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Abstract

Perspectives of human brain functional connectivity continue to evolve. Static representations of

functional interactions between brain regions are rapidly giving way to dynamic perspectives,

which emphasizes non-random temporal variations in intrinsic functional connectivity (iFC)

patterns. Here, we bring this dynamic perspective to our understanding of iFC patterns for

posteromedial cortex (PMC), a cortical hub known for its functional diversity. Previous work has

consistently differentiated iFC patterns among PMC subregions, though assumed static iFC over

time. Here, we assessed iFC as a function of time utilizing a sliding-window correlation approach,

and applied hierarchical clustering to detect representative iFC states from the windowed iFC.

Across subregions, five iFC states were detected over time. Although with differing frequencies,

each subregion was associated with each of the states, suggesting that these iFC states are

“common” to PMC subregions. Importantly, each subregion possessed a unique preferred state(s)

and distinct transition patterns, explaining previously observed iFC differentiations. These results

resonate with task-based fMRI studies suggesting that large-scale functional networks can be

flexibly reconfigured in response to changing task-demands. Additionally, we used retest scans

(~1 week later) to demonstrate the reproducibility of the iFC states identified, and establish

moderate to high test-retest reliability for various metrics used to quantify switching behaviors.

We also demonstrate the ability of dynamic properties in the visual PMC subregion to index inter-

individual differences in a measure of concept formation and mental flexibility. These findings
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suggest functional relevance of dynamic iFC and its potential utility in biomarker identification

over time, as d-iFC methodologies are refined and mature.
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temporal dynamics

1. Introduction

Posteromedial cortex (PMC), a cortical hub commonly referred to as ‘posterior cingulate/

precuneus’, is implicated in a diverse range of higher-order cognitive and affective functions

(Cavanna and Trimble, 2006). Efforts to understand the heterogeneity of the roles ascribed

to PMC have increasingly highlighted the presence of functionally differentiable

subdivisions. Initially reliant on cytoarchitectonic (Brodmann, 1909; Vogt, 1911) and animal

tract-tracing studies (Pandya and Seltzer, 1982; Parvizi et al., 2006), models positing PMC

subregions have gained support from resting-state fMRI (R-fMRI) studies of intrinsic

functional connectivity (iFC). For example, seed-based correlation analysis of iFC

differentiated the PMC into four distinct subregions (three in precuneus and one in posterior

cingulate cortex) associated with unique functional systems (visual, cognitive, sensorimotor,

and limbic) (Margulies et al., 2009). Recent data-driven approaches (e.g., cluster analysis),

which avoid potential biases of a priori models, confirmed the presence of PMC

subdivisions (Cauda et al., 2010; Zhang and Li, 2012; Zhang et al., 2012). However, in

describing the connectivity of these subregions, prior studies have relied on a key

assumption – namely, that iFC patterns are static during an R-fMRI scan.

Recent studies have questioned the temporal invariance of iFC patterns. Using a growing list

of data-driven methods, investigators have found that the constituents of intrinsic

connectivity networks (ICNs), as well as their within- and between-network connectivity

vary over time (Chang and Glover, 2010; Handwerker et al., 2012; see Hutchison et al., In

press, for a review; Kang et al., 2011; Kiviniemi et al., 2011; Smith et al., 2012). Rather than

interpreting such variations as random noise, most posit that they reflect meaningful

dynamic properties of iFC. In particular, Allen et al. (2012) found that iFC alternates among

a finite number of states – each characterized by a highly structured and quasi-stable

connectivity pattern that emerges and dissolves with periods of tens of seconds to minutes.

Concerns about potential confounds such as motion were alleviated by finding iFC

dynamics in anesthetized nonhuman primates (Hutchison et al., 2012) and rodents (Keilholz

et al., 2013; Majeed et al., 2011). The validity of transient functional interactions is

supported by neuronal (Popa et al., 2009) and neurophysiological (Chang et al., 2013; de

Pasquale et al., 2012) approaches as well.

Here, we revisit previously established iFC differentiations among PMC subregions, now

taking into account temporal dynamics. Specifically, we explore the possibility that PMC

subregions have a common set of iFC states (i.e., highly structured and quasi-stable

connectivity patterns), the existence of which would emphasize the flexibility of network

associations and would resonate with task-based phenomena. To identify common iFC
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states, we: 1) used a sliding-window correlation approach to characterize iFC over time for

each seed, 2) pooled iFC windows across seeds and participants, and 3) grouped them using

hierarchical clustering. Temporal profiles for each subregion were then reconstructed from

the cluster assignments and used to determine the extent to which iFC states are “common”

to PMC subdivisions, and characterize potential differences in transition behaviors. Finally,

we assessed the reproducibility and test-retest reliability of these state-related findings –

properties commonly assumed, but not yet tested.

2. Methods

2.1 Dataset and data acquisition

The current study utilized the Nathan Kline Institute (NKI) test-retest (TRT) dataset

publically available via the International Neuroimaging Data-Sharing Initiative (INDI:

http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html). Two

participants were excluded from the original release due to either brain atrophy or a missing

retest session, leaving a final sample of 22 participants (16 males, age range 19-60, mean =

33.45, SD = 12.53). An MPRAGE structural image and two ten-minute resting scans (at

least one week apart) were collected for each participant in a Siemens Trio 3.0 T scanner.

Participants were instructed to keep their eyes open and fixate on a central cross on the

screen. The resting scans were collected using a multiband EPI sequence (TE = 30 ms, flip

angle = 60°, slice thickness = 3.0 mm, field of view = 222 mm, matrix size = 74 × 74, TR =

645 ms; no gap, resolution = 3.0 × 3.0 × 3.0 mm3) (Moeller et al., 2010). In addition to these

resting state scans, test-retest resting state scans using two different scanning protocols (2 ×

2 × 2 mm resolution, TR = 1400ms; and 3 × 3 × 3 mm resolution, TR = 2500ms), and three

non-repeated task scans (i.e. visual check-board stimulation, breath holding, eye movement

calibration) following resting scans were acquired on these participants. These additional

scans were not used in the current study.

As part of the NKI-Rockland protocol, phenotypic characterizations (http://

fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/FrontPage.html) were obtained for 16

of the 22 participants. Psychiatric assessments using the Structured Clinical Interview for the

DSM-IV (SCID-I/NP, First et al., 2002) detected that three of the participants met criteria

for a current episode of major depressive disorder. We verified in our dynamic iFC (d-iFC)

analyses and neuropsychological assessments that these individuals did not represent

extreme outliers. For each of the state dynamic metrics, and each of neuropsychological

scores, extreme outliers were identified using the corresponding three inter-quartile range.

Results indicated that no depressive patients are outliers in any of the indices (see Inline

Supplementary Table S2 for details). As such, they were included in all analyses to increase

the statistical power for this exploratory study. All data were collected according to

protocols approved by the institutional review board of the NKI. Informed consent was

obtained from each participant prior to participation.

2.2 Imaging preprocessing

Data were preprocessed using the Data Processing Assistant for Resting-State fMRI

(DPARSF, Yan and Zang, 2010, http://www.restfmri.net), which is based on Statistical
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Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI

Data Analysis Toolkit (REST, Song et al., 2011, http://www.restfmri.net). The first ten

seconds of data were removed to allow data to reach T1 equilibrium, leaving a total of 884

volumes for final analysis. The time series were realigned to the first image and then to the

mean of all functional images using a six-parameter (rigid body) linear transformation. After

realignment, individual structural images (T1-weighted MPRAGE) were co-registered to the

mean functional image using a 6 degrees-of-freedom linear transformation without re-

sampling. The registered T1 images were segmented into gray matter (GM), white matter

(WM) and cerebrospinal fluid (CSF) using the New Segment module (Ashburner and

Friston, 2005) in SPM8.

The realigned data were regressed on 27 nuisance covariates (signals from WM, CSF, global

signal, and Friston-24 motion parameters) to reduce the potential effects of physiological

processes (e.g. respiration and cardiac processes) and motion. Linear and quadratic trends

were removed to account for scanner drift. The Friston 24-parameter model (i.e., 6 head

motion parameters, 6 head motion parameters one time point before, and the 12

corresponding squared items) (Friston et al., 1996) was used to regress out head motion

based on recent reports demonstrating that higher-order models were more effective in

removing head motion effects (Satterthwaite et al., 2012; Yan et al., 2013a). The individual

4D residual volume was spatially normalized to the Montreal Neurological Institute (MNI)

space using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra

(DARTEL) in SPM8 (Ashburner, 2007). The time series of each voxel were then

standardized to zero mean and unit variance.

After preprocessing, normalized time series for 4 spherical seed regions (radius: 3mm) and

156 target regions of interests (ROIs) were extracted in MNI space. The seed locations were

selected based on a previous study (Margulies et al., 2009) to represent one posterior

cingulate cortex (PCC) subregion (retrosplenial region, seed 1, location: -2/-36/35) and three

subdivisions of precuneus with different functional roles: sensorimotor anterior (seed2,

location: -2/-47/58), cognitive/associative central (seed 3, location: -2/-64/45), and visual

posterior precuneal region (seed 4, location: -1/-78/43). These four seeds correspond to

seeds 4, 6, 14, and 17 in Margulies et al. (2009), respectively. They were previously

determined to be representative of four distinct PMC subdivisions based upon their unique

iFC patterns. The specific iFC patterns associated with these seeds corresponded to limbic

(seed 4), motor (seed 6), cognitive (seed 14), and visual (seed 17) networks predicted from

prior tract-tracing studies in the macaque monkey.

Target regions were defined using an atlas derived from the spatially constrained functional

parcellation of an independent dataset (Craddock et al., 2012). Twenty-one ROIs

corresponding to brain stem and cerebellum and 23 ROIs corresponding to PMC (i.e.

precuneus and PCC) were removed from the atlas, leaving a total of 156 target ROIs for the

analysis. Imaging of the brainstem and cerebellum is particularly susceptible to motion

induced by physiological processes such as cardiac pulsation and respiration, and

inconsistent slice coverage across individuals. Given the lack of physiological monitoring

(e.g., respiration, cardiac cycle) in our acquisition, we removed these regions from the

analysis to minimize potential confounds in the dynamic patterns revealed. PMC regions
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were also removed from the set of target regions to be conservative and avoid influences

between PMC subregions with respect to their findings. Static and dynamic iFC analyses

that specifically examined the connectivity between the four representative PMC seed

regions are reported in Supplementary Materials (see Supporting Information, Inline

Supplementary Table S1, and Fig. S1).

2.3 Static iFC analysis: replication of Margulies et al. 2009

To replicate previous static iFC (s-iFC) analysis results (Margulies et al., 2009), Pearson’s

correlation coefficients were computed between each seed and 156 target ROIs at the

individual level. The correlation coefficients were then Fisher Z-transformed. At the group

level, one sample t-tests were performed to identify target ROIs that were significantly

correlated with each seed. Results were False Discovery Rate (FDR) corrected at q = 0.05

(Genovese et al., 2002). For display purpose, the p values for s-iFC were negative log10

transformed and plotted on a surface map (for the analysis flow, see Fig. 1).

2.4 Dynamic iFC analyses

2.4.1 Sliding-window correlation analysis—Dynamic iFC was characterized using

sliding time-window correlation and hierarchical clustering analyses (see Fig. 1).

Specifically, we constructed a tapered window by convolving a rectangular window (width

= 44s / 69 TR)1 with a Gaussian waveform (σ = 1.94s / 3 TR). This window was applied to

the extracted time series in step of 3 TRs, resulting in 272 time windows per subject.

Following previous work (Allen et al., 2012), the covariance matrix from the seed and target

ROIs in each window was calculated using the graphical LASSO method (Friedman et al.,

2008) in volume space. This method employs an L1 regularization on the inverse covariance

matrix to reduce the noise induced by the limited number of data points available in a

window (Varoquaux et al., 2010). The covariance is equivalent to the correlation matrix

since we standardized the time series entering graphical LASSO. The regularization

parameter lambda (λ) was optimized separately for each subject by maximizing the log-

likelihood in a leave-one-out cross-validation framework. For each window, the correlations

between each seed and 156 target ROIs were extracted, Fisher Z-transformed, and then

standardized to unit variance and zero mean. This procedure resulted in 272 iFC windows

per seed and 1088 (272 × 4 seeds) total windows per subject. Each iFC window is a 1 × 156

vector.

2.4.2 Hierarchical clustering analysis—Connectivity windows were concatenated

across the four PMC seeds and 22 subjects, resulting in 23936 (1088 × 22) iFC windows.

We concatenate the iFC windows of all seeds and subjects to estimate connectivity patterns

common to PMC subdivisions and all subjects; this approach allows multiple connectivity

states to co-occur at a given point in time (e.g. different seeds can have different states at a

the same time point). This method has been used in recent studies using K-means clustering

to detect representative connectivity patterns (Allen et al., 2012) and using Principle

Component Analysis to identify elementary “building blocks” of dynamic iFC with time-

dependent weights (Leonardi et al., 2013). The concatenated iFC windows were then

1Window size of 22s and 88s were also tested in the secondary analyses to examine the reproducibility of clusters.
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submitted to hierarchical clustering analysis using the hclust package in R (Murtagh, 1985).

We used hierarchical clustering because it is deterministic, doesn’t require prespecification

of the number of clusters, and outputs a dendrogram to help visualize the structure of the

data (Everitt, 1974). Clustering was based on the Euclidean Distance metric in combination

with the Ward linkage method (Ward, 1963). Preliminary qualitative evaluations on a

fraction of the dataset, suggested that Ward linkage, which is appropriate for Euclidean

Distances only, provides the best separation. The optimal number of clusters was determined

using the dynamic tree cut algorithm, which employs an iterative procedure to automatically

identify clusters in complicated dendrograms (Langfelder et al., 2008)2. The combination of

hierarchical clustering with dynamic tree cut has been effective in finding gene modules in

gene expression data (Langfelder et al., 2008) and detecting functional network modules in

fMRI data (Mumford et al., 2010).

For each connectivity state identified by cluster analysis, a representative connectivity map

was generated. This was accomplished by testing whether the mean connectivity strength

(i.e., Fisher z-transformed correlation coefficient) calculated between a given seed ROI and

each of the 156 target ROIs was non-zero across the iFC windows assigned to the state (one

sample t-test). For visualization, the calculated p-values were then corrected for multiple

comparisons using a FDR procedure (q<0.05). The cluster assignments of the iFC windows

for each seed and subject form a time course of connectivity state transitions for that seed.

Seven indices that we collectively refer to as the ‘state profile’ were calculated based on the

state time courses to quantify different aspects of the seeds’ dynamic connectivity:

1. Seed Integration/Segregation Index: as the 4 seeds may share the same state at

some time windows, and separate into 2, 3, or 4 different states at other time

windows, this index was defined as the percent of time that the 4 seeds were in 1, 2,

3, or 4 states.

2. Seed Pair Overlap Index: this index measures the percent of time that each pair of

the 4 seeds shared the same state.

3. Total Duration of a State in % frames: this index is defined as the percent of time

that each seed spent in a given state.

4. Number of Spans for a give state: the number of times during a scan that a seed

transitions into a given state.

5. Mean Duration of a State in % frames: defined as the percent of time a seed spends

in a given state divided by the number of transitions into that state.

6. Number Of Transitions: defined as the number of switch from one state to another.

7. Transition Matrix: the probability of changing from one state to a different state,

calculated as the number of transitions from a given state to a target state divided

by the total number of transitions a given state to all other states.

2Two other commonly used metrics were also employed to determine the optimal number of clusters: pseudo-F statistic and R square.
However, no “knee” was found on the error curve for up to 200 clusters. Thus, we did not use these indices to determine the optimal
number of clusters.
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2.5 Test-retest reproducibility and reliability

In order to have biomarker potential, a state not only needs to be reproducible over time, but

also must possess properties that vary across individuals and can be reliably measured. In

this regard, we performed two sets of analyses, one to evaluate the reproducibility of states

across imaging sessions, and the other to quantify test-retest reliability for inter-individual

differences in state profiles. Thus, our use of reproducibility refers to the ability of our

analyses to generate the same states when applied to data collected from the same subjects at

different time points (i.e., 1+ weeks apart). In order to measure reproducibility, we repeated

our d-iFC analysis on session 2 (retest) data and calculated the spatial similarity (i.e.,

Pearson’s correlations) between states derived from sessions 1 and session 2.

Test-retest (TRT) reliability assesses the consistency of inter-individual differences in state

measures from one scan session to the next. In this regard, it is important to compute

dynamic profiles based on the same states. Thus, we ensure that the two sessions had

identical state definitions by concatenating the data from the two sessions before deriving

the states3. Then the same temporal metrics were computed based on these newly identified

clusters for each session separately. Intra-class correlations (ICC) (Shrout and Fleiss, 1979),

were calculated to evaluate the TRT reliability of these dynamic metrics using linear mixed

models (see Zuo et al., 2013, for details).

2.6 Validation of windowed iFC measurements using time series randomization

Variations observed in iFC obtained during sliding window analysis may reflect meaningful

temporal dynamics, or could be a by-product of the noise induced by the limited number of

time points present in the windows. We evaluated this by comparing covariance values

estimated from the actual data to those estimated from surrogate data generated by phase

randomization. Although this method preserves the temporal autocorrelation present in the

data, it destroys all spatial correlation (Theiler et al., 1992); our use is appropriate given that

we are not incorporating spatial information into our comparison. Phase randomization

techniques have been used in previous dynamic iFC studies to test the hypothesis that the

observed correlation fluctuations or the identified iFC states in the original fMRI data are

unlikely to come from merely random event timing and are more likely to represent

meaningful neuronal connectivity changes (Allen et al., 2012; Handwerker et al., 2012).

Modeling the underlying correlation structure of the time series in the time-domain was also

used to detect significant BOLD activation (Marchini and Ripley, 2000). Depending on the

specific questions examined, the phase of different measures (e.g. seed time series, target

ROI time series, sliding-window correlation time series) can be randomized to generate the

appropriate null distribution. In the present study, we tested the hypothesis that the dynamic

iFC was dependent on the exact timing of the seed time series by randomizing the phase of

the seed time series while keeping the target ROI time series intact.

For each subject, a frequency spectrum was calculated for the time series of each seed, using

the Fourier transform. The resulting phases were randomly permutated 100 times3, and time

3Of note, we randomly permutated half of the spectra and then made the other half symmetric to avoid complex numbers in time
series after inverse Fourier transform.
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series were reconstructed using the inverse Fourier transform, resulting in 100 surrogate

time series per seed. The advantage of this approach is that the precise timing of the signal

fluctuations was randomized but the amplitude and temporal autocorrelation were preserved.

For each randomization, the regularized covariance matrix was estimated for each sliding

window using the surrogate time series of the four seeds and the original time series of the

156 target ROIs. Using the randomization results, we created a null distribution, and

evaluated whether the covariance of real data exceed these values in the null distribution.

2.7 Association with phenotypic characteristics

To illustrate the potential utility of d-iFC in mapping brain-behavior relationships, we tested

for associations between dynamics metrics and a subset of the phenotypic data available for

the participants (Nooner et al., 2012). Specifically, we tested for relationships with

intelligence (scaled Full-Scale, Verbal, and Performance intelligence quotient [IQ] scores

from Wechsler Abbreviated Scale of Intelligence [WASI]) and several key subcomponents

of executive function (scaled design switching, verbal category switching, total weighted

achievement, and color-word inhibition scores from Delis-Kaplan Executive Function

System [D-KEFS]). We were particularly interested in executive function, as it is central to

cognitive flexibility and efficiency. We have 7 different indices that describe the dynamic

interactions among the four PMC seeds, from which we calculate 174 metrics (see Table 2).

Of these, only 38 show reasonable (> 0.4) test-retest reliability (see the third and fourth

columns of Table 2). The five metrics calculated from the transition matrix were

additionally excluded because they include too few non-zero values across subjects. Partial

correlation coefficients were computed between the remaining 33 metrics and each of the 7

phenotypic measures listed above, with mean framewise displacement (FD) (Power et al.,

2012) added as a control variable to partial out the residual effect of motion; this resulted in

a total of 231 tests (33 × 7 = 231) which are the total number of tests we corrected for. The

correlation results were False Discovery Rate (FDR) corrected at q=0.05 to account for

multiple testing. For significant correlations, the data distribution was checked for outliers

using R bagplot, a bivariate boxplot.

3. Results

3.1 s-iFC analyses: replication of Margulies et al. (2009)

Prior to examining temporal dynamics for PMC, we repeated the static analyses of

Margulies et al. (2009), finding a high degree of concordance between our results and those

of the prior work (see Fig. 2A). In particular, we found that the ventral PMC (seed 1), which

is based in PCC, exhibited strong iFC with the limbic regions, including the anterior

cingulate (ACC), paracingulate, and medial prefrontal cortex (MPFC) including frontal pole,

as well as the dorsolateral prefrontal cortex (DLPFC) and inferior parietal lobule (IPL). In

contrast, the sensorimotor anterior precuneal region (seed 2) exhibited iFC with medial areas

related to sensory and motor processing, such as paracentral lobule, supplementary motor

area, cingulate motor cortex, lateral primary motor cortex and the postcentral gyri. The

cognitive/associative central precuneal region (seed 3) was associated with DLPFC,

multisensory posterior inferior parietal lobule (especially the angular gyrus), and frontal

pole. Of note, while the iFC of the PCC subregion and cognitive precuneal subdivision were
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highly correlated (r = 0.89), these two subdivisions can be differentiated by more extensive

and stronger connectivity with MPFC and medial temporal lobe for the PCC compared to

cognitive precuneal subdivision (these findings are concordant with those of Margulies et

al., 2009).

Finally, the visual posterior precuneal region (seed 4) demonstrated iFC with the cuneus and

lingual gyri, which are commonly associated with basic visual processing, along with higher

order cognitive processes (e.g., inhibitory control, word processing). In addition to the

regions consistent with previous study, we also observed connectivity to bilateral lateral

temporal cortex for seed 1 and 3 and connectivity to left rostral DLPFC for seed 2.

Importantly, the distinctive siFC patterns for PMC subregions described here replicated in

session 2 as well (data not shown)4. Methodological differences may account for the subtle

discrepancy between the results. The current scanning protocol is with better coverage (field

of view = 222 mm vs. 192 mm), higher temporal resolution (TR = 645 ms vs. 2000 ms), and

longer acquiring duration (10 min vs. 5 min), which may allow us to detect connectivity

within the regions that are poorly covered in typical standard scan protocol such as lateral

temporal lobe5. Of note, the connectivity to the lateral temporal lobes we observe here in

seeds 1 and 3 is also consistent with the finds from the corresponding functional

connectivity in the macaque monkey (Margulies et al., 2009).

3.2 d-iFC analyses

3.2.1 Detection of common states across PMC subdivisions—We next revisited

the aforementioned s-iFC distinctions among PMC subregions, though now taking into

account temporal dynamics. By combining sliding-window correlation with hierarchical

cluster analysis, we detected five states among the four subdivisions (see Fig. 3). Although

state 3 was highly distinct and showed low correlation with the others, the remaining four

states showed a high degree of correlation with one another – either positive (e.g., state 1

and 2) or negative (e.g., states 2 and 4). The Fisher Z transformed correlation coefficients in

these states exceed what can be expected by chance (Fig. S2). Figure 4 summarizes the

composition of the iFC states identified, by depicting the percent overlap between each of

the states and the 10 primary ICNs that Smith et al. (2009) previously identified and

matched with “behavioral domains” using the BrainMap database (see Fig. 4). Each of the

five states appeared to be a combination of these previously identified functional systems,

rather than a reflection of a single system – possibly illustrating the higher order integration

role commonly ascribed to PMC as a ‘hub’ region. Importantly, each subregion was

associated with all of the states, though to varying degrees (from 6.7 – 45.7%; for example,

seed 2 spent 11.8% of time in state 1, 7.8% in state 2, 17.9% in state 3, 45.7% in state 4, and

16.9% in state 5), suggesting that these iFC states are “common” to all four PMC

subdivisions. Consistent with the suggestion of prior work (Allen et al., 2012), not all

participants exhibited all connectivity states, though states 2 and 4 are common across all

participants (see Fig. S3B).

4Of note, the connectivity between PMC subregions, previously noted by Margulies et al., was not assessed in our analyses.
5One other methodological distinction was the selection of seed regions, which was conducted on an individual-level in Margulies et
al. (2009), and here using the mean location in MNI standard space. Though unlikely, it cannot be dismissed that anatomical
variability across individuals may also play a role in the different connectivity results.
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State 1, which mainly consists of iFC windows for the cognitive (30.5%), visual (27.8%),

and limbic (23.6%) subregion, is primarily composed of components from the higher-order

default and cognitive control networks, the visual networks, as well as subcortical regions

such as thalamus, caudate, and putatmen. State 2 mainly consists of limbic (44.5%) and

cognitive (28.6%) subregions and includes the core regions of default network (DN) such as

MPFC, medial and lateral temporal lobe, lateral parietal cortices, and subcortical regions.

This state exhibits a similar pattern to that of state 1 (r = 0.70). However, these states do not

appear to be the result of over-clustering; important differences in direction and strength of

connectivity were observed between these two states within DLPFC, ventrolateral prefrontal

cortex (VLPFC), medial temporal lobe, lateral parietal lobe, visual cortex, and subcortical

regions (paired sample t-tests, FDR corrected at q = 0.05). State 3 is more evenly associated

with all 4 seeds and overlaps with the visual networks and DN. State 4 is predominantly

contributed by sensorimotor subdivision (45.7%) and includes the core regions of “task-

positive” network (TPN) such as motor cortex, frontal eye fields, anterior proportion of

intraparietal sulcus, anterior insula, and extrastriate cortex. State 4 is highly anti-correlated

with state 1 (r = −0.81) and 2 (r = −0.77) and exhibits opposite connectivity patterns in

distributed regions within frontal, parietal, and temporal lobe, and subcortical regions to

these states. State 5 overlaps with all ten ICNs and also includes subcortical regions.

Furthermore, this state is evenly contributed by all four subdivisions. These suggest that this

state may have high flexibility in being involved in different tasks.

Given that s-iFC represents the full correlation computed across all time points, one question

is to what degree s-iFC patterns are reflective of specific d-iFC states. To examine this

question, we computed Pearson’s correlations between the s-iFC pattern for each seed and

each of the d-iFC states. We found that the s-iFC pattern of a given seed had the highest

similarity to the state it spent the most time in (Fig. 2), indicating that the s-iFC is most

reflective of that state. For example, the s-iFC of the limbic subregion (seed 1) was almost

perfectly correlated with state 2 (r = 0.97), with both including common regions such as

MPFC, ACC and paracingulate cortex, DLPFC, medial and lateral temporal lobe, and IPL.

3.2.2 PMC subregion state profiles—Figure 5A, B, and C present the state time

courses for three representative participants. Rather than remaining in a single state, all

seeds exhibited switching behavior across multiple states (Fig. 5, Seed 1 to 4) and

overlapped with each other at different time windows (Fig. 5, All 4 Seeds). The State

Integration/Segregation Index indicated that most of the time these four seeds were in either

two or three unique states. This pattern holds at the group level (Fig. 6, left Panel A), when

the percent of time for which the four subdivisions were in 1, 2, 3, or 4 states were averaged

across participants, suggesting certain subdivisions overlapped with each other on the same

state. To quantify the percent of time the two seed regions were associated with the same

state simultaneously, a Seed Pair Overlap Index was computed. Results revealed that all

pairs of seeds overlapped with each other to varying degrees, with seed 1 and 3 having the

highest percentage of overlap (48.5%). The s-iFC patterns of these two seeds were highly

similar, and they mainly overlapped when associated with state 1 and 2, the iFC states they

spent most of their time in. The percentage overlap between seed 3 and seed 4 was also high

(46.7%), and they mainly overlapped when associated with state 1 and 3. Seed 1 and 2 had
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the lowest percent of overlap, but it was still over 20% of time. These results suggested

substantial functional integration across PMC subdivisions, which can not be appreciated by

traditional s-iFC analysis.

To test the hypothesis that each subdivision was associated with a unique state profile, we

computed a set of dynamic metrics to quantify the time each seed spent in each state (i.e.,

duration of scan spent in a given state, number of times associated with a given state, mean

time spent in a given state) and transition patterns (i.e., total number of state transitions,

transition matrix) (see Table 1 and Fig. 6, left panel B and C). Importantly, as is evident in

Figure 6, each subdivision was associated with a distinct state profile.

3.2.3 Dependencies on GSR and the effect of motion—To determine the extent to

which the iFC states detected depend on GSR, we repeated the same dynamic iFC analysis

procedures using the data preprocessed without GSR. For session 1, four d-iFC states were

detected and these states correlated well with four of the five states detected in our primary

analysis with GSR (compare Fig. S4 A and B, left panel); state 5, which contained the least

number of windows in our primary analyses with GSR, was not detected in session one. For

session 2, four states were detected, three of which correlated well with states identified in

primary analyses with GSR (states 1 and 5 from our primary analyses were not detected)

(compare Fig. S4 A and C, left panel). Similar to our primary analysis, these states are

associated with all four seeds in both sessions, although to varying proportion (Fig. S4 B and

C, right panel), confirming that these states are common to the four PMC subregions.

Overall, these results suggest the detection of iFC states is possible without GSR, though the

reproducibility increases with GSR. Regarding the relationships noted in our primary

analyses between the diFC metric for seed 4 (duration spent in state 4) and the DKEFS, we

did not find a significant relationship in either session without GSR, once again suggesting a

possible cleaning effect.

An obvious concern can arise despite the various procedures taken to minimize and/or

account the effect of motion – namely that one or more states may be artifactually driven by

motion. To provide further insights into this concern, we first examined potential

associations between the occurrence of a state and that of large frame-wise displacements

(FD > 0.2mm). Importantly, none of the states showed strong associations between their

occurrence and that of a high motion (Fig. S5: A and B). State three did have a larger

proportion of windows with high motion compared to the others, possibly suggesting a

greater risk of motion when the brain shifts into that state. Given the global nature of

motion, we looked for associations between the occurrence of large frame-wise

displacements and increased overlap in the state associations for the 4 PMC seed regions

(i.e., when a motion occurs, do they all shift to be associated with the same state); we found

that this was not the case as the percent of time four seeds shifted into the same state is very

low for all states (ranges from 0.38% to 2.26%), compared to the percent of windows with

mean FD greater than 0.2mm (ranged from 8.84% to 34.03%) (compare Fig. S5B with C).

3.2.4 Test-retest reproducibility and reliability—To examine the reproducibility of

the d-iFC states, similar d-iFC analysis was performed on session 2 data. Six common states

were detected in session 2 and five of them were significantly correlated with the states
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detected in session 1 (Fig. 7A and B: r ranged from 0.62 to 0.91, all significant at p < 0.0001

based on permutation testing [10,000 permutations]). Furthermore, the common iFC states

were also highly correlated with five of the six states detected using a window size of 22s

(Fig. 7C: r ranged from 0.78 to 0.96, all significant at p < 0.0001 based on permutation

testing) and the five states detected using a window size of 88s (Fig. 7D: r ranged from 0.72

to 0.97, all significant at p < 0.0001 based on permutation testing), suggesting that these iFC

patterns were highly reproducible and robust to window size selections.

To assess the TRT reliability of the dynamic metrics, states common to the two sessions

were first identified by clustering data concatenated from both sessions. Five states were

identified and they were significantly correlated with the states detected in session 1 (r range

from 0.65 to 0.97, all significant at p < 0.0001 based on permutation testing). Overall, we

found that TRT reliability of the dynamic metrics varied from low to high across metrics,

with the Seed Pair Overlap Index and Total Duration having the highest overall reliability

(Fig. 6, right panel). For each of the dynamic indices depicted in Figure 6, Table 2

summarizes the total number of metrics (based upon the number of seeds, seed pairings, or

states a given metric is applied to), and the number of times the index exhibits moderate or

high ICC values.

3.2.5 Association between dynamic metrics and phenotypic characteristics—
We found that Mean Duration seed 4 in state 4, a reliable metric (ICC = 0.65, see Fig. 8C),

is negatively correlated with the total weighted achievement score (TWAS) assessed using

the Twenty Question Test of the D-KEFS, a measure of concept formation and flexibility of

thinking. This correlation is significant in both session 1 (r = −0.82, p = 0.00018) and

session 2 (r = −0.79, p = 0.00042) after controlling for motion and correcting for multiple

comparisons (Fig. 8 A and B). A false discovery rate correction for 231 simultaneous tests

was performed for each session with q=0.05. The threshold detected after correction is

0.00018 and 0.00042 for session 1 and session 2, respectively. This negative correlation was

unlikely to be confounded by age or sex, as neither is associated with dynamic metrics and

neuropsychological (i.e. IQ and executive function) measures (all p > 0.20). The effect in

session 2 was also not driven by the outlier as the correlation became even more significant

after removing the circled outlier (r = −0.91, p ~= 0).

Furthermore, this negative correlation was confirmed when using different window sizes.

Specifically, when the window size was 22s, the correlation was significant in both sessions

(session 1: r = −0.64, p = 0.007; session 2: r = −0.54, p=0.024; one-tailed). When the

window size was 88s, the correlation was significant in session 1 (r = −0.74, p = 0.001; one-

tailed,) but was not significant in session 2 (p > 0.1, one-tailed). These correlations did not

appear to be driven by those participants diagnosed with depression, as they were still

significant for sessions 1 (Fig. S6C: r = −0.78, p = 0.001, one-tailed) and 2 (Fig. S6D: r =

−0.66, p = 0.01, one-tailed) after excluding these subjects. The remaining brain-behavior

correlations were only significant in one session or not significant in either session after

FDR correction, and thus not discussed here.
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4. Discussion

Our findings replicate and provide novel insights into previous observations of differentiable

siFC patterns across PMC subregions. Specifically, we demonstrated a set of reproducible

iFC states that were common to the PMC subregions, with each subregion possessing a

unique state profile. As expected, s-iFC of each subregion was reflective of the state(s) it

spent the most time in, suggesting that the observation of differentiable s-iFC networks

results from differences in the specific iFC state for which each sub-region shows a

preference. Several state profile metrics exhibited moderate to high test-retest reliability,

suggesting their utility in indexing differences between individuals and populations; Total

Duration and Seed Pair Overlap Index were particularly reliable. Interestingly, the mean

duration of time seed 4 spent in state 4, a highly reliable metric, was able to predict

individual differences in categorization ability and mental flexibility in both sessions,

suggesting functional relevance of dynamic metrics. Overall, this work demonstrates the

ability of d-iFC analyses to enrich our understanding of intrinsic brain function and

characterize inter-individual variations.

Our work revisited the commonly reported negative relationships (i.e., anti-correlations)

between the ‘default’ and ‘task-positive’ networks (Fox et al., 2005; Kelly et al., 2008),

suggesting a more complex picture. Similar to prior dynamic studies (Allen et al., 2012;

Chang and Glover, 2010; Majeed et al., 2011), our findings suggest that PMC subregions

change their associations with the DN and TPN over time. While the PCC spent almost half

of its time associated with the DN (state 2), its network associations changed at times to be

more inclusive of the TPN (state 4) – suggesting that commonly cited segregations between

the two networks are not hardwired. The emerging picture was further enriched by findings

that several of the remaining states (e.g., 3 and 5) were actually mixtures of DN and TPN

components.

The concept of changing network associations is not specific to R-fMRI.

Electrophysiological studies of the mesoscale connectome have revealed transient

interactions arising between distributed functional ensembles of neurons in response to

changing task demands (Varela et al., 2001). At the macroscale, Spreng et al. (2010) divided

the classic DN (Buckner, 2012) into a core DN (akin the hippocampal based sub-network of

Andrews-Hanna et al., 2010) and a fronto-parietal network (FPN) based control system,

finding that the associations of the FPN with the DN core vs. TPN change as a function of

task demands. Recent work by Cole et al. (in press) further demonstrated the existence of

flexible hubs within the FPN (i.e. lateral PFC and posterior parietal cortex); they argued that

FPN’s role in adaptive control for a wide range of cognitive tasks is made possible by these

hubs, which flexibly update their brain-wide iFC patterns according to task demands.

The state-related results in the current study are consistent with those of prior work using

similar methods to detect discrete states at a larger scale based on whole-brain connectivity

(Allen et al., 2012). Similar to our current findings, Allen et al (2012) found that the network

membership and connectivity of PMC subregions (e.g., precuneus and PCC) with the rest of

the brain change across states. Using a revised point-process method, Liu and Duyn (2013)

reported that DMN can be decomposed into 8 PCC-related co-activation patterns (CAPs)
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and different proportion of PCC/precuneus are involved in different CAPs. While the whole-

brain connectivity analysis revealed more information on how various brain regions interact,

our results provided more detailed information regarding how subdivisions within

posteromedial cortex interact with other regions and change over time. Our work

demonstrates the feasibility of using sliding-window correlation to capture the functional

integration and segregation of units within complex brain regions. The novel insights gained

from the present work enriched our understanding of the functional organization of PMC

and provided complementary information to other dynamic studies focusing on large-scale

network transitions.

In attempting to understand the functional significance of temporally dynamic iFC patterns,

we draw attention to two possible explanations. First, consistent with suggestions that the

intrinsic architecture provides a representation of the dynamic repertoire of the brain’s

responses (Mennes et al., 2013; Smith et al., 2009), the various states captured through d-

iFC analysis may reflect the range of network configurations required to support flexible

brain function. Alternatively, they may reflect transient cognitive events occurring during an

R-fMRI scan, which may either, invoke, or result from different states. Experimental

manipulations capable of perturbing temporal dynamic patterns can help to discern between

these possibilities; examples include secondary tasks (Cole et al., in press), brain stimulation

techniques (Fox et al., 2012), and real-time fMRI (Sulzer et al., 2013; Van De Ville et al.,

2012). Note that consistent with prior work (Margulies et al., 2009), we labeled seed 1 as

limbic seed and seed 3 as cognitive seed based on their s-iFC patterns. We did not attempt to

label the d-iFC states, as their functional significance remains unclear and the spatial pattern

of several states can not be easily interpreted, as they include distributed regions that span

several of the previously identified intrinsic connectivity nextworks (ICNs). Future work is

needed to understand the physiological origins of these states and how they are related to

psychological functions.

Several recent studies have suggested that intrinsic phenomena may underlie critical aspects

of cognition and behavior (Sadaghiani and Kleinschmidt, 2013). For example, simultaneous

EEG-fMRI studies linking fluctuations in network connectivity to alpha power (Chang et al.,

2013; Tagliazucchi et al., 2012) suggest that iFC dynamics may partly reflect states of

arousal and vigilance. Perhaps most exciting, a recent study found that large-scale network

interactions during the pre-stimulus interval can predict trial-to-trial variations in

performance in a psychomotor vigilance task (Thompson et al., 2012). Adding to this

growing literature, the current study demonstrated the ability of d-iFC feature to index

executive function. Specifically, we found that those individuals whose visual subregion of

the PMC spent a greater amount of time in state 4 (including key regions of TPN) for a

given occurrence (i.e. Mean Duration) during rest, exhibited poorer concept formation and

mental flexibility when performing the Twenty Question Test of the D-KEFS.

The association between the visual subregion of PMC and mental flexibility is of particular

interest, as this subregion exhibited the largest number of transitions and was most equally

associated with the five iFC states. Although speculative, greater time fixed on state 4

during R-fMRI may reflect a decreased tendency to flexibly reorganize brain circuitry to

support task demands. The human brain’s unique capacity to rapidly reconfigure and
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flexibly adapt to different cognitive control demands has been demonstrated in rapid

instructed task learning (Cole et al., 2013). Using methods similar to the current study,

Damaraju et al. (2012) reported that the iFC states of schizophrenia patients switched less

often than healthy controls, suggesting a relatively rigid connectivity. This association

between reduced network flexibility and poorer cognitive task performance was confirmed

with task-based fMRI (Spreng and Schacter, 2012). Of note, initial findings of precuneus

abnormalities in adult ADHD (Castellanos et al., 2008; Uddin et al., 2009) included the

visual subregion. Future work may benefit from increased focus on this portion of PMC and

its associations with executive function.

Beyond delineating iFC states for PMC subregions, we presented various metrics for

characterizing state transition behaviors, several of which exhibited high test-retest

reliability. In particular, the Total Duration (% of time a given seed spends in a state) and

Seed Pair Overlap Index (i.e., % of time two seeds are in the same state) have the highest

reliability; the transition matrix had the lowest reliability. Findings of moderate to high

reliability are promising for potential applications in characterizing inter-individual and

group-differences; studies have already shown altered temporal dynamics in a number of

clinical populations (Hamilton et al., 2011; Jones et al., 2012; Sakoglu et al., 2010).

Importantly, while test-retest reliability is a key component of determining the

appropriateness of a metric for clinical application, it is not the sole determinant

(Castellanos et al., 2013). As recently noted for motion (Yan et al., 2013a), artifactual

signals can either increase or decrease reliability. Future work combining

electrophysiological and fMRI recordings, or interventional approaches, can increase

confidence regarding accuracy. Furthermore, substantial work is required to appropriately

validate and optimize d-iFC approaches before dynamic metrics can be confidently used as

biomarkers of normal development and psychiatric diseases.

Several methodological considerations arise from usage of sliding-window analyses. In

particular, concerns are about whether window-based temporal iFC fluctuations are

meaningful, and whether the window size is optimal. We verified that our window-based

measurements of iFC are meaningful by comparing correlations obtained with real data vs.

those obtained following phase randomization procedure (Fig. S2). Additionally, we

performed our analyses using a number of window sizes (22s, 44s, 88s), demonstrating the

robustness of our findings. While the window size of 44s was selected based on previous

work, a recent review noted that 30-60s tend to give robust findings (Hutchison et al., in

press). Multiband imaging technologies afforded us 69 time points / window, as opposed to

22 time points when using the more common TR=2s, increasing our confidence in

windowed iFC measurements. Following Allen et al. (2012), we also used graphical Lasso

to improve the estimation of the covariance matrix, though found little difference relative to

non-regularized coefficients; future work should explore such optimizations further. Finally,

our usage of a test-retest dataset served to further increase confidence in our findings.

The process of developing and refining d-iFC analyses will undoubtedly require the field to

revisit and rethink preprocessing strategies. In particular, the present work draws attention to

global signal regression – a technique that is among the most commonly used and

controversial in the R-fMRI field. Specifically, we found that while the detection of iFC
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states is possible without GSR, the approach does appear to increase detectability and

reproducibility. Advocates of GSR in s-iFC analyses note that by removing global variance,

GSR can increase the spatial specificity of correlation patterns, improve the correspondence

between resting-state correlations and anatomy (Fox et al., 2009), enhance the neuronal-

hemodynamic correspondence (Keller et al., 2013) and account for the effects of motion at

the time series level (Yan et al., 2013a). Criticisms center around the potential for GSR to

artifactually generate negative correlations (Murphy et al., 2009; Weissenbacher et al.,

2009), alter interregional correlation patterns across participants (Gotts et al., 2013; Saad et

al., 2012), and remove neural components along with artifactual (Yan et al., 2013b). Several

authors have advocated alternative approaches that account for the impact of nuisance

signals on inter-individuals differences at the group analysis stage (Saad et al., 2013; Yan et

al., 2013b) – unfortunately, this is too late to facilitate the detection of d-iFC states. In

contrast, principled approaches to nuisance signal correction at the time series level have

also emerged (e.g., RETROICOR (Glover et al., 2000) and ANTICOR (Jo et al., 2010)) –

though they are not likely to be able to account for the impact of motion as GSR does. As

previously noted by Yan et al. (2013a), scrubbing is not appropriate for d-iFC analyses, as

the method alters the temporal structure. In sum, despite its limitations and flaws, GSR may

have potential utility in d-iFC analyses until more effective alternatives are solidly

established. One promising alternative that is worth mention is the recent development of

multi-echo MRI sequences capable of providing voxel-wise indices of physiologic and

motion artifacts (Bright and Murphy, 2013; Kundu et al., 2012).

Some limitations of our work should be noted. First, the sample size was relative small

(n=22), and included individuals with depression. While our results did not appear to be

confounded by the patients, as their state profile and neuropsychological testing scores were

within normal range, it is important to replicate our findings with a larger and homogenous

sample. Second, it may not be an optimal approach to use previously demonstrated

coordinate system for precuneus/PCC (Margulies et al., 2009). Defining the seed regions

based on previous study or the current dataset is a trade-off between location accuracy and

the variability introduced by data-driven methods (e.g., parameter selection). To reduce

variability and avoid biases in findings introduced by using the same dataset, we used the

pre-defined seeds and verified that these seeds actually represent four distinctive subregions.

Future work directly compare these two approaches are warranted. Third, various

parameters related to data acquisition (e.g., sampling rate, scan duration), data preprocessing

(e.g., motion correction, global signal regression), and specific analysis approaches (e.g.

window size, increasing step, clustering methods, determination on optimal number of

clusters) can potentially influence findings. For example, data acquired with slower

sampling rates will have fewer observations in the window, which in turn produces higher

error in the estimated correlation coefficients. As such, one might anticipate that inter-

individual differences would be less reliable than what is seen with fast TR (e.g., multiband)

imaging approaches. Though, of note, slow TR data does have greater signal-to-noise ratio

in each volume, which may provide an advantage. Thus, future work with slow TR data may

benefit from similar examinations of test-retest reliability before proceeding with large-scale

usage. Overall, systematic examination is merited in future works to attain a
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methodologically robust analysis pipeline readily applicable to developmental and clinical

populations.

Fourth, through our clustering analysis, we did not see evidence of an ‘intermediate state’

that would co-occur between transitions from one major state to another. More fine-grained

analyses explicitly examining the transition period for more subtle variations are warranted

in future work to capture the evolving changes of the iFC patterns. Fifth, though being a

robust partitioning algorithm, the hierarchical clustering algorithm has certain drawbacks

such as inability to scale well (i.e. computationally demanding for large datasets) and no

back-tracking capability (Rokach and Maimon, 2006). Future work examining the efficiency

of other clustering algorithms or developing approaches other than clustering is necessary

for a better understanding of temporal dynamics of functional connectivity.

While the present work focused on PMC, the insights gained will likely have ramifications

for other structurally and functionally heterogeneous regions (e.g., anterior cingulate cortex,

striatum, amygdala). Findings from prior works that used s-iFC to characterize functionally

differentiable subdivisions within these regions (Di Martino et al., 2008; Margulies et al.,

2007; Roy et al., 2009) can be enriched by reconsideration through the lens of temporal

dynamics. More broadly, the field needs to address the challenges of replacing static

accounts of functional interactions within the connectome with dynamic representations.

Future work will benefit from expanding the scope of d-iFC investigations to include local

measures (e.g. regional homogeneity, voxel-mirrored homotopic connectivity) and large-

scale network properties (e.g. network centrality). Finally, temporal dynamics needs to be

considered as another dimension by which phenotypic variables can be used to annotate the

connectome and derive neurophenotypes (Craddock et al., 2013).

In conclusion, we demonstrated that PMC subregions alternate between a shared set of diFC

states, with each possessing a preferred state(s); additionally, we established the

reproducibility of d-iFC states and demonstrated moderate to high test-retest reliability for a

subset of metrics used to quantify state switching behaviors. The present work brings the

dynamic perspective to our understanding of the functional organization of PMC and draws

attention to the need for an enhanced conceptualization of iFC in the brain.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Temporal dynamics of posteromedial cortex (PMC) functional connectivity

were examined.

• PMC subregions alternated between a common set of functional connectivity

states at rest.

• Each PMC subregion possessed unique preferred state(s) and state transition

patterns.

• Connectivity states were reproducible, and various state metrics appeared

reliable.

• Inter-individual variation in state properties was related to cognitive flexibility.
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Figure 1. Data Analysis Overview
After standard preprocessing, for each participant, the BOLD signal time series were extracted in MNI space for each of the four

seeds and the 156 target ROIs. Seed locations were selected to represent the four subdivisions of posteromedial cortex (PMC)

according to Margulies et al. (2009): limbic posterior cingulate cortex subregionn (Seed 1), sensorimotor (Seed 2), cognitive

(Seed 3), and visual (Seed 4) precuneal region. The target ROIs were derived from the Craddock-200 functional atlas with

brainstem, cerebellum, and PMC regions removed from the analysis. The time series were subjected to static and dynamic

intrinsic functional connectivity (s-iFC and d-iFC) analysis. s-iFC was performed to replicate results of Margulies et al. (2009).

d-iFC states were identified using a sliding-window correlation (window size = 44s, step = 1.9s) in combination with

hierarchical clustering analysis. The optimal number of clusters was determined using a dynamic tree cut algorithm. The mean

iFC of each cluster was calculated and thresholded as a representative pattern for a given state. The time course (TC) of state

was reconstructed for each participant and each seed by temporally concatenating the cluster index.
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Figure 2. Relating static intrinsic functional connectivity (s-iFC) pattern and dynamic iFC (diFC) states
The spatial pattern of the s-iFC for a given seed has the highest similarity to the state it spent the most time in (compare A and B

for each seed; also see D for correlation coefficients). The state in which a seed spent the second longest time in was plotted in

(C). The −log10 transformed p map was plotted onto a surface map. The state number and the percent of time each seed spent in

that state were listed below the state surface map.
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Figure 3. Posteromedial cortex intrinsic functional connectivity (iFC) states
Depicted are the five states identified by hierarchical clustering of iFC windows across seeds and participants over time. For

display, the p values of the ROIs exhibiting significant connectivity were −log10 transformed and plotted onto an MNI space

surface map in lateral and medial view using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (L = left; R = right). The

total number and percentage of iFC windows belong to each state was listed below each state.
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Figure 4. Characterizing posteromedial cortex intrinsic connectivity states
We summarize the anatomic location and functional components of the connectivity states using the 10 primary intrinsic

connectivity networks (ICNs) identified by Smith et al. (2009). The sagittal (MNI X coordinates) slice presented in previous

paper was shown here for each ICN thresholded at Z = 3 (shaded in light green). The behavioral domain corresponding most

strongly to each ICN was listed below the sagittal slice. The percent overlap between each state and each ICN was plotted in a

pie chart. The whole circle represents the total number of voxels in an ICN which can be divided into three parts: percentage

overlap with positive connections in a state (% Positive: red), percentage overlap with negative connections in a state (%

Negative: blue), and percentage non-overlap with a state (Non-overlap: white).
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Figure 5. State time courses for three representative participants (A, B, and C)
The state time courses were plotted for each seed separately (Seed 1-Limbic, Seed 2-Motor, Seed 3-Cognitive, and Seed 4-

Visual), as well as all seeds together to highlight overlaps. Assigned states are plotted at the time point corresponding to the

center of the sliding window in unit of TR. The seed Integration/Segregation Index (defined as the percent of time the four seeds

possesses 1, 2, 3, or 4 unique state(s)) indicated that for most of the time, the four seeds were associated with either two or three

unique states.
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Figure 6. State profiles and their reliability
State profile of session 1 (left panel) and state profile test-retest (TRT) reliability calculated using 2 sessions (right panel) were

plotted. For the state profile, indices describing state integration and segregation (A) and Number of transitions (C) are depicted

in boxplots. Outliers were indicated by an “o”. The Total Duration in % frame, # of Spans, and Mean Duration (Total Duration /

# of Spans) were plotted for each seed and each state using its own scale (B). The Transition Matrix (C), the mean probability

(Prob.) of changing from one state at time t (rows) to another state at time t+1 (columns) across all subjects, was plotted for each

seed, separately. The diagonal value (changing within its own state) was removed. The corresponding TRT reliability estimates

for these dynamic metrics were quantified using intra-class correlation (ICC) and plotted accordingly.
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Figure 7. Assessing iFC state reproducibility and robustness
The states identified in session 1 (A) were significantly correlated with the states identified in session 2 (B) in the primary

analysis with a window size of 44s (all correlations are significant after FDR corrected at q < 0.05). These states (A) were also

significantly correlated with five of the states detected when we repeated our analyses using window sizes of 22s (C) and 88s

(D) (all correlations are significant after FDR corrected at q < 0.05). r represents the Pearson’s correlations coefficient. Ses:

session.
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Figure 8. Relating d-IFC to inter-individual variation in executive function
Mean Duration of seed 4 in state 4, a reliable measure (C: intra-class correlation [ICC] = 0.65), was negatively correlated with

the total weighted achievement score (TWAS) assessed using the Twenty Question Test of the Delis-Kaplan Executive Function

System (D-KEFS). This correlation was significant in session 1 (A) and 2 (B) (FDR corrected at q < 0.5), either with or without

the circled outliers being removed. Note that the statistics reported here were with all data points included.
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Table 1

State profile summary information.

Preferred
State(s)
(Total

Duration in %
frames)

State With
Highest

Frequency in
Terms of Spans

(# of spans)

State With Highest
Mean Span

(Mean Duration in
% frames)

Number of
Transitions

Most likely
State Switch
(Probability)

Seed 1-
Limbic 2 (44.5%) 2 (3.1) 2 (15.7%) 7.9 5 to 2 (0.75)

Seed 2-
Motor 4 (45.7%) 4 (3.0) 4 (17.1%) 8.0 2 to 4 (0.61)

Seed 3 -
Cognitive

1 (30.5%) and
2 (28.9%)

1 (2.5) and 2
(2.5) 2 (13.7%) 9.0 1 to 2 (0.52)

Seed 4-
Visual

1 (27.8%) and
3 (27.4%) 1 (2.9) 3 (11.8%) 10.3 5 to 1 (0.53)

Note: The summary measures for each seed are averages generated across participants. See figure 7 for more complete information regarding key
indices.
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Table 2

Number of reliable metrics per dynamic index.

Dynamic Index
Number of
Metrics /

Index

Metrics with
Moderate Test-retest

Reliability
(0.4 < ICC < 0.6)

Metrics with High
Test-retest Reliability

(ICC > 0.6)

Seed Integration/Segregation Index 4 a 1 0

Seed Pairs Overlap Index 6 b 3 1

Total Duration of a State 20 c 10 3

Number of Spans for a State 20 c 7 2

Mean Duration of a State 20 c 2 3

Number of Transitions 4 d 1 0

Transition Matrix 100 e 3 2

Total 174 27 11

a
4 = # of unique state(s)

b
6 = # of unique seed region pairings

c
20 = # of seed regions × # of iFC states

d
4 = # of seeds

e
100 = # of seed regions × (# of iFC states × # of iFC states)
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