponding target outputs.
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Figure 3.
Sample selection. In this study, sample selection is realized by modifying the input and

output matrices in feature selection illustrated in Figure 2. Specifically, we transpose the

training and testing feature matrices, and use the transposed training and testing feature

matrices as the input and target output of the multi-task learning, respectively.
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Figure 4.
Effect of the parameter changes in mFPC algorithm to AD/NC and MCI/NC classification

accuracies.
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Figure 5.
Effect of the parameter λs on the number of samples selected and the corresponding

classification accuracies for AD/NC and MCI/NC classification using mFPC of the proposed

framework.

Thung et al. Page 30

Neuroimage. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6.
MDFs in AD/NC classification. (Left: MRI, right: PET)
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Figure 7.
MDFs in MCI/NC classification. (Left: MRI, right: PET)
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Table 2

Number of subjects (ADNI database at baseline) and number of features used in this study.

Modalities

MRI PET CSF All

Number of features 93 93 5 191

AD subjects 186 93 102 51

MCI subjects 395 203 192 99

NC subjects 226 101 112 52

Total subjects 807 397 406 202
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Table 3

Grouping of data according to maximum availability of samples for each combination pattern (CP) of

modalities. The availability of modalities is represented by binary number at the center column of the Table

(‘0’ denotes ‘missing’, ‘1’ denotes ‘available’), while its decimal equivalent is represented by the CP number

on the leftmost column of the Table. Samples with lower CP number can be grouped with the samples with

higher CP numbers at the last column of the Table to form a submatrix. In this study, the “Modality 1”,

“Modality 2” and “Modality 3” represent “MRI”, “PET” and “CSF”, respectively.

Combination pattern
(CP)

Availability of data Subset of
CP

Modality 1 Modality 2 Modality 3

1 1 0 0 3, 5, 7

2 0 1 0 3, 6, 7

3 1 1 0 7

4 0 0 1 5, 6, 7

5 1 0 1 7

6 0 1 1 7

7 1 1 1 −
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Table 10

Most discriminative features (MDFs) selected for each modality. (Please refer to Table 9 for definition of

MDF. For MRI’s MDFs in AD/NC classification, only those that are selected 100% of the time are listed

here.)

Modality AD/NC MCI/NC

MRI Common MDFs: Hippocampal formation right, hippocampal formation left, middle temporal gyrus left, uncus left, amygdala
right.

Medial frontal gyrus, Angular gyrus
right, precuneus right, superior parietal lobule left, precentral gyrus left,
perirhinal cortex left, lateral occipitotemporal gyrus right, amygdala
left, middle temporal gyrus right,
corpus callosum, inferior temporal
gyrus right, lateral occipitotemporal
gyrus left.

Entorhinal cortex left, cuneus left,
lingual gyrus left, temporal pole left,
middle occipital gyrus left.

PET Common MDFs: Middle frontal gyrus right, precuneus right, precuneus left, Medial front-orbital gyrus right.

Insula right Angular gyrus left

CSF t-tau/Aβ42 Aβ42 and t-tau.
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